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Abstract

We incorporate wealth heterogeneity and the minimum investment requirements

in the model of Matsuyama (2004, Econometrica) and provide a complete charac-

terization of symmetry breaking. In particular, we identify the extensive margin

of investment as a key channel through which the interest rate may respond pos-

itively to capital accumulation, or equivalently, the interest rate can be higher in

the rich than in the poor countries. Then, financial market globalization may lead

to “uphill” capital flows from the poor to the rich countries, which widens the

initial cross-country income gap and leads to income divergence among inherently

identical countries, a phenomenon that Matsuyama calls symmetry breaking.
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1 Introduction

Matsuyama (2004) shows that, in the presence of fixed investment requirements (FIR,

hereafter) and financial frictions, countries which are inherently identical except for the

initial income converge to the same, unique, and stable steady state under international

financial autarky (IFA, hereafter), while financial market globalization (FMG, hereafter)

may lead to “symmetry breaking”, i.e., the initially rich (poor) countries may converge to

a new steady state with the income higher (lower) than that under IFA. He mentions in

subsection 7.1 and 7.2 that symmetry breaking may also arise in the presence of wealth

inequality and the minimum investment requirements (MIR, hereafter), while a complete

characterization of multiple steady states is “hopelessly complicated”.

In this paper, we formally prove Matsuyama’s conjecture by providing a complete,

analytical characterization of symmetry breaking in a generalized model with wealth

heterogeneity and MIR. Meanwhile, we show that, given financial frictions and MIR (or

FIR), the extensive margin of investment1 becomes a key channel through which the

interest rate may respond positively to capital accumulation under IFA, or equivalently,

the interest rate can be higher in the rich than in the poor countries under IFA. Thus,

FMG may lead to “uphill” capital flows from the poor to the rich countries, which widens

the cross-country income gap and leads to symmetry breaking.

The intuition is as follows. Suppose that the world economy consists of a continuum

of countries which only differ in the initial income. In each country, some agents have

both the technology and the funds for investment, and they are called entrepreneurs;

without either the technology or the funds, others have to lend out their net wealth

and are called households. If the interest rate is below the marginal rate of return to

investment, entrepreneurs prefer to finance the investment projects with external funds.

However, they are subject to borrowing constraints and have to put the own funds in the

project. The higher the entrepreneurial net wealth, the more they can borrow and invest.

Under IFA, all countries converge to the same, unique steady state, if the production

function has the decreasing marginal product of capital (MPK, hereafter). Along the

convergence path, capital accumulation raises the individuals’ income and net wealth,

which affects the credit market and the interest rate.

In the absence of FIR, the higher the individual’s net wealth, the more each en-

trepreneur (household) borrows (lends). This way, capital accumulation affects the credit

market only on the intensive margin. Meanwhile, the higher aggregate investment re-

duces the marginal rate of return to investment, which is called the neoclassical effect. It

reduces the entrepreneurial pledgeable value per unit of investment and dampens the ex-

pansion of their credit demand. Thus, the rise in the credit demand is dominated by that

in the credit supply so that the interest rate responds negatively to capital accumulation,

or equivalently, the interest rate is lower in the rich than in the poor country under IFA.

Under FMG, financial capital flows are “downhill” from the rich to the poor, narrowing

1Aggregate investment depends on the investment size of individual investors (the intensive margin)

as well as the mass of investors (the extensive margin).
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the cross-country income gap and inducing countries with different initial incomes to

converge to the same steady state. Thus, FMG does not lead to symmetry breaking.

In the presence of FIR, the individual’s investment project has the positive output

if it reaches a fixed size. The higher individual’s net wealth not only reduces (raises)

the individual entrepreneur’s (household’s) credit demand (supply) but also allows more

agents to become entrepreneurs with leveraged investment. This way, capital accumula-

tion affects the credit market on the intensive and extensive margins. In particular, the

aggregate credit demand declines (rises) while the aggregate credit supply rises (declines)

on the intensive (extensive) margin. On the credit demand side, the overall expansion

in the aggregate credit demand is identical as in the absence of the FIR. On the credit

supply side, the intensive-margin effect is the same as in the absence of the FIR, while

the extensive-margin effect is new. If the supply-side extensive-margin effect dominates

the demand-side neoclassical effect, the rise in the credit supply is dominated by that in

the credit demand so that the interest rate responds positively to capital accumulation,

or equivalently, the interest rate is higher in the rich than in the poor country under

IFA. Under FMG, financial capital flows are “uphill” from the poor to the rich, widening

the cross-country income gap and inducing countries with the different initial incomes to

converge to the different steady states. Thus, FMG leads to symmetry breaking.

To sum up, due to financial frictions and FIR, the interest rate may respond positively

to capital accumulation through the extensive-margin channel, which then causes the

“uphill” financial capital flows and symmetry breaking. This mechanism is also at work

in the presence of the MIR. Matsuyama (2005, 2007, 2008, 2012, 2013), Kikuchi (2008),

Kikuchi and Stachurski (2009), apply the mechanism of symmetry breaking to the issues

on credit traps, credit cycles, endogenous fluctuations, inequality, and other implications

of credit market imperfections. However, it is not quite clear how to empirically test the

theoretical conditions that support this mechanism in these papers. Here, we propose an

empirically testable hypothesis, i.e., symmetry breaking is more likely if the real interest

rate responses to income changes is positive and sufficiently large. A comprehensive

empirical investigation is beyond the scope of this paper and is left for future research.

The rest of the paper is structured as follows. Section 2 sets up the model with

financial frictions and MIR. Sections 3 and 4 analyze the allocation under IFA and under

FMG, respectively. Section 5 concludes with some final remarks. The appendix compares

the results in the models with and without FIR as well as provides the technical proofs.

2 The Model

The world economy consists of a continuum of countries, indexed by i ∈ [0, 1]. Countries

are inherently identical except for the initial income level. In each country, a continuum

of agents indexed by j ∈ [0, 1] are born every period and live for two periods, young and

old; the population size of each generation is constant at one; agents have the labor en-

dowment when young and consume when old; agent j is endowed with lj = θ+1
θ

1
εj

units of

labor, where εj ∈ (1,∞) follows the Pareto distribution with the cumulative distribution
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function G(εj) = 1− ε−θj and θ > 1. Agents supply the labor endowment inelastically to

the market and the aggregate labor supply is constant at L =
∫∞

1
ljdG(εj) = 1.

A final good is internationally tradable and chosen as the numeraire. The final good

can be consumed or used to produce capital goods, which becomes available in the next

period. Capital goods are non-tradable and can be combined with labor to produce final

goods contemporaneously. Capital fully depreciates after the production. The markets

for final goods, capital goods, and labor are perfectly competitive. Thus, the productive

factors are rewarded with their respective marginal products. There is no uncertainty in

the model economy. Y i
t denotes aggregate output of final goods, L = 1 and Ki

t denote

the aggregate inputs of labor and capital goods, wit and qit denote the wage rate and the

price of capital goods in country i and period t. To sum up,

Y i
t =

(
Ki
t

α

)α(
L

1− α

)1−α

, where α ∈ (0, 1), (1)

qitK
i
t = αY i

t and witL = (1− α)Y i
t . (2)

Each agent is endowed with one project to produce capital goods subject to the MIR.

Consider agent j born in country i and period t. As shown in the left panel of figure

1, the agent can invest mi
j,t units of final goods in period t and produce kij,t+1 = Rmi

j,t

units of capital goods in period t+ 1, if its investment size is no less than a specific value,

mi
j,t ≥ mi

t; otherwise, the output is zero.2 The MIR has the function formm
i
t = m(Y i

t )1−σ

with m > 0. As shown in the right panel of figure 1, the MIR is constant at m for σ = 1,

and it is linear in aggregate income for σ = 0. This function form allows for the possibility

that the MIR may differ in the rich and in the poor country.3

Agents can save the labor income nij,t = witlj either by producing capital goods at the

marginal rate of return qit+1R or lending to the market at the gross interest rate rit. The

interest rate cannot exceed the marginal rate of return rit ≤ qit+1R; otherwise, nobody

would produce capital goods. Matsuyama (2004) calls it the profitability constraints.

