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Abstract— In this paper we investigate the limiting properties,
in terms of capacity and delay, of an ad hoc network employing a
topology-transparent scheduling scheme. In particular, we focus
on Time-Spread Multiple Access (TSMA) protocols, which are
able to offer, in a distributed fashion, a deterministic upper bound
on the access delay. The analysis is based on some asymptotic
(focusing) properties of geometric random graphs. The analytical
framework is applied to both static and mobile networks. The
obtained results are compared with the results present in the
literature for the case of an optimum (centralized) scheduling
scheme.

I. INTRODUCTION

Starting from the seminal work of Gupta and Kumar on the
capacity of wireless networks [1], various researchers have,
in the last few years, addressed the limiting performance, in
terms of throughput and delay, of ad hoc networks. Among the
milestones in the area, we recall the work of Grossglauser and
Tse [2], who proved that, by exploiting the multiuser diversity
provided by node mobility, capacity can be increased with
respect to the case of static nodes, at the expense of increased
packet delay. Subsequent works have deeply investigated the
arising capacity/delay tradeoffs [3], [4], [5], [6], [7].

In [1] the per-connection throughput in a random net-
work consisting of n nodes is shown to scale as λ(n) =
Θ

(√
1

n log n

)
.1 Such scaling comes from the necessity of

keeping the transmission range as small as possible, in order
to limit the level of interference in the network. On the
other hand, a scaling for the transmission range of the order

R(n) = Θ
(√

log n+c(n)
n

)
, with c(n) → +∞ is necessary

and sufficient to ensure connectivity of the resulting network
[8], [9]. Hence, in dense wireless networks, interference is
the factor affecting the (negative) scaling properties of the

1Throughout the paper, we will use the following notation. Given two
functions f(n) and g(n), we say that: (i) f(n) = o(g(n)) if f(n)

g(n)
→ 0

as n → +∞, (ii) f(n) = O(g(n)) if f(n)
g(n)

is upperbounded for n large
enough, (iii) f(n) = ω(g(n)) if g(n) = o(f(n)), (iv) f(n) = Ω(g(n))
if g(n) = O(f(n)) and (v) f(n) = Θ(g(n)) if f(n) = O(g(n)) and
f(n) = Ω(g(n)).

throughput. Furthermore, all results rely on the assumption of a
centralized perfect schedule of transmissions, representing thus
upper bounds on the performance achievable by a distributed
scheduling scheme.

In this paper, we present some results, in terms of scaling
laws and capacity/delay tradeoffs, for ad hoc networks employ-
ing Time-Spread Multiple Access (TSMA) protocols. TSMA
schemes (also referred to as topology-transparent scheduling
methods) were introduced in the 90s following the pioneering
work of Chlamtac and Faragó [10]. Their approach exploits
some properties of Galois fields to design a fully distributed
scheduling algorithm, based on a frame structure. The frame
is divided into q2 slots, and each node attempts transmissions
q times per frame. Even if the overall protocol is not collision-
free, each node is ensured to successfully transmit at least once
per frame. The first remarkable property of these protocols is
that they are able to provide a deterministic guaranteed upper-
bound (equal to the frame length in the static case, since the
success pattern is deterministic, and to twice the frame length
in the mobile case, where neighbors may change from frame
to frame) on the access delay at each node. TSMA and similar
schemes are referred also to as topology-transparent schedul-
ing mechanisms, in that they do not require each node to
have detailed topological information. The schedules depend
indeed only on two design parameters, namely the number
of nodes in the network, n, and the maximum degree of the
network, ∆, defined as the maximum number of interferers
of any node in the network. In this paper, we exploit some
focusing properties of ∆ in geometric random graphs [11] for
studying the asymptotic behavior of such protocols in a highly
dense ad hoc network.

The contribution of the paper lies in two properties of
TSMA protocols, which put the results presented aside from
the ones in the literature:
• in all works presented in the literature a centralized

scheduling (TDM-like) scheme for transmissions is as-
sumed, while we consider a fully distributed scheme.
While the results presented for centralized TDM schemes
could, in principle, be extended to distributed implemen-
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tations, this would require the exchange of control and
signaling messages for maintaining detailed knowledge
of the network topology (with a remarkable traffic burden
in the case of mobile devices);

• TSMA schemes offer a deterministically upper-bounded
delay for packet transmission, which leads to scaling laws
in terms of worst-case (maximum) access delay rather
than average delay. This can be exploited to engineer
solutions able to offer Quality-of-Service guarantees.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the system model and recall some useful
results from Geometric Random Graphs theory. In Sec. III,
scaling laws are derived for the network capacity, packet delay
and energy efficiency for the cases of both static and mobile
nodes. In Sec. IV some extensions of the proposed model are
proposed, along with some numerical results. Sec. V concludes
the paper pointing out some promising directions for future
research.

