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| Named Entity Recognition

= A fundamental task in IE

= An important and challenging task in
biomedical text mining
o Critical for relation mining

o Great variation and different gene naming
conventions




‘ Need for domain adaptation

= Performance degrades when test domain
differs from training domain

= Domain overfitting

task NE types train — test F1
news LOC, NYT — NYT (0.855)
ORG, PER | Reuters — NYT \0.641/
biomedical gene, mouse — mouse ﬂ).541\
protein fly — mouse \0.281/
‘ Existing work

= Supervised learning

o HMM, MEMM, CRF, SVM, etc. (e.g., [Zhou & Su 02],
[Bender et al. 03], [McCallum & Li 03])

= Semi-supervised learning
o Co-training ([Collins & Singer 1999])

= Domain adaptation
o External dictionary ([Ciaramita & Altun 2005])
o Not seriously studied
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‘ Observation |

= Overemphasis on domain-specific features in

the trained model
“suffix —less” weighted high in

WINGFESS the model trained from fly
daughterless data

ey = Useful for other organisms?
apexless

in general NO!

= May cause generalizable
features to be downweighted

fly




‘ Observation 11

» Generalizable features: generalize well in all
domains

o ...decapentaplegic and wingless are expressed
in analogous patterns in each primordium of...
(fly)

o ...that CD38 is expressed by both neurons and
glial cells...that PABPCS is expressed in fetal
brain and in a range of adult tissues. (mouse)

‘ Observation 11

= Generalizable features: generalize well in all
domains

o ...decapentaplegic and wingless are
of...

in analogous patterns in each primordiur
(fly)

“w,,, = expressed” is generalizable




‘ Generalizability-based feature ranking
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Feature ranking & learning
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Feature ranking & learning
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Feature ranking & learning
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Prior variances

= Logistic regression model
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‘ Rank-based prior

variance ¢?
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‘ Rank-based prior

variance ¢?

a o = r.l/b

r=1,2,3, ... rank r

| Summary
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‘ Experiments

= Data set

o BioCreative Challenge Task 1B

o Gene/protein recognition
o 3 organisms/domains: fly, mouse and yeast
= Experimental setup
o 2 organisms for training, 1 for testing

o Baseline: uniform-variance Gaussian prior

o Compared with 3 regular feature ranking methods:

frequency, information gain, chi-square

‘ Comparison with baseline

Exp Method Precision Recall F1

F+tM—-Y Baseline 0.557 0.466 0.508
Domain 0.575 0.516 0.544

% Imprv. +3.2% +10.7% +7.1%

F+Y—M Baseline 0.571 0.335 0.422
Domain 0.582 0.381 0.461

% Imprv. +1.9% +13.7% +9.2%

M+Y—F Baseline 0.583 0.097 0.166
Domain 0.591 0.139 0.225

% Imprv. +1.4% +43.3% +35.5%




Comparison with regular feature ranking
methods

generalizability-based s
feature ranking ———w_|

D.45

feature frequency
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‘ Conclusions and future work

= We proposed
o Generalizability-based feature ranking method
o Rank-based prior variances

= Experiments show

o Domain-aware method outperformed baseline
method

o Generalizability-based feature ranking better than
regular feature ranking

= To exploit the unlabeled test data
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‘ The end

Thank you!
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