Let us start with the case of rit < qit+1R. If agent j can meet the MIR, it prefers to

finance its investment, mi
j,t, with loans. However, due to limited commitment, it can only

borrow up to a fraction λ of its investment return in the present value and has to use its

own funds as equity capital to cover the gap,

bij,t ≤ λ
qit+1Rm

i
j,t

rit
, and mi

j,t − bij,t ≤ nij,t, (3)

where λ ∈ (0, 1) reflects the level of financial development.4 Let ψij,t ≡
mij,t−bij,t
mij,t

denote the

agent’s equity-investment ratio. In period t+ 1, it gets the investment return, qit+1Rm
i
j,t,

2Despite the nonconvex individual production set, Matsuyama (2007, 2008) argues that assuming a

continuum of agents convexifies the aggregate production set.
3We assume the dependence of the MIR on aggregate income purely for the analytical purpose. As

shown in section 3, for σ = 0, capital accumulation does not affect the mass of investors and hence, the

aggregate investment responds only on the intensive margin; for σ = 1, capital accumulation affects the

mass of investors and hence, aggregate investment responds on the intensive and extensive margins. By

comparing the results in the two settings, we can highlight the role of the extensive-margin channel.
4Matsuyama (2008) shows that the strategic default a là Hart and Moore (1994) can give rise to this
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Figure 1: Individual Investment Project, MIR, and Aggregate Income

repays the debt, ritb
i
j,t, and consumes the rest. The equity rate is defined as the rate of

return to its equity capital, Ωi
j,t ≡

qit+1Rm
i
j,t−ritbij,t

mij,t−bij,t
. Use the borrowing constraint (3) to get,

ψij,t ≥ 1− λ
qit+1R

rit
, (4)

Ωi
j,t = qit+1R + (qit+1R− rit)(

1

ψij,t
− 1). (5)

The leverage effect (qit+1R−rit)( 1
ψij,t
−1) depends positively on the spread (qit+1R−rit) and

the debt-equity ratio ( 1
ψij,t
−1). Given the positive spread qit+1R > rit, the agent maximizes

the leverage effect by borrowing to the limit. Thus, the equality sign holds for (4) and

ψij,t is independent of agent-j’s net wealth. The positive leverage effect, Ωi
t > qit+1R > rit,

induces the agent to invest its entire labor income as equity capital, mi
j,t − bij,t = nij,t.

If rit = qit+1R, the leverage effect vanishes. Then, the agent does not borrow to the

limit or invest its entire labor income, i.e., mi
j,t and ψij,t are indeterminate. To sum up,

ψij,t

= ψit ≡ 1− λ q
i
t+1R

rit
, wealth-independent if rit < qit+1R;

≥ 1− λ q
i
t+1R

rit
, indeterminate, if rit = qit+1R;

(6)

Ωi
j,t = Ωi

t =

qit+1R + (qit+1R− rit)( 1
ψit
− 1) > qit+1R, if rit < qit+1R;

qit+1R, if rit = qit+1R;
(7)

mi
j,t

=
nij,t
ψit

=
wit
ψit

θ+1
θεj
, and

∂mij,t
∂εj

< 0, if rit < qit+1R;

≤ nij,t
ψit
, indeterminate, if rit = qit+1R.

(8)

If rit < qit+1R, there exists a cutoff value εit. The agents with εj ∈ (1, εit] can meet the

MIR, mi
j,t =

wit
ψit

θ+1
θεj
≥ mi

t, and are called entrepreneurs. Their total mass is τ it = 1−(εit)
−θ.

form of the borrowing constraints.
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The cutoff value is determined by the marginal entrepreneur with εj = εit and mi
j,t = m

i
t,

wit
ψit

1 + θ

θεit
= m(Y i

t )1−σ, ⇒ εit =
(wit)

σ

ψitF
, where F ≡ θm

(1− α)1−σ(θ + 1)
. (9)

When young, entrepreneurs use the entire labor income, nij,t, and the loan bij,t = nij,t(
1
ψit
−1)

to finance their investment; when old, they consume, ci,ej,t+1, and exit from the economy,

nij,t = witlj and ci,ej,t+1 = nij,tΩ
i
t. (10)

The agents with εj > εit cannot meet the MIR and are called households. Their total

mass is 1 − τ it = (εit)
−θ. When young, households lend out the entire labor income nij,t;

when old, they consume, ci,hj,t+1, and exit from the economy,

nij,t = witlj and ci,hj,t+1 = nij,tr
i
t. (11)

We analyze the economic allocation under two scenarios: (1) IFA where agents are

allowed to borrow or lend domestically, (2) FMG where agents are allowed to borrow or

lend domestically as well as internationally.5

Let M i
t , D

i
t, and Sit denote the aggregate investment, the aggregate credit demand

and supply. Under IFA, the markets for capital goods and credit clear domestically,6

Ki
t+1 =

∫ εit

1

Rmi
j,tdG(εj) = RM i

t , where M i
t ≡

∫ εit

1

mi
j,tdG(εj), (12)

Di
t ≡

∫ εit

1

(mi
j,t − nij,t)dG(εj), S

i
t ≡

∫ ∞
εit

nij,tdG(εj), D
i
t = Sit , ⇒ M i

t = wit. (13)

If rit = qit+1R, the agents who can meet the MIR may not invest their entire labor

income or borrow to the limit. Despite the indeterminate individual investment size,

aggregate saving is fully invested into capital goods in equilibrium, Ki
t+1 = RM i

t = Rwit.

Definition 1. Under IFA, a market equilibrium in country i is a set of allocations

of agents, {nij,t,mi
j,t, c

i,e
j,t, c

i,h
j,t , ψ

i
j,t}, and aggregate variables, {Y i

t , K
i
t ,M

i
t , q

i
t, w

i
t, r

i
t,Ω

i
t, ε

i
t},

satisfying equations (1)-(2), (6)-(13).

Under FMG, let φit denote the ratio of capital outflows over domestic saving in country

i, with negative values indicating the case of capital inflows. The equilibrium conditions

are identical as under IFA except for the domestic and world credit market conditions.

M i
t = wit(1− φit), (14)∫ 1

0

witφ
i
tdi = 0. (15)

Definition 2. Under FMG a market equilibrium in country i is a set of allocations

of agents, {nij,t,mi
j,t, c

i,e
j,t, c

i,h
j,t , ψ

i
j,t}, and aggregate variables, {Y i

t , K
i
t ,M

i
t , q

i
t, w

i
t,Ω

i
t, ε

i
t, φ

i
t},

satisfying equations (1)-(2), (6)-(12), (14), the interest rate is equalized across countries

rit = r∗t , and the world interest rate r∗t is determined by equation (15).

5Following Matsuyama (2004), we exclude FDI flows by assumption. von Hagen and Zhang (2014a,b)

analyze the joint determination of financial capital flows and FDI flows.
6According to the Walras’ law, the market for final goods clears in equilibrium.
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3 Equilibrium Allocation Under IFA

Without loss of generality, we suppress the country index i for the scenario of IFA. Let

XA denote the steady-state value of variable Xt under IFA. Given the fixed aggregate

labor input L = 1, equation (2) implies that wt = (1− α)Yt. Thus, we can use the wage

as a proxy for aggregate income in the following analysis.

Combine equation (12)-(13) to get Kt+1 = Rwt and the law of motion for wage7 is

wt+1 =
(1− α)

L
Yt+1 =

(
Rwt
ρ

)α
, (16)

which is concave and crosses the 45◦ line once and only one from left with wA =
(
R
ρ

)ρ
.

Proposition 1. Under IFA, there exists a unique, stable steady state in each country.

As a collection of autarkic countries, the world economy has a unique, stable steady

state under IFA which is symmetric in the sense that, independent of the initial income,

all countries end up in the long run with the same income at YA = wA
1−α .

Although financial frictions and the MIR do not affect the dynamics and the steady

state under IFA, they may fundamentally change the dynamic stability of the world

economy under FMG. In the following, we analyze the interest rate response to capital

accumulation under IFA, which is critical for us to understand the consequences of FMG.

Interest Rate Response to Capital Accumulation

Iff rt < qt+1R, the borrowing constraints are strictly binding and the interest rate is a

function of wt defined by equations (17)-(18).8

rt =
λ

1− ψt
qt+1R =

λ

1− ψt
w
−(1−α)
t Rαρ1−α (17)

ψt

(1− ψt)
1

1+θ

=
wσt
F
. (18)

Iff rt = qt+1R, the borrowing constraints are slack and the interest rate is,

rt = qt+1R = w
−(1−α)
t Rαρ1−α. (19)

As mentioned in section 2, the zero spread rt = qt+1R leads to the indeterminate mj,t and

ψj,t. For analytical simplicity, we focus on an equilibrium where all entrepreneurs still

invest their entire labor income and choose the same ψt determined by equation (18).

Define Λ ≡ λ
1

1+θ

1−λ (1− α)(1 + 1
θ
) as a function of λ ∈ (0, 1) and ∂Λ

∂λ
> 0.

Lemma 1. Iff ψt ∈ (1 − λ, 1) or equivalently m ≤ Y σ
t Λ, the borrowing constraints are

slack; iff ψt ∈ (0, 1− λ] or equivalently m ≥ Y σ
t Λ, the borrowing constraints are binding.

7Using the law of motion for wage simplifies our dynamic and steady-state analysis. Alternatively,

one can also use the law of motion for capital, but the analysis of FMG becomes more complicated.
8See the proof of lemma 1 in appendix B for derivation.

7



If the borrowing constraints are slack, the interest rate declines in aggregate income,

due to the neoclassical effect (the decreasing MPK).

ln rt = ln qt+1R︸ ︷︷ ︸
neoclassical effect

= −(1− α) lnwt + lnRαρ1−α, and
∂ ln rt
∂ lnwt

= −(1− α) < 0. (20)

If the borrowing constraints are binding, the interest rate may rise in aggregate income.

We identify the relevant condition by analyzing the credit market equilibrium.