II. SYSTEM MODEL

A. Topology-Transparent Scheduling Schemes

A fundamental requirement in radio transmission is to
avoid/limit the interference coming from neighboring devices,
controlling the access to the shared medium. Classically, two
main categories of access control schemes have been con-
sidered, namely scheduled mechanisms and random ones. In
the first case, transmissions are scheduled (by a central entity,
in principle), so that collision-free access may be granted to
the nodes. Examples of such class include standard TDMA
mechanisms. In the second case (comprising, e.g., the classical
ALOHA scheme and all CSMA variations), nodes attempt
independently to access the channel, resulting in potential
collisions and demanding the implementation of a collision
resolution protocol [12]. Scheduled channel access schemes
present considerable advantages over random access, in terms
of (i) better channel utilization (ii) better scalability properties
in the presence of a large number of heavily loaded nodes
(iii) the possibility of offering quality-of-service guarantees
and traffic differentiation. Scheduled mechanisms can also be
implemented in a distributed way, by means of the exchange
of appropriate signaling messages, so that every node has a
complete knowledge of the network topology. When nodes are
moving, however, the burden due to signalling traffic increases
and may end up using most of the available bandwidth, caus-
ing starvation problems to data flows. Topology-transparent
schemes were introduced by Chlamtac and Faragó in 1994 to
overcome these problems [10]. Their operations are based on
some properties of finite (Galois) fields. Time is divided into
frames, each frame being subdivided in q subframes, where q
is the power of a prime number. Each subframe is subdivided
into q time slots, so that each frame comprises q2 slots. Each
node transmits once per subframe. Not all transmissions are
granted collision-free, but it can be ensured (by an appropriate
choice of the design parameter q), that all nodes are able
to transmit successfully at least once per frame. The frame
structure is depicted in Fig. 1 for the case q = 3. TSMA
schemes involve the assignment to each node of a unique

Subframe

Frame

Slots

Fig. 1. Sketch of a topology-transparent scheme frame structure with q = 3.

polynomial of degree k over the finite field GF (q), which
determines the transmissions schedule. Overlap of slot sets
corresponds to common roots of the polynomial associated to
different nodes. In order to perform successful scheduling of
packet transmissions, the mechanism relies on an appropriate
choice of q and k, to ensure that a slot cannot be covered by
up to ∆2 nodes, where ∆ is the maximum node degree. The
non-covering condition can be expressed as [10]

q ≥ k∆ + 1. (1)

On the other hand, polynomials must be uniquely assigned, so
that the following condition must hold as well:

qk+1 ≥ n, (2)

where n is the total number of nodes in the network.
Topology-transparent schemes have not received consider-

able attention in the literature: a variant of the original scheme,
able to maximize the network throughput, has been presented
in [13]. A (recursive) generalization of the scheme in [10]
has been presented in [14]. Recently, Syrotiuk et al. have
shown that all the schemes in this family can be represented
by orthogonal arrays [15]. Lately, it has also been shown in
[16] that the throughput of topology-transparent scheduling
schemes can be enhanced by transmitting (with a given
probability) in slots that are not assigned for transmission.

B. Ad Hoc Networks and Random Graphs

We assume that n nodes are distributed on a unit-area torus2

in an i.i.d. fashion according to a general density f , assumed
to be bounded and non-zero, i.e., ∀a, 0 < fmin ≤ f(a) ≤
fmax < +∞. All nodes transmit at a fixed power Ptx; the
case of power controlled devices should be analyzed in terms
of achievable rate regions [18] or total network capacity [19]
and is left for future work. We consider an additive white
Gaussian noise channel, with a path loss of the form 1

dα , α ≥
2, and denote by W the noise power. In our model, the packet
error rate versus signal-to-noise ratio is approximated by a
step-like function, the threshold being denoted by Ψ. Such

2The torus assumption is taken in order to avoid problems related to edge
effects; nonetheless, results can be generalized to a unit square. Also, the
analysis can be applied to the case of nodes distributed on the infinite plane,
scaling the area, and not the density, with the number of nodes n, as in [17].
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a model works, e.g., in the case when good long codes are
used. It corresponds to the situation in which there exists a
fixed value R (called the communication range) such that a
node can successfully decode a message if and only if its
distance from the source is less than or equal to R. Under
such assumptions, the network can be modeled as a Geometric
Random Graph [11], [20]. In Fig. 2, we reported the network
coverage (intended as the union of the area covered by each
circle) and the resulting connectivity graph for the case of
n = 1000 nodes uniformly scattered over a 100 × 100 m2

areas and having a communication range R = 3.73 m.
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Fig. 2. An ad hoc network with deterministic transmission range and its
equivalent connectivity graph.