Use equations (3) and (13) to rewrite the aggregate credit demand and supply as

Dt = λqt+1R
rt

Mt = λqt+1R
rt

wt and St = wtε
−(1+θ)
t , which are affected by various factors,

lnDt = lnwt︸︷︷︸
net-wealth effect

+ ln qt+1R︸ ︷︷ ︸
neoclassical effect

+ lnλ︸︷︷︸
financial-development effect

− ln rt︸︷︷︸
interest-rate effect

(21)

lnSt = lnwt − (1 + θ) ln εt = lnwt︸︷︷︸
net-wealth effect

+

(
1 +

1

θ

)
ln(1− τt)︸ ︷︷ ︸

supply-side extensive-margin effect

. (22)

According to equation (21), a rise in the interest rate reduces the present value of the

entrepreneurs’ pledgeable investment return so that the credit demand curve is downward

sloping, ∂Dt
∂rt

< 0; according to equation (22), since households supply their labor income

inelastically to the credit market, the credit supply curve is vertical ∂St
∂rt

= 0. Besides, the

aggregate credit demand and supply are affected by the following factors.

• The net-wealth effect: the higher the aggregate income, the higher the agents’ labor

income and net wealth, the higher the aggregate credit demand and supply.

• The neoclassical effect: the higher the aggregate investment in period t, the lower

the MPK in period t+ 1, the lower the period-t pledgeable value of the individual

entrepreneur’s investment return, the lower the credit demand.

• The financial-development effect: the higher the level of financial development, the

more the individual entrepreneur can borrow, the higher the credit demand.

• The supply-side extensive-margin effect: the larger the mass of households 1 − τt,
the higher the aggregate credit supply.

Figure 2 shows the credit market equilibrium under IFA. The downward-sloping credit

demand curve Dt and the vertical credit supply curve St cross at point E with the

equilibrium interest rate at rt. If aggregate income rises marginally from Yt to Ỹt, the

aggregate saving rises proportionally from wt = (1− α)Yt to w̃t = (1− α)Ỹt.

Combine equations (9) and (13) to get

εt[1− (εt)
−(1+θ)] =

wσt
F
, ⇒ sgn

(
∂εt
∂wt

)
= sgn(σ). (23)

For σ = 0, higher Yt raises the MIR mt = mYt and the individual’s net wealth

nj,t = ljwt = lj(1− α)Yt in the equal proportions. Thus, according to equation (23), the
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Figure 2: The Credit Market Response to An Increase in Aggregate Income

cutoff value is constant at εt = εA and so is the mass of entrepreneurs τt = τA = 1− ε−θA .

Then, the higher individual’s net wealth affects the aggregate credit demand and supply

only on the intensive margin. According to equations (21) and (22), the net-wealth

effect raises the credit supply and demand in the equal proportions, while the neoclassical

effect reduces the credit demand. Let ∆ lnXt ≡ ln X̃t−lnXt denote the percentage change

in variable Xt. Combining equations (21) and (22), the net-wealth effect cancels out and

the interest rate is driven by the neoclassical effect on the credit-demand side,

∆ lnDt = ∆ lnwt + ∆ ln qt+1R−∆ ln rt, ∆ lnSt = ∆ lnwt,

∆ lnDt = ∆ lnSt, ⇒, ∆ ln rt = ∆ ln qt+1R︸ ︷︷ ︸
the neoclassical effect (-)

. (24)

As shown in the left panel of figure 2, the rightward shift of the credit demand curve is

dominated by that of the credit supply curve. Then, the credit market equilibrium moves

from point E to Ẽ with a lower interest rate r̃t < rt.

For σ = 1, the MIR is constant at mt = m and the higher individual’s net wealth

allows more agents to meet the MIR and invest as entrepreneurs, i.e.,
∂εt
∂Yt

> 0 and ∂τt
∂Yt

> 0,

according to equation (23). Then, the aggregate credit demand and supply respond on

the intensive and the extensive margins. In particular, the decline in the mass of

households reduces the credit supply on the extensive margin. Combining equations (21)

and (22), the interest rate is affected by two factors,

∆ ln rt = ∆ ln qt+1R︸ ︷︷ ︸
neoclassical effect (-)

− ∆

(
1 +

1

θ

)
ln(1− τt)︸ ︷︷ ︸

supply-side extensive-margin effect (-)

. (25)

If the supply-side extensive-margin effect dominates the demand-side neoclassical effect,

the rightward shift of the credit supply curve is dominated by that of the credit demand

curve. In this case, the credit market equilibrium moves from point E to Ẽ with a higher

interest rate, r̃t > rt, as shown in the right panel of figure 2.
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Lemma 2. For σ = 1, ψt rises in Yt under IFA. Given λ ∈ (0, λ̃A), the interest rate rises

in aggregate income, if ψt ∈ (ψ̃A, 1− λ), where ψ̃A ≡ 1
2−α
1−α−

1
1+θ

and λ̃A ≡ 1− ψ̃A.

For σ = 0, the interest rate strictly declines in aggregate income under IFA.

 



















Figure 3: Interest Rate Patterns in the {λ, ψt} Space under IFA

Figure 3 shows the interest rate pattern in the {λ, ψt} space under IFA. According to

lemma 1, for (λ, ψt) in region SD, the borrowing constraints are s lack and the interest

rate, which coincides with the social rate of return, declines in aggregate income, due

to the neoclassical effect; for (λ, ψt) in region BI (BD), the borrowing constraints are

binding and the interest rate increases (declines) in aggregate income, as the supply-side

extensive-margin effect dominates (is dominated by) the neoclassical effect.
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Figure 4: Dynamics of Wage and Interest Rate under IFA

Figure 4 shows proposition 1 and lemma 2 graphically. In the left panel, the law

of motion for wage is concave and crosses the 45◦ line once and only once from the

left at point S with the steady-state wage wA. Thus, financial frictions and the MIR

do not affect the uniqueness and stability of the steady state under IFA. In the middle
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panel, for σ = 0, the interest rate, which is proportional to the marginal rate of return to

investment, declines in wt, due to the neoclassical effect. In the right panel, for σ = 1 and

λ ∈ (0, λ̃A), the interest rate is a non-monotonic function of wt, due to the interactions

of the supply-side extensive-margin effect and the neoclassical effect.

Consider the interest rate response to wit around the steady state. Let Z ≡ R
ρ

(
1+θ
θm

) 1
ρ .

Combine equations (16) and (18) to get ψA as a function of the parameters {R,m, ρ, θ},

ψA

(1− ψA)
1

1+θ

=
wA
F

=

(
R

ρ

)ρ
1 + θ

θm
= Zρ. (26)

If the parameter configuration makes ψA = ψh ∈ (1− λ, 1) or ψA = ψl ∈ (0, ψ̃A), i.e., in

region SD or BD of figure 3, the interest rate declines in wt around the steady state; if

the parameter configuration makes ψA = ψm ∈ (ψ̃F , 1− λ), i.e., in region BI of figure 3,

the interest rate rises in wt around the steady state. See the right panel of figure 4.

As shown in section 4, the positive interest rate response to capital accumulation

under IFA is key to Matsuyama’s symmetry breaking result.9

4 Equilibrium Allocation Under FMG

From period t = 0 on, agents in country i are allowed to borrow or lend abroad. As a

small open economy, country i takes the world interest rate as given rit = r∗. Without

loss of generality, we assume that r∗ = rA, where rA = λ
1−ψA

ρ (rA = ρ) if the borrowing

constraints are binding (slack) in the autarkic steady state. In this case, the autarkic

steady state is still a steady state under FMG, but it may not be stable or unique.

Under FMG, there exists a threshold value w̄F such that, given rit = r∗, for wit ∈
(0, w̄F ), the borrowing constraints are binding, ψit ∈ (0, 1−λ), and the aggregate dynamics

of country i are characterized by {wit, ψit, εit} satisfying equations (9), (27)-(28),10

wit+1 =

[
R

ρ
wit

1− (εit)
−(1+θ)

ψit

]α
, (27)

rit =
λ

1− ψit
qit+1R =

λ

1− ψit
(wit+1)−

1
ρR = r∗. (28)

For wit > w̄F , the borrowing constraints are slack and the law of motion for wage is flat

at wit+1 =
(
R
r∗

)ρ
. One can solve for w̄F by putting ψit = 1− λ in equations (9), (27)-(28).

Consider first the case of σ = 0. Suppose that country i is below the autarkic steady

state in period t = 0, i.e., Y i
0 < YA. If it were still under IFA in period t = 0, the interest

rate would be higher than the world interest rate, rit > rA = r∗, according to lemma

2. FMG leads to capital inflows to country i in period t = 0, which raises its domestic

9As long as the aggregate production function has the decreasing MPK, i.e., f ′(k) > 0 and f ′′(k) < 0,

where k ≡ K
L , the neoclassical effect and the supply-side extensive margin effect exist in the presence of

the MIR and financial frictions. Thus, our assumption of the Cobb-Douglas production function is not

essential for the positive interest rate response to capital accumulation.
10See the proof of Proposition 2 in appendix B for the derivation.
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Figure 5: Phase Diagrams of Wages under FMG versus under IFA: σ = 0

investment. By the same logic, if Y i
0 > YA, FMG leads to capital outflows from country

i, which reduces its domestic investment. In both circumstances, capital flows make the

law of motion for wage flatter around the autarkic steady state than under IFA, which

speeds up the convergence. The solid (dashed) curve in figure 5 shows the law of motion

for wage under FMG and under IFA, respectively. The left (right) panel shows the case

where the borrowing constraints are binding (slack) in the autarkic steady state.

Proposition 2. For σ = 0, the autarkic steady state is still the unique, stable steady

state under FMG. For σ = 1, FMG may lead to multiple steady states if λ ∈ (0, λ̂F ),

where λ̂F ≡
α+ 1−α

1+θ
+
√

(2−α− 1−α
1+θ

)2−4(1−α)

2
.
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Figure 6: Parameter Configuration for Symmetry Breaking under FMG: σ = 1

Consider the case of σ = 1. Figure 6 shows the parameter configuration for multiple
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steady states under FMG in the (λ, ψA) space and in the {λ, Z} space, respectively.11

The dashed line in the left panel shows the threshold value ψ̃A defined in lemma 2. The

solid (dash) curves in figure 7 show the laws of motion for wage under FMG (IFA), with

the parameter configuration in the five regions of figure 6, respectively.
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Figure 7: Phase Diagrams of Wage under FMG versus under IFA: σ = 1

Consider the parameter configuration in region B of figure 6. As shown in the upper-

left panel of figure 7, if the country’s initial income is higher (lower) than in the autarkic

steady state wi0 > wA (wi0 < wA), it converge to a new stable steady state H (L) with

wiH > wA (wiL < wA) under FMG. The intuition is as follows.

11At first sight, it seems wrong to claim that the left panel shows the parameter configuration, because

ψA on the vertical axis is not a parameter. In fact, as the steady-state value of an endogenous variable,

ψA is defined by equation (26) as an implicit function of the parameters {R,m, ρ, θ} and reflects the

changes in these parameters. One can use equation (26) to map the diagram from the {λ, ψA} space

(the left panel) to the {λ, Z} space (the right panel). As both λ and ψA can be measured empirically,

the diagram in the {λ, ψA} space can be interpreted more meaningfully than in the {λ, Z} space.

Matsuyama (2004) normalizes the FIR at unity and shows in figure 5 the parameter configuration in

the {λ,R} space. Then, he analyzes the impact of the productivity, R, on symmetry breaking. In our

model, we introduce m as a free parameter for the MIR. Technically, it is Rρ

m that matters for symmetry

breaking. If the combination of R and m gives the same value of Z, ψA does not change and neither

does the parameter configuration in the {λ, ψA} and {λ, Z} spaces. One can map the diagram from the

{λ, Z} space to the {λ,R} space or to the {λ,m} space to analyze the impacts of R or m.

According to appendix A and the proofs of propositions 2 and 4, the model with the FIR in Matsuyama

(2004) is a limiting case of our model with σ = 1 and θ →∞. In particular, figure 10 is a limiting case

of figure 6 with θ →∞.
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For the parameter configuration {λ, ψA} in region BI of figure 3, the interest rate

responds positively to capital accumulation in the steady state under IFA, which dampens

the expansion of the entrepreneurial borrowing capacity. By decoupling the interest rate

from the domestic credit market condition rit = r∗, FMG eliminates this dampening effect

and allows more agents to meet the MIR and invest as entrepreneurs, which amplifies the

response of domestic investment on the extensive margin to capital accumulation. For

the parameter configuration in region B of figure 6, the FMG-driven amplification effect

dominates the neoclassical effect so that the slope of the law of motion for wage exceeds

unity and the autarkic steady state is unstable. Here, the positive interest rate response

to capital accumulation under IFA is key to the multiple steady states under FMG.

Starting from region B of figure 6, let us reduce m so that ψA rises12 and the parameter

configuration moves upwards into region BC where the borrowing constraints are slack

in the autarkic steady state. The autarkic interest rate coincides with the marginal

rate of return to investment and declines in aggregate income, rit = qit+1R, due to the

neoclassical effect. Given r∗ = rA = ρ, FMG makes the law of motion for wage flat at the

autarkic steady state with wit+1 =
(
R
r∗

)ρ
=
(
R
ρ

)ρ
= wA and hence, the autarkic steady

state is locally stable. However, for wit � wA, ψit enters into region BI of figure 3 where

the interest rate responds positively to income change. Then, FMG affects domestic

investment in the same way as in case B. The upper-right panel of figure 7 shows that,

besides the stable autarkic steady state S, there are another stable steady state L and an

unstable steady state M with wL < wM < wA.

Starting from region B of figure 6, let us raise m so that ψA declines and the pa-

rameter configuration moves downwards into region AB where the borrowing constraints

are binding in the autarkic steady state. In region AB, the interest rate response to in-

come change is slightly positive around the autarkic steady state. Thus, the FMG-driven

amplification effect is dominated by the neoclassical effect so that the autarkic steady

state is still stable. However, for wit � wA, ψit enters into region B of figure 6 where the

interest rate response to income change is strongly positive. Then, FMG affects domestic

investment in the same way as in case B. The upper-middle panel of figure 7 shows that,

besides the stable autarkic steady state S, there are another stable steady state H and

an unstable steady state M with wH > wM > wA.

For the parameter configuration in region A and C of figure 6, FMG does not generate

multiple steady states. See the lower panels of figure 7.

To sum up, although the initial income level does not matter for the economic dy-

namics and the steady state under IFA, it does matter under FMG. In case B, starting

with the income level slightly higher (lower) than that in the autarkic steady state, a

small open economy converges to a new, stable steady state with the income much higher

(lower) than in the autarkic steady state; in case AB (BC), starting with an income

sufficiently higher (lower) than that in the autarkic steady state, a small open economy

converges to a new, stable steady state with the income much higher (lower) than in the

12According to equation (26), ψA declines in m.
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autarkic steady state. This way, FMG amplifies the initial cross-country income gap.

Incorporate this mechanism into a world economy where countries are inherently

identical except for the initial income level. For the parameter configuration in region

B, the world economy has a unique, symmetric, stable steady state under IFA where

all countries have the same income in the long run, independent of the initial income

level; FMG inevitably destabilizes this symmetric, autarkic steady state and leads to the

asymmetric, stable steady state where the initially rich (poor) countries have the income

higher (lower) than in the autarkic steady state.

Comparison with Matsuyama (2004)

Matsuyama (2004) assumes that agents have the same labor endowment and the same in-

divisible investment project with the FIR. In the presence of financial frictions, aggregate

investment adjusts only on the extensive margin and the agents who can borrow and in-

vest are randomly determined by lottery. We extend Matsuyama’s model in two aspects.

First, we replace his assumption of the FIR with the MIR so that, in the presence of

financial frictions, aggregate investment adjusts on the intensive and the extensive mar-

gins; second, we introduce the heterogeneous labor endowment so that the individual’s

net wealth becomes the criterion for allocating the loans.

Matsuyama (2004) shows that in the case of symmetry breaking, the borrowing con-

straints must be slack in the rich country under FMG, and hence, the equity premium is

always zero there, Ωi
t− rit = 0. As shown in the proof of proposition 2, for σ = 1, the law

of motion for wage under FMG may consist of three subfunctions, i.e., a convex part, a

concave part and a flat part.13 Thus, in the case of symmetry breaking, the borrowing

constraints can be binding in the rich country under FMG, and hence, the equity pre-

mium can be positive Ωi
t − rit > 0, in the rich country, but smaller than that in the poor

country. Compare the upper panels of figure 7 with those in figure 11. Thus, one may

test the tightness of the borrowing constraints across countries by empirically estimating

the spread between the equity rate and the interest rate.

For m = 1 and σ = 1, the MIR is constant at one; for θ → ∞, the labor endowment

distribution degenerates into a unit mass at lj = 1 so that agents have the same labor

income. In this limiting case, our model is analytically identical as that of Matsuyama

(2004) and the right panel of figure 6 is the same as figure 5 of Matsuyama (2004).14

5 Final Remark

This paper highlights the extensive margin of investment as a key channel through which

the interest rate may respond positively to capital accumulation, given financial frictions

13One can prove that, if wi
t is in the flat part, the borrowing constraints are slack; otherwise, the

borrowing constraints are binding.
14For the comparison purpose, we replicate the results of Matsuyama (2004) in appendix A. Note that

figure 5 of Matsuyama (2004) has a technical error. See the appendix for further discussion.
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and the MIR. Then, FMG may lead to “uphill” capital flows from the poor to the rich

countries, which widens the initial cross-country income gap and leads to income diver-

gence. The model developed in this paper can be applied to other related issues where

even very small exogenous heterogeneities may lead to large heterogeneities in endoge-

nous variables. Zhang (2014) introduces the two-sector Heckscher-Ohlin feature into the

current setting and shows that trade integration may also lead to symmetry breaking

and affect the direction of financial capital flows. By decomposing the project investment

into the tangible and intangible parts, Zhang (2013a) shows that FMG may amplify the

cross-country differences in investment tangibility and productivity.
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Appendix

A FIR and Symmetry Breaking: Matsuyama (2004)

In this section, we replicate the results of Matsuyama (2004) and highlight the role of

the extensive-margin channel by comparing the settings with and without the FIR. We

also prove that the setting with the FIR is analytically a limiting case of the generalized

model with σ = 1 and θ →∞. See Zhang (2013b) for the more detailed analysis.

A.1 Model Settings with and without the FIR

The model setting differs from the generalized model in sector 2 only in two aspects:

• each agent has one unit of labor endowment, and

• the individual projects are subject to the FIR.

For the comparison purpose, we also introduce a model setting with no FIR.