The communication range R takes the form: R =
(

KPtx

WΨ

) 1
α ,

where K accounts for the antenna gains. In the paper, we aim
at investigating the limiting properties of such a network model
by appropriately scaling Ptx as a function of n, and therefore
write Ptx(n). Accordingly, the communication range, as a
function of n, will be denoted by R(n). The neighbors of
a given node are defined as the nodes with which it is able to
communicate, i.e., the nodes within distance R(n). As above,
we define the maximum degree of the network ∆(n) as the
maximum number of interfering nodes, i.e., nodes within the
interference range R̂(n). In radio transmissions with current
technologies, the interference range is known to be larger
than the communication range. Nonetheless, since we focus
on the asymptotic behavior of the network, and are interested
in obtaining scaling laws, we can safely assume that the two
quantities are linked by a (finite) multiplicative factor 3, so
that they follow the same limiting behavior. Hence, under such
assumption ∆(n) scales as the maximum number of neighbors,
i.e., the maximum number of nodes within distance R(n).

In order to assess the asymptotic performance of the net-
work, we can apply some results on the limiting properties of
Geometric Random Graphs [11]. In particular, we recall the
following results:

Proposition 1: The following holds:

(i) if there exist k ∈ N such that n
k+1

k R2(n) → +∞ and
n

k+2
k+1 R2(n) → 0, then:

P[∆(n) = k] → 1 as n → +∞; (3)

(ii) if nR2(n)
log n → 0, nR2(n) → +∞ and

log
�

1
nR2(n)

�

log n → 0,

3In reality, the slightly milder condition R(n) = Θ(R̂(n)) suffices.

then:

lim
n→+∞


∆(n) log

(
log n

nR2(n)

)

log n


 = 1 (4)

in probability;
(iii) if R(n) → 0 and nR2(n)

log n → γ for 0 < γ ≤ +∞, then:

lim
n→+∞

(
∆(n)

nR2(n)

)
= β (5)

P-almost surely4, where β and γ are defined in [11, Thm.
6.14];

(iv) if R(n) = Θ(1), then:

∆(n) = Θ(n). (6)
In order to better understand, from a networking point of view,
the four situations considered in the proposition above, we
consider the node isolation probability. We recall that the node
isolation probability, defined as the probability that any given
node is not able to communicate with any of its neighbors, can
be well approximated assuming a Poisson distribution for the

number of nodes [11], getting PI ≈ e−nπR2(n) = n−π
nR2(n)
log n

[21]. We hence note that cases (i) and (ii) correspond to the
situation in which all the nodes are isolated P-almost surely.
This situation is clearly of little interest from the point of view
of TSMA protocols (at least in the static case, see below), since
it implies that interference and contentions are not an issue in
the network. On the other hand, case (iii) corresponds to the
situation in which the nodes are isolated with probability PI →
n−πγ → 0, i.e., no isolated nodes are P-a.s. present. This case
covers all the situations in which the nodes are starting to
get connected, with no isolated nodes but no assurance of the
network being connected. Further, note that the value of β is
upper-bounded by fmax, the maximum taken by the density
function f [11]. Finally, case (iv) corresponds to the situation
in which the network reduces to a single-hop domain, and no
store-and-forward operations are necessary. In the following
section, we thus concentrate our attention on cases (iii) and
(iv) in the Proposition above.

III. SCALING LAWS AND CAPACITY/DELAY TRADEOFFS

A. The Static Case

Let us first consider the case in which all nodes are static.
The performance of TSMA schemes heavily depends on the
maximum node degree. This parameter is indeed needed to
design a scheme that is able to ensure that, within a frame,
each node will be able to perform at least one successful
transmission. The original Chlamtac-Faragó scheme achieves
a frame length satisfying [10]:

L(n) = O

(
∆2(n) log2 n

log2 ∆(n)

)
. (7)

Note that the scheme of [10] pursues the minimum frame
length as design goal; however its performance in terms of

4Convergence P-almost surely (abbreviated as P-a.s. in the remainder of the
paper) means that it holds everywhere except for a subset of Ω with measure
induced by P equal to 0.
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throughput is not optimal. An alternative but similar scheme,
which aims at maximizing the minimum throughput, is re-
ported in [13].