In the first setting, a fraction τ ∈ (0, 1) of agents who are born in period t and country

i have the technology to convert mi
t units final goods in period t to kit+1 = Rmi

t units of

capital goods in period t+ 1, and they are called entrepreneurs. Without the technology,

other agents can only lend their labor income and are called households. The mass of

entrepreneurs τ is exogenous, while the individual investment size mi
t is endogenous.

Then, aggregate investment takes place on the intensive margin, Ki
t+1 = τRmi

t. With no

investment size requirements, it is called setting N.

In the second setting, each agent is endowed with an indivisible project to transform

m units of final goods in period t into Rm units of capital goods in period t + 1.15 If

wit < m, an agent must borrow m − wit to start its project and the aggregate saving is

not sufficient to allow all agents to start the projects. According to Matsuyama (2004),

random credit rationing allows a fraction τ it ∈ (0, 1) of agents to get the loan m − wit to

start the projects and they are called entrepreneurs, while other agents can only lend the

labor income and they are called households. Different from setting N, the individual

investment size m is exogenous, while the mass of entrepreneurs τ it is endogenous.16 Thus,

aggregate investment takes place only on the extensive margin, Ki
t+1 = τ itRm. With f ixed

investment size requirements at the individual level, it is called setting F.

Figure 8 shows the individual investment function in the two settings. In setting N,

the individual project is linear, kit+1 = Rmi
t. In setting F, the project output is zero for

the input mi
t ∈ [0,m) and it is constant at Rm for the input mi

t ≥ m. For simplicity,

we use τ it and mi
t to denote the mass of entrepreneurs and the individual investment size

in the model description. Setting N is characterized by the fixed mass of entrepreneurs,

τ it = τ , while setting F is characterized by the fixed project size, mi
t = m.

15Matsuyama (2004) implicitly normalizes the individual project size at m = 1, while we allow m to

be a free parameter and analyze its impacts on symmetry breaking.
16Although the FIR results in the non-convexity of the individual production set, Matsuyama (2007,

2008) argues that assuming a continuum of homogeneous agents convexifies the production set.
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Figure 8: Individual Projects in the Two Settings

Entrepreneurs are subject to the borrowing constraints (3). Since households are

homogeneous and so are entrepreneurs, we drop the subscript j.

Under IFA, the markets for capital goods and credit clear each period.

Ki
t+1 = τ itRm

i
t, (29)

τ it (m
i
t − wit) = (1− τ it )wit. (30)

Definition 3. Under IFA, a market equilibrium in country i is a set of allocations

of agents, {mi
t, c

i,e
t , c

i,h
t , ψ

i
t}, and aggregate variables, {Y i

t , K
i
t , q

i
t, w

i
t, r

i
t,Ω

i
t, τ

i
t}, satisfying

equations (1)-(2), (6)-(8), (10)-(11), (29)-(30).

τ it = τ is exogenous in setting N, while mi
t = m is exogenous in setting F.

Under FMG, the equilibrium conditions are identical as under IFA except for the

domestic and world credit market conditions.

τ it (m
i
t − wit) = (1− τ it )wit − φitwit, (31)∫ 1

0

witφ
i
tdi = 0. (32)

Definition 4. Under FMG, a market equilibrium in country i is a set of allocations

of agents, {mi
t, c

i,e
t , c

i,h
t , ψ

i
t}, and aggregate variables, {Y i

t , K
i
t , q

i
t, w

i
t,Ω

i
t, τ

i
t , φ

i
t}, satisfying

equations (1)-(2), (6)-(8), (10)-(11), (29), and (31), and the interest rate is equalized

across countries rit = r∗t and the world interest rate r∗t is determined by equation (32).

τ it = τ is exogenous in setting N, while mi
t = m is exogenous in setting F.

A.2 Equilibrium Allocation under IFA

For simplicity, we suppress the country index i for the scenario of IFA.

In setting N, according to equations (29) and (30), the equity-investment ratio is

constant at ψt = wt
mt

= τ and domestic investment is fully financed by domestic saving

Kt+1 = Rτmt = Rwt. The law of motion for wage is characterized by equation (16).

In setting F, for wt < m, aggregate saving is too low to allow all agents to run

their projects. According to equations (29) and (30), the mass of entrepreneurs and the
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equity-investment ratio are endogenous, τt = ψt = wt
m
< 1, and domestic investment is

fully financed by domestic saving Kt+1 = Rτtm = Rwt. Then, the law of motion for

wage is the same as in setting N. For wt ≥ m, all agents self-finance their projects,

τt = ψt = 1. Given the fixed project size, the aggregate output of capital goods is

constant at Kt+1 = Rm and the law of motion for wage is flat at wt+1 =
(
Rm
ρ

)α
.

Proposition 3. In setting N, ψt = τ ; in setting F, ψt = τt = wt
m

.

In both settings, there exists a unique, stable steady state in each country under IFA;

iff ψt ∈ (0, 1− λ], the borrowing constraints are binding;

iff ψt ∈ (1− λ, 1], the borrowing constraints are slack.

Proposition 3 is essentially the same as proposition 1 and lemma 1.

Interest Rate Response to Capital Accumulation

If the borrowing constraints are slack, the interest rate is equal to the marginal rate of

return to investment and declines in aggregate income. See equation (20).

Let us then consider the case of the binding borrowing constraints.

In setting N, combine equations (6), (16), (29)-(30) to get

rt =
λ

1− ψt
qt+1R =

λ

1− τ
w
−(1−α)
t Rαρ1−α. (33)

Higher aggregate income raises the agents’ labor income. With the extensive margin

mute, entrepreneurs (households) to borrow (lend) more. Due to the neoclassical effect,

the interest rate declines in aggregate income, as in the generalized model with σ = 0.

In setting F, combine equations (6), (16), (29)-(30) to get

rt =
λ

1− ψt
qt+1R =

λ

1− τt
w
−(1−α)
t Rαρ1−α. (34)

Higher aggregate income raises the agents’ labor income, which allows more agents to

get the required loans and invest as entrepreneurs τt = wt
m

. Then, the decline in the mass

of households (1 − τt) reduces the aggregate credit supply on the extensive margin. If

the supply-side extensive-margin effect dominates the neoclassical effect, the interest rate

rises in aggregate income, as in the generalized model with σ = 1.

Lemma 3. In setting N, the interest rate declines in aggregate income under IFA.

In setting F, ψt rises in Yt under IFA. Given λ ∈ (0, λ̃A), the interest rate rises in

aggregate income, if ψt ∈ (ψ̃A, 1− λ), where ψ̃A ≡ 1−α
2−α and λ̃A ≡ 1− ψ̃A.

Lemma 3 is essentially the limiting case of lemma 2 with θ →∞.

Figure 9 shows the interest rate pattern in the {λ, ψt} space in setting F, which is the

limiting case of figure 3 with θ →∞. The analysis follows that in section 3.
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Figure 9: Interest Rate Patterns in the {λ, ψt} Space under IFA

A.3 Equilibrium Allocation under FMG

From period t = 0 on, agents in country i are allowed to borrow or lend abroad. As a

small open economy, country i takes the world interest rate as given rit = r∗. Without

loss of generality, we assume that r∗ = rA, where rA = λ
1−ψA

ρ (rA = ρ) if the borrowing

constraints are binding (slack) in the autarkic steady state, with ψA = τ (ψA = wA
m

) in

setting N (F).

In setting N, given the negative interest rate response to income change under IFA,

FMG leads to financial capital inflows (outflows), if Y i
0 < YA (Y i

0 > YA), which dampens

the response of aggregate investment to income changes. The FMG-driven dampening

effect reinforces the neoclassical effect, which ensures the uniqueness and the stability of

the steady state under FMG, as in the generalized model with σ = 0.

In setting F, as the interest rate may respond positively to income change under IFA

and FMG may amplify the response of aggregate investment to income changes. If the

FMG-driven amplifying effect dominates the neoclassical effect, multiple steady states

may arise, as in the generalized model with σ = 1.

Proposition 4. Under FMG, the autarkic steady state is still the unique, stable steady

state in setting N, while multiple steady states may arise in setting F if λ ∈ (0, λ̂F ),

where λ̂F ≡ α.

Proposition 4 is essentially the limiting case of proposition 2 with θ →∞.

Define an auxiliary parameter Z ≡ R
ρ

(
1
m

) 1
ρ . Under IFA, the steady-state value of ψit

is a function of the parameters {R,m, ρ}

ψA =
wA
m

=

(
R

ρ

)ρ
1

m
= Zρ. (35)

Figure 10 shows the parameter configuration for multiple steady states under FMG in

the (λ, ψA) space and in the {λ, Z} space, respectively. The dashed line in the left panel
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shows the threshold value ψ̃A defined in lemma 3. As shown in the proof of propositions

2 and 4, figure 10 is the limiting case of figure 6 with θ →∞.

 












 



























 





Figure 10: Parameter Configuration for Symmetry Breaking under FMG: Setting F

The right panel of figure 10 is almost identical as figure 5 of Matsuyama (2004) except

for the boundary between region AB and A. By definition, the mass of entrepreneurs

cannot exceed the total mass of population in each generation, τ it ≤ 1. Taking that into

account, the boundary between region AB and A is characterized by a piecewise function

with two subfunctions.17 This result is confirmed in the generalized model with σ = 1 in

section 4. Thus, there is a technical error in figure 5 of Matsuyama (2004).

The solid (dash) curves in figure 11 show the laws of motion for wage under FMG

(IFA) in setting F, with the parameter configuration in the five regions of figure 10,

respectively. The analysis follows that in section 4.

As shown in the proof of proposition 4, the law of motion for wage under FMG consists

of the convex part for wit ∈ (0, w̄F ) and the flat part for wit > w̄F .18 Thus, in the case

of symmetry breaking, if the country ends up in the stable steady state with the higher

(lower) income level, the borrowing constraints must be slack (binding). For example, as

shown in the upper-left panel of figure 11, the law of motion for wage in case B is flat at

point H and upward-sloping at point L, where wH > wL.

To sum up, the model with the FIR in Matsuyama (2004) can be regarded as the

limiting case of the generalized model with σ = 1 and θ →∞.

17See the proof of proposition 4 for the analytical characterization of the two subfunctions.
18One can prove that, if wi

t is in the flat part, the borrowing constraints are slack; otherwise, the

borrowing constraints are binding.

21



w
A

w
H

w
L

w
t

w
t+1

w
A

S

L

H

O

Case B

w
A

w
H

w
M

w
t

w
t+1

S

M

H

O

Case AB

S

w
A

w
M

w
L

w
t

w
t+1

L

M

O

Case BC

S

w
A

w
tO

w
t+1

Case A

S

w
A

w
t

w
t+1

O

Case C

Figure 11: Phase Diagrams of Wage under FMG versus under IFA: Setting F

B Proofs

Proof of Proposition 1

Proof. According to equation (16), the law of motion for wage is log-linear, lnwt+1 =

α lnwt + α ln R
ρ

, with a slope less than unity, α < 1. Thus, there exists a unique and

stable steady state.

Proof of Lemma 1

Proof. The proof consists of two steps.

Step 1: solution to the interest rate with the binding borrowing constraints

Combine equations (1)-(2) to get the factor price equation,

qαt w
1−α
t = 1. (36)

Rewrite equation (6) as rt = λ
1−ψt qt+1R. Combine it with equations (16) and (36) to get

equation (17).

According to the credit market clearing equation,

Dt = wt(
1

ψt
− 1)[1− ε−(1+θ)

t ], St = wtε
−(1+θ)
t , Dt = St, ⇒ 1− ε−(1+θ)

t = ψt. (37)

Combine equations (9) and (37) to get equation (18).

Thus, one can use equations (17)-(18) to solve ψt and rt as the functions of wt.
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Step 2: condition for the binding borrowing constraints

Use equation (17) to rewrite the condition for the binding borrowing constraints from

rt ≤ qt+1R into ψt ≤ 1− λ.

Combine wt = (1− α)Yt with equation (18) to get ψt as a function of Yt,

σ lnYt = lnψt −
1

1 + θ
ln(1− ψt) + lnm + ln

θ

(θ + 1)(1− α)
, (38)

∂ lnψt
∂ lnm

=
−1

1 + 1
1+θ

ψt
1−ψt

< 0,
∂ lnψt
∂ lnYt

=
σ

1 + 1
1+θ

ψt
1−ψt

, ⇒ sgn

(
∂ψt
∂Yt

)
= sgn(σ). (39)

In the boundary case where the borrowing constraints are weakly binding with ψt = 1−λ,

equation (38) can be rewritten as m = (Yt)
σΛ.

Taking into account equations (39), for σ = 0 and σ = 1, the condition for the binding

borrowing constraints ψt < 1 − λ can be restated as m > (Yt)
σΛ and the condition for

the slack borrowing constraints ψt > 1− λ can be restated as m < (Yt)
σΛ.

Proof of Lemma 2

Proof. If ψt ∈ (1− λ, 1), the borrowing constraints are slack and, according to equation

(20), ∂ ln rt
∂ lnwt

= −(1− α) < 0.

If ψt ∈ (0, 1− λ), the borrowing constraints are binding. Rewrite equation (17) as

ln rt = −(1− α) lnwt − ln(1− ψt) + lnλRαρ1−α, (40)

⇒ ∂ ln rt
∂ lnwt

= − (1− α)︸ ︷︷ ︸
neoclassical effect

+
σ

1
ψt
− θ

1+θ

.︸ ︷︷ ︸
supply-side extensive-margin effect

(41)

For σ = 0, ∂ ln rt
∂ lnwt

= α− 1 < 0.

For σ = 1, ∂ψt
∂Yt

> 0, according to equation (39). Let ψ̃A ≡ 1
2−α
1−α−

1
1+θ

. According to

equation (41), for ψt ∈ (0, ψ̃A), ∂ ln rt
∂ lnwt

< 0; for ψt ∈ (ψ̃A, 1− λ), ∂ ln rt
∂ lnwt

> 0.

Proof of Proposition 2

Proof. The proof consists of three steps. For simplicity, we suppress the country index i.

Step 1: derive the model solutions (9), (27)-(28) under FMG

For wt ∈ (0, w̄F ), ψt ∈ (0, 1− λ) and the borrowing constraints are binding. Combine

equations (8) and (12) to get Kt+1 = RMt = R
1−ε−(1+θ)

t

ψt
wt. Combine it with equations

(1)-(2) to get the law of motion for wage (27). Combine equations (6), (36) and rt = r∗

to get equation (28). Equation (9) defines the cutoff value εt. Thus, given wt, one can

use equations (9), (27)-(28) to solve {ψt, εt, wt+1} simultaneously.

Step 2: the shape of the law of motion for wage under FMG

Under FMG, the law of motion for wage is piecewise. Let µt+1 ≡ rt
qt+1R

denote the

rate-of-return wedge. Given rt = r∗ under FMG, for wt > w̄F , the borrowing constraints

are slack, µt+1 = 1, and the law of motion for wage is flat at wt+1 = w̄t+1 ≡
(
R
r∗

)ρ
; for
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wt ∈ (0, w̄F ), the borrowing constraints are binding and the law of motion for wage is

implicitly defined by {wt, ψt, εt, µt+1} satisfying equations (42),

µt+1 =
λ

1− ψt
, w

− 1
ρ

t+1Rµt+1 = rt = r∗, wσt = ψtεtF,
wt+1

wt
=

1− ε−(1+θ)
t

ψtµt+1

r∗

ρ
, (42)

∂µt+1

∂ψt
=

λ

(1− ψt)2
> 0,

∂ψt
∂wt

=
S+ σ(1− S)

G+ 1

ψt
wt

> 0, (43)

where S ≡ 1−ε−(1+θ)
t

1+θε
−(1+θ)
t

and G ≡ (1 + ρ) ψt
1−ψtS. The positive mass of entrepreneurs τt =

1− ε−θt > 0 gives εt > 1 and hence, S ∈ (0, 1). Given ∂ψt
∂wt

> 0, for wt → 0, ψt → 0 so that

µt+1 → λ and wt+1 → wt+1 ≡
(
Rλ
r∗

)ρ
. Thus, the law of motion for wage has a positive

intercept on the vertical axis at wt+1. Let Z ≡ 1− ψt − S

1−S − (1 + ρ)θψtS
2.

J ≡ ∂wt+1

∂wt
=
ρ[S+ σ(1− S)]

G+ 1

ψt
1− ψt

wt+1

wt
> 0, if σ ≥ 0; (44)

for σ = 0, H ≡ ∂2wt+1

∂w2
t

= −
[

1− S
GS

(2 + θS) +
ρ+G

G

ψt
1− ψt

]
S

G+ 1

J

wt
< 0; (45)

for σ = 1, H ≡ ∂2wt+1

∂w2
t

= Z
1− S
G+ 1

1 + ρ

ρ

1

1− ψt
J

2

wt+1

⇒ sgn (H) = sgn(Z). (46)

In the case of σ = 0, the law of motion for wage is piecewise with a positive intercept

on the vertical axis at wt+1, concave for wt ∈ (0, w̄F ], and flat at w̄t+1 for wt > w̄F .

In the case of σ = 1,

∂Z

∂wt
= −

{
[1 + (1 + ρ)θS2

t ]ψt
(G+ 1)wt

+
(1− S)(1 + θS)G

(G+ 1)wt

[
1

(1− S)2
+ 2θ(1− ψit)G

]}
< 0.

Given ∂ψt
∂wt

> 0, for wt → 0, ψt → 0, so that Z > 0 and the law of motion for wage is

convex. Since ∂Z
∂wt

< 0, it is possible that, for wt → w̄F , ψt → 1 − λ so that Z < 0 and

the law of motion for wage becomes concave. Let w̌t define the threshold value such that

Z = 0, i.e., the inflection point of the law of motion for wage. There are two cases.

• Case 1: if w̌t > w̄F , the law of motion for wage is piecewise with a positive intercept

on the vertical axis at wt+1, convex for wt ∈ (0, w̄), and flat at w̄t+1 for wt > w̄F .

• Case 2: if w̌t < w̄F , the law of motion for wage is piecewise with a positive intercept

on the vertical axis at wt+1, convex for wt ∈ (0, w̌), concave for wt ∈ (w̌, w̄F ), and

flat at w̄t+1 for wt > w̄F .