On the other hand, we also need a lower bound on the
frame length. In general, a bound of the order Ω(log n) is
known [22], which does not depend on ∆. In our case, since
we will control the scaling for ∆, a bound of the type:

L(n) = Ω
(
∆2(n)

)
, (8)

will be used, which can be easily derived from (1) as q ≥ ∆
and L = q2.

Since the frame length corresponds to the maximum access
delay that each node will incur, the delay performance of
TSMA depends just on the parameter ∆. While in principle,
for any random distribution of nodes, this cannot a priori be
ensured to be bounded (and its estimation would require the
exchange of control signals with a consequent traffic burden in
the case of highly mobile devices), we can nonetheless exploit
the properties of geometric random graphs presented in the
previous section to derive scaling laws for both throughput
and packet delay.

Let us consider a scaling of the form Ptx(n) =
ΨW
K

(
log n+c(n)

n

)α
2

for the transmission power. This leads to

a scaling of the form R(n) =
√

log n+c(n)
n for the communi-

cation range. We recall from [8], [9] that, with a scaling of
this form, c(n) → +∞ is necessary and sufficient to ensure
connectivity of the resulting network with unitary probability.

With respect to case (iii) in Proposition 1, we note that it
corresponds to the situation in which c(n) = o(n), and we
have:

γ = 1 + lim
n→+∞

c(n)
log n

. (9)

Hence, the parameter γ is finite if and only if c(n) = O(log n),
while it tends to infinity in the case c(n) = ω(log n). Using
then the results of Proposition 1 together with (7), we obtain
the following results:

Proposition 2: Given Ptx(n) = ΨW
K

(
log n+c(n)

n

)α
2

, the
following holds:
(i) if c(n) → c, 0 ≤ c ≤ +∞, then:

L(n) = O

(
[log n + c(n)]2 log2 n

log2 [log n + c(n)]

)
; (10)

L(n) = Ω
(
[log n + c(n)]2

)
. (11)

If c(n) = Θ(log n) (which implies γ < +∞ in Proposi-
tion 1), the equation above simplifies to:

L(n) = O

(
log4 n

log2(log n)

)
; (12)

L(n) = Ω
(
log2 n

)
. (13)

(ii) if c(n) = Θ(n), then:

L(n) = Θ(n2). (14)
Proof: The results follow directly using (7) and (8)

together with the results in Proposition 1.

The proposition above defines the network performance in
terms of frame length and hence maximum access delay. The
network capacity can be lower-bounded considering that in
any frame, each node is able to transmit successfully at least
one message, getting:

S(n) = Ω
(

n

L(n)

)
= Ω

(
n log2 ∆(n)
∆2(n) log2 n

)
. (15)

On the other hand, we can upper-bound the network capacity
by considering that all nodes are always successful when at-
tempting transmissions on the radio channel. From the protocol
definition, the number of successful attempts per frame is
T (n) =

√
L(n), getting:

S(n) = O

(
nT (n)
L(n)

)
= O

(
n√
L(n)

)
= O

(
n

∆(n)

)
.

(16)
Focusing our attention on case (i) in Proposition 25, we get

the following:

Proposition 3: Given Ptx(n) = ΨW
K

(
log n+c(n)

n

)α
2

, with
c(n) = Θ(log n), the network is connected P-a.s. and its total
transport capacity satisfies:

S(n) = Ω
(

n log2(log n)
log4 n

)
, (17)

S(n) = O

(
n

log n

)
. (18)

Proof: The proof follows substituting the results for case
(i), Proposition 2 in (15) and (16).
This result is independent of the actual traffic pattern. (Simi-
larly, the case c(n) = ω(log n) can also be analyzed, leading
to slightly worse performance.)