Step 3: the threshold values for multiple steady states under FMG

For σ = 0, the law of motion for wage under FMG has a concave-flat shape so that

there exists a unique, stable steady state. See figure 5.

For σ = 1, the law of motion for wage under FMG has a convex-flat or convex-concave-

flat shape so that multiple steady states may arise, as shown in figure 7. Given σ = 1

and r∗ = rA, we derive as follows the threshold values for the five regions of figure 6.

24



Case 1: consider the upper-right triangle of figure 6 where the borrowing constraints

are slack at the autarkic steady state with rA = ρ. Given r∗ = rA = ρ, the law of motion

for wage at the autarkic steady state (S) is flat so that the autarkic steady state is still

stable under FMG. Compare the upper-right and the lower-right panels of figure 7. The

boundary between region BC and C of figure 6 is defined as the case where the law of

motion is tangent with the 45◦ line at point M, i.e., wit+1 = wit = wM < wA, rM = r∗ = ρ,

and JM ≡ ∂wt+1

∂wt
‖wM = 1. Let DM ≡ 1−ε−(1+θ)

M and N ≡ λ. Combine the three conditions

with equations (27)-(28) to get

wM < wA, ⇒
ψMεM
ψAεA

=
wM
wA

=

(
λ

1− ψM

)ρ
and ψM < ψA, (47)

rM =
λ

1− ψM
ψMρ

1− εM
= ρ, ⇒ DM =

NψM
1− ψM

< ψM , (48)

JM =
ρ

(1 + ρ)SM + 1−ψM
ψM

= 1, ⇒ 1− 1

ψM(ρ+ 1)
= SM =

DM

1 + θ(1−DM)
. (49)

Combine equations (48) and (49) to get[
1 +

1

ρ(θ + 1)

]
D

2
M −

[
N

ρ(1 + 1
θ
)

+ 1

]
DM +

N

ρ
= 0. (50)

DM is a root of equation (50).19 Combine the solution to DM with equation (48) to solve

for ψM and εM = (1 −DM)−
1

1+θ . Plug them and εA = (1 − ψA)−
1

1+θ in equation (47) to

solve ψA as a function of λ, which defines the boundary between region BC and C.

Let us consider the limiting case of θ →∞. Equation (50) has two roots, i.e., DM = 1

and DM = λ
ρ
. Combine DM = 1 with equation (48) to get ψM = 1

1+λ
< 1, which violates

the condition of DM < ψM < 1. Thus, the true solution should be Dt = λ
ρ
. Combine

it with equation (48) to get ψM = 1 − α. Additionally, εM = (1−DM)−
1

1+θ = 1 and

εA = (1 − ψA)−
1

1+θ = 1. Inserting ψM , εM , and εA in equation (47) to get the boundary

condition for region BC and C in the limiting case of θ →∞,

ψA = (1− α)
(α
λ

)ρ
, and λ < α. (51)

Case 2: consider the lower-left triangle of figure 6 where the borrowing constraints are

binding at the autarkic steady state with ψA ∈ (0, 1−λ), µA ∈ (λ, 1), and rA = ρµA < ρ.

As shown in the upper-left panel of figure 7, given rt = r∗ = rA under FMG, case B arises

if JA ≡ ∂wt+1

∂wt
‖wA > 1. The solution is

ψA ∈ (ψ̂−F , ψ̂
+
F ), and ψA ∈ (0, 1− λ),

where ψ̂−F =

(
2− α− 1−α

1+θ

)
−
√

(2− α− 1−α
1+θ

)2 − 4(1− α)

2
,

ψ̂+
F =

(
2− α− 1−α

1+θ

)
+
√

(2− α− 1−α
1+θ

)2 − 4(1− α)

2
,

19According to equation (50), there are two roots for Dt. However, only one root satisfies the condition

of DM < ψM < ψA.
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which defines the border of region B in figure 6.

Let us consider the limiting case of θ →∞. The solution is

ψA ∈ (1− α, 1) and ψA ∈ (0, 1− λ). (52)

Case 3: consider the region with ψA < ψ̂−F in figure 6. Since JA < 1, the autarkic

steady state is still stable under FMG. Compare the upper-middle and the lower-left

panel of figure 7. As proved above, the law of motion for wage can be either convex or

convex-concave for wt ∈ (0, w̄F ). Taking that into account, FMG may lead to multiple

steady states in two subcases.

• Case 3.1: multiple steady states arise if the kink point of the law of motion for wage

is on or above the 45◦ line. Given r∗ = rA = ρµA, the kink point is characterized

by wt = w̄F , wt+1 = w̄t+1 ≡
(
R
r∗

)ρ
, ψt = ψK ≡ 1 − λ, µt+1 = µK = 1. As the

boundary case, the kink point is on the 45◦ line, i.e., w̄t+1 = w̄F . Combine them

with equations (42) to get,

w̄
1
ρ

t+1 =
R

r∗
=

R

ρµA
, w̄F = FψKεK = F(1− λ)εK (53)

r∗

ρ

1− ε−(1+θ)
K

µKψK
=
w̄t+1

w̄F
= 1 ⇒ εK =

(
µA

µA − 1 + λ

) 1
1+θ

(54)(
R

ρµA

)ρ
= w̄t+1 = w̄F = F(1− λ)εK (55)(

R

ρ

)ρ
= wA = FψAεA, εA =

(µA
λ

) 1
1+θ

, µA =
λ

1− ψA
(56)

⇒ (1− λ)λρ =

(
1

1− ψA
− 1− λ

λ

) 1
1+θ

ψA(1− ψA)ρ. (57)

Let ψ̃F,1 denote the solution to equation (57), which is a function of λ.

Let us consider the limiting case of θ →∞. Equation (57) becomes

(1− λ)λρ = ψA(1− ψA)ρ. (58)

• Case 3.2: Multiple steady states arise if the concave part of the law of motion is

at least tangent with the 45◦ line at point M, i.e., wt+1 = wt = wM ∈ (wA, w̄F ),

JM ≡ ∂wt+1

∂wt
‖wM = 1, and r∗ = rA = ρµA.20 Let DM ≡ 1− ε−(1+θ)

M and N ≡ 1− ψA.

Combine the three conditions with equations (27)-(28) to get

wM ∈ (wA, w̄F ), ⇒ ψMεM
ψAεA

=
wM
wA

=

(
µM
µA

)ρ
=

(
1− ψA
1− ψM

)ρ
, (59)

rM = r∗ = ρµA, ⇒ DM =
NψM

1− ψM
> ψM , (60)

JM = 1, ⇒ 1− 1

ψM(ρ+ 1)
= SM =

DM

1 + θ(1−DM)
. (61)

20The analysis is same as that for the boundary condition of region BC and C, except for rA = ρµA.
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Combine equations (60) and (61) to get[
1 +

1

ρ(θ + 1)

]
D

2
M −

[
N

ρ(1 + 1
θ
)

+ 1

]
DM +

N

ρ
= 0. (62)

DM is a root of equation (62).21 Combine it with equation (60) to solve for ψM and

εM = (1 − DM)−
1

1+θ . Plug them and εA = (1− ψA)−
1

1+θ in equation (59) and let

ψ̃F,2 denote the solution, which is independent of λ.

Let us consider the limiting case of θ →∞. Equation (62) has two roots, i.e., DM =

1 and DM = 1−ψA
ρ

. Combine DM = 1−ψA
ρ

with equation (60) to get ψM = 1 − α
and plug it back in equation (59) to get ψA = 1 − α, which violates the condition

of ψA < ψM . Thus, the true solution should be DM = 1. Combine it with equation

(60) to get ψM = 1
2−ψA

. Additionally, limθ→∞ εM = limθ→∞ (1−DM)−
1

1+θ = 1 and

limθ→∞ εA = limθ→∞(1 − ψA)−
1

1+θ = 1. Inserting ψM , εM , and εA in equation (59)

to get the boundary condition for region AB and A

ψ1−α
A (2− ψA) = 1. (63)

The boundary between region AB and A is characterized by ψ̃F = max{ψ̃F,1, ψ̃F,2}.

Proof of Proposition 3

Proof. Under IFA, the law of motion for wage in setting N is identical as that in the

generalized model and so is that in setting F except for a kink at wt = m. Thus, the

proof follows exactly the proofs for proposition 1 and lemma 1.

Proof of Lemma 3

Proof. In setting N, if τ ∈ (1− λ, 1), the borrowing constraints are slack with ψt = τ ∈
(1 − λ, 1) and, according to equation (20), ∂ ln rt

∂ lnwt
= −(1 − α) < 0; if τ ∈ (0, 1 − λ], the

borrowing constraints are binding with ψt = τ ∈ (0, 1 − λ) and, according to equation

(33),
∂ ln rit
∂ lnwit

= −(1− α) < 0.