Let us consider the case in which the network consists of
n
2 communication pairs, as in [1]. In order to get the result,
we will to consider a grid-like tessellation of the torus, as
reported in Fig. 3. The unit torus is divided into “squarelets” of
area a(n). Under some conditions to be defined later on, each
squarelet contains at least one node with probability tending
to 1 [23]. The power needs to be scaled so that we can ensure
that a node in a given squarelet is able to communicate with
all nodes in the eight neighboring squarelets, which translates
to:

R(n) ≥ 2
√

2a(n), (19)

or, equivalently,

Ptx(n) ≥ ΨW

K
[8a(n)]

α
2 . (20)

We get the following:

Proposition 4: Given Ptx(n) = ΨW
K

(
24 log n
nfmin

)α
2

, the per-
connection throughput satisfies:

λ(n) = Ω
(

1√
n log n

log2(log n)
log4 n

)
, (21)

λ(n) = O

(
1√

n log n

)
. (22)

5The case (ii) is of scarce interest, since in the case of a fully connected,
single-hop network, standard CSMA or TDMA techniques could be success-
fully employed.
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Neighboring cells
of size a(n)
Squarelet

D

S

Fig. 3. The grid-like tesselation of the torus into squarelets of size a(n)
considered, together with one Sender(S)-Destination(D) pair.

Proof: We start proving the upper bound. Since the
average distance between any pair of nodes is Θ(1), it is easy
to see that the average number of hops is Θ

(
1

R(n)

)
. Hence

the total traffic to be carried on the network is of the order of
nλ(n)
R(n) , and this has to be smaller than S(n). Using (16), we

get (22).
In order to demonstrate the lower bound, we proceed along
the lines of [3]. In particular, we consider dividing the network
area into “squarelets” of size a(n) = 3 ln n

nfmin
. It can be shown

(the derivation is reported in the appendix) that there is P-
a.s. at least one node in each squarelet. The scaling chosen
for the transmission power satisfies (20) for a(n) = 3 ln n

nfmin
.

Further, the network is connected P-a.s. The number of source-
destination pairs whose traffic is routed through any chosen
squarelet is of the order of O(n

√
a(n)) = O (nR(n)). Each

squarelet has a “throughput” that is Ω
(

log2 log n
log4 n

)
, since it

contains at least one node (and the throughput of the squarelet
grows with the number of nodes). Each squarelet gets a traffic
that is O (nλ(n)R(n)), so that each node can generate traffic
at a rate

λ(n) = Ω
(

log2 log n

nR(n) log4 n

)
= Ω

(
1√

n log n

log2(log n)
log4 n

)
.

This means that, by using TSMA schemes, we are at most
a factor log2(log n)

log4 n
away from the Gupta-Kumar bound.

This result is worth some comments, in that it shows that
there exists a distributed mechanism, able to work without
accurate topology information and to provide a deterministic
access delay which is able to stay very close (at least in
the limiting regime) to the optimal performance in terms of
throughput.

In terms of delay, we consider, for the sake of conciseness,
a fluid model, as in [23], where the packet size is scaled down

with n. The results can be extended to the fixed packet size
as in [24]. We get the following:

Proposition 5: Given Ptx(n) = ΨW
K

(
24 log n
nfmin

)α
2

, the av-
erage packet delay satisfies:

D(n) = Ω
(√

n log n
)

, (23)

D(n) = O

(
log4 n

log2 log n

√
n

log n

)
. (24)

Proof: Again, as in [3], we consider dividing the network
area in squarelets of size a(n) ≥ 3 ln n

nfmin
. Each squarelet is able

to successfully transmit at least once per time frame, so that
the (access) delay incurred at each node is of the order of
O(L(n)). Scaling down packet sizes, all packets are served in
the allocated slot subsequent to their arrival [3]. The average
delay is thus given by the product of the average number of
hops and the average delay incurred at each node. This leads
to:

D(n) = O

(
L(n)
R(n)

)
= O

(
log4 n

log2 log n

√
n

log n

)
.

On the other hand, a lower bound on the access delay is given
by Ω(

√
L(n)), leading to:

D(n) = Ω

(√
L(n)

R(n)

)
= Ω

(√
n log n

)
.

Comparing with the optimal tradeoff in [23], we can see that
our scheme is at least a factor log n (and at most a factor

log4 n
log2 log n

) from the optimal delay.
From the communication point of view, keeping in mind

the scaling we used for the transmission power, we obtain
that the only physical-layer parameter the network is sensitive
to is the path loss decay factor α, whereas the scaling laws are
insensitive (up to a multiplicative constant) to the actual values
of the SNR threshold, the noise variance and the antenna gain.