In setting N, if ψt ∈ (1− λ, 1), the borrowing constraints are slack and, according to

equation (20), ∂ ln rt
∂ lnwt

= −(1 − α) < 0. If ψt ∈ (0, 1 − λ), the borrowing constraints are

binding ψt = wt
m
∈ (0, 1− λ). Define ψ̃A ≡ 1−α

2−α . Rewrite equation (34)

ln rit = −(1− α) lnwit − ln(1− ψt) + lnλRαρ1−α. (64)

⇒ ∂ ln rit
∂ lnwit

= −(1− α) +
ψt

1− ψt
, and

∂ ln rit
∂ lnwit

< 0, iff ψt ∈ (0, ψ̃A);

> 0, iff ψt ∈ (ψ̃A, 1− λ).
(65)

Proof of Proposition 4

21According to equation (62), there are two roots for Dt. However, only one root satisfies the condition

of DM > ψM .
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Proof. Steady-State Property under FMG in Setting N

In setting N, if the borrowing constraints are binding under FMG, combine equations

(1)-(3) with rit = r∗ to get the law of motion for wage,

r∗(mi
t − wit) = λqit+1Rm

i
t ⇒ r∗

[ ρ
R

(wit+1)
1
α − τwit

]
= λρwit+1, (66)

∂wit+1

∂wit
=
τ

ρ

[
(wit+1)

1
ρ

αR
− λ

r∗

]−1

=
τqit+1R

1 +
ρwit
mit

> 0, (67)

∂2wit+1

∂(wit)
2

= −
(
∂wit+1

∂wit

)3
(wit+1)

1
ρ
−1

ταR
< 0. (68)

Equation (66) implies that, for wit → 0, the law of motion for wage has a positive intercept

on the vertical axis at wit+1 =
(
Rλ
r∗

)ρ
. Define a threshold value w̄F = ρ

r∗
1−λ
τ

( R
r∗

)ρ. For

wit ∈ (0, w̄F ), the borrowing constraints are binding and the law of motion for wage is

increasing and concave, according to equations (67)-(68). For wit > w̄F , aggregate saving

and investment are so high that the marginal rate of return to investment is equal to the

world interest rate, Rqit+1 = r∗ and the borrowing constraints are slack. In this case, any

further increase in wit leads to financial capital outflows, without affecting the domestic

investment. The law of motion for wage is then flat at w̄it+1 = ( R
r∗

)ρ.

If τ ∈ (0, 1−λ), the borrowing constraints are slack in the autarkic steady state with

rA = λ
1−τ ρ < ρ, implying that w̄it+1 < w̄F . Thus, the kink point of the law of motion

for wage is below the 45◦ line. Graphically, the law of motion for wage crosses the 45◦

line once and only once from the left, with the intersection point in its concave part,

qualitatively the same as the left panel of figure 5.

If τ > 1 − λ, the borrowing constraints are slack in the autarkic steady state with

rA = ρ, implying that w̄it+1 > w̄F . Thus, the kink point of the phase diagram is above

the 45◦ line. Graphically, the law of motion for wage crosses the 45◦ line once and only

once from the left, with the intersection point in its flat part, qualitatively the same as

the right panel of figure 5.

To sum up, given r∗ = rA, the autarkic steady state is still the unique, stable steady

state under FMG in setting N.

Steady-State Property under FMG in Setting F

In setting F, we first analyze the shape of the law of motion for wage and then describe

the conditions for symmetry breaking.

If the borrowing constraints are binding, Rqit+1 > r∗ or equivalently ψit < 1 − λ.

Combine equations (1)-(3) with rit = r∗ to get the law of motion for wage,

1− wit
m

= λ
qit+1R

r∗
=
λρ

r∗

(
wA
wit+1

) 1
ρ

, (69)

J ≡
∂wit+1

∂wit
=

ρ
1
ψit
− 1

wit+1

wit
> 0, and H ≡

∂2wit+1

∂(wit)
2

= J
2 1

αwit+1w
i
t

> 0. (70)
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Combine equation (69) with (1)-(2) and then compute the mass of entrepreneurs,

wit+1 = wA

[
λρ

r∗(1− ψit)

]ρ
⇒ τ it =

Ki
t+1

Rm
=
ρ(wit+1)

1
α

Rm
= ψA

[
λρ

r∗(1− ψit)

] 1
1−α

. (71)

The mass of entrepreneurs is bounded by the population size in each generation, τ it ≤ 1.

According to equation (71), for wit → 0, ψit → 0 and the law of motion for wage has

a positive intercept on the vertical axis at wit+1 = wA
(
λρ
r∗

)ρ
. Similar as in setting N,

the law of motion for wage in setting F under FMG consists of two subfunctions. The

kink point depends on two factors, i.e., whether the borrowing constraints are binding

or slack, and whether the mass of entrepreneurs is below or equal to unity. For ψA ∈
(0, 1− λ], the borrowing constraints are binding in the autarkic steady state and, under

FMG, r∗ = λρ
1−ψA

< ρ. In this case, according to equation (71), τ it ≤ 1 implies that

ψit ≤ ψ̌F ≡ 1− ψ1−α
A (1− ψA). For ψA ∈ [1− λ, 1], the borrowing constraints are slack in

the autarkic steady state and, under FMG, r∗ = ρ. In this case, according to equation

(71), τ it ≤ 1 implies that ψit ≤ 1− λψ1−α
A .

In the following, I characterize the shape of the law of motion for wage in two cases:

• Case 1: if ψ̌F > 1− λ,

For ψit ∈ (0, 1− λ), the borrowing constraints are binding, some agents become en-

trepreneurs, τ it < 1, and the law of motion for wage is convex, wit+1 = wA

(
1−ψA
1−w

i
t

m

)ρ
;

for ψit > 1 − λ, the borrowing constraints are slack, some agents become en-

trepreneurs, τ it < 1, and the law of motion for wage is flat at wit+1 = wA
(

1−ψA
λ

)ρ
.

• Case 2: if ψ̌F < 1− λ,

For ψit ∈ (0, ψ̌F ), the borrowing constraints are binding, some agents become en-

trepreneurs, τ it < 1, and the law of motion for wage is convex, wit+1 = wA

(
1−ψA
1−w

i
t

m

)ρ
;

for ψit > ψ̌F , the borrowing constraints are binding, all agents become entrepreneurs,

τ it = 1, and the law of motion for wage is flat at wit+1 =
(
Rm
ρ

)α
= wA

ψαA
.

The convex part of the phase diagram creates the possibility of multiple steady states.

Figure 10 shows the parameter configuration of five regions in the {λ, ψA} space and in

the {λ, Z} space, respectively. Figure 11 shows the laws of motion for wage under FMG

versus under IFA in five cases.

In the following, I derive the boundary conditions for the five regions in figure 10.

Case 1: Consider the upper-right triangle of figure 10, i.e., ψA ∈ (1−λ, 1). Compare

the upper-right and the lower-right panels of figure 11. Given r∗ = rA = ρ, the law of

motion for wage under FMG is flat at the initial steady state (point S); the boundary

between region BC and C is defined as the case where the convex part of the law of

motion for wage is tangent with the 45◦ line at point M, i.e., wit = wit+1 = wM < wA and
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JM = 1. Rewrite equations (69) and (70) at the tangent point,

1− wM
m

= λw
− 1
ρ

M

R

ρ
, ⇒

(
1− wM

m

)(wM
m

) 1
ρ

= ψ
1
ρ

Aλ

JM =
ρψM

1− ψM
=

ρρ

λRm
(wM)

1
α = 1, ⇒

(wM
m

) 1
α

=
λ

ρ
ψ

1
ρ

A.

Combine them to get

wM
m

= 1− α and ψA = (1− α)
(α
λ

)ρ
, (72)

wM < wA ⇒ wF
m

< ψA and λ < α. (73)

Equations (72)-(73) jointly define the boundary between region BC and C, the same as

equations (51) in the limiting case of the generalized model with σ = 1 and θ →∞.

Case 2: Consider the lower-left triangular of figure 10, i.e., ψA ∈ (0, 1 − λ). Given

rt = r∗ = rA under FMG, case B arises if the law of motion for wage under FMG has a

slope exceeds unity at the autarkic steady state, JA = ρ
1
ψA
−1

> 1. The solution is

ψA ∈ (1− α, 1) and ψA ∈ (0, 1− λ) (74)

which specifies the boundary between region B and AB, the same as equations (52) in

the limiting case of the generalized model with σ = 1 and θ →∞.

Case 3: consider the region with ψA < ψ̂F . Since JA < 1, the autarkic steady state

is stable under FMG. Compare the upper-middle and the lower-left panel of figure 11.

FMG may still generate multiple steady states if the kink point of the law of motion for

wage is above the 45◦ line, i.e., w̄t+1 > w̄F . There are two subcases.

• Case 3.1: if ψ̌F > 1−λ, the kink point is at w̄F = (1−λ)m and w̄t+1 = wA
(

1−ψA
λ

)ρ
.

In the boundary case,

w̄t+1 = w̄F , ⇔ (1− ψA)ρψA = (1− λ)λρ, (75)

which is the same as equations (58) in the limiting case of the generalized model

with σ = 1 and θ →∞.

Let ψ̃F,1 denote the solution to equation (75).

• Case 3.2: if ψ̌F < 1 − λ, the kink point is at w̄Ft = [1 − (1 − ψA)ψ1−α
A ]m and

w̄t+1 = wA
ψαA

. In the boundary case,

w̄t+1 = w̄F , ⇔ ψ1−α
A (2− ψA) = 1, (76)

which is the same as equations (63) in the limiting case of the generalized model

with σ = 1 and θ →∞

Let ψ̃F,2 denote the solution to equation (76).

The boundary between region AB and A is characterized by ψ̃F = max{ψ̃F,1, ψ̃F,2}.
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