B. Capacity/Delay Tradeoffs in Static Networks

The results in the previous sections can be generalized,
as in [23], to study capacity-delay tradeoffs. The basic idea
is that, by enlarging the transmission power (and hence the
communication range), the delay can be reduced at the expense
of a reduced throughput. We get the following:

Theorem 3.1: Given a scaling Ptx(n) of the transmission
power which satisfies:

Ptx(n) ≥ ΨW

K

(
24 log n

nfmin

)α
2

(25)

and denoting by R(n) and L(n), respectively, the resulting
scaling for the communication range and the frame length,
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the following holds:

λ(n) = O

(
R(n)√
L(n)

)
, (26)

λ(n) = Ω
(

1
nL(n)R(n)

)
, (27)

D(n) = O

(
L(n)
R(n)

)
, (28)

D(n) = Ω

(√
L(n)

R(n)

)
. (29)

Proof: Under the condition (25), the network is con-
nected P-a.s. Further, we can divide the network in squarelets
of area

a(n) =
1
8

(
KPtx(n)

ΨW

) 2
α

≥ 3
log n

n

and ensure that transmissions to the neighboring squarelets is
always possible. We can then reply the reasoning in Proposi-
tion 4 and Proposition 5 to get the results.
The comparison with the results (in terms of optimal capac-
ity/delay tradeoffs) in [23] is not straightforward, due to the
non-linear dependence of L(n) on R(n).

C. An Extension to the Mobile Case
The results presented in the previous sections can be ex-

tended to the case where nodes are mobile. It has indeed
been shown that mobility can be exploited to improve network
capacity [2] by trading off capacity for delay and storage [3],
[5]. The common basis of such schemes is the provisioning
of a relaying protocol that is able to exploit the multiuser
diversity provided by the nodes’ movement to enhance the
overall connection throughput.

In this case, since we no longer need to satisfy the con-
nectivity constraint, a faster scaling of the transmission power
can be considered. We consider a scaling of the form Ptx =
ΨW
K n−

α
2 . While we have no proof of the optimality of such

scaling, we used it in conformance with what done in [23].
The resulting transmission range is upperbounded by the ones
falling in case (ii) in Proposition 1, which together with (7)
leads to a schedule length satisfying:

L(n) = O

(
log4 n log2 log log n

log4 log n

)
. (30)

On the other hand, we used Basagni’s lower bound on the
frame length [22]:

L(n) = Ω(log n). (31)

Let us now consider a simple i.i.d. mobility model, as in
[2] and [3]. Further, we consider Scheme 2 in [23], so that
we aim at maximizing throughput at the expense of packet
delay. The only difference with the scheme therein is that,
in our case, each squarelet transmits at least once every time
frame, i.e., every O

(
log4 n log2 log log n

log4 log n

)
seconds. Following

their reasoning, this leads to the following lower bound on
network throughput:

λ(n) = Ω
(

log4 log n

log4 n log2 log log n

)
. (32)

Again, upper bounds can be found by considering the case in
which all transmissions are successful, leading to:

λ(n) = O

(
1√

log n

)
. (33)

In this case, there is a penalty at least of the order
√

log n for
using TSMA schemes.

The computation of the delay follows along the lines in
[23], leading to:

D(n) = O

(
n log5 n log2 log log n

log4 log n

)
; (34)

D(n) = Ω
(
n log

3
2 n

)
. (35)

We can then conclude that, also in the mobile case, there is
a small penalty in employing TSMA instead of a centralized
scheduling scheme.

In Fig. 4 we graphically depicted the results obtained, in
terms of throughput and delay, by TSMA schemes, together
with the ones attainable by means of a perfect (centralized)
scheduling of packet transmissions for both static and mobile
networks.

D. Energy Consumption Considerations

One critical issue when dealing with ad hoc networks
concerns the energy consumption of such systems. Indeed,
since we are talking about battery-driven devices, we should
always consider, in the design phase, the node lifetime issue.
With respect to such problem, TSMA schemes may offer some
advantages over current CSMA-based distributed solutions
(e.g., IEEE 802.11). It is indeed known from experimental
results that the power consumed for sensing the channel is of
the same order of magnitude as that used for transmission.
This means that, even in the presence of a low transmitting
rate, a large amount of battery power could be drained by
the channel sensing mechanism. In general, in typical appli-
cations, the energy consumed on performing communication
tasks is significantly larger than that used for computational
goals. TSMA schemes can then benefit from the absence of
channel sensing; on the other hand, they envisage that each
node attempts transmitting more than once per frame, with a
consequent waste of energy.

For the Chlamtac–Faragó scheme, the number of attempts
per frame per node is bounded by:

T (n) = O

(
∆(n) log n

log ∆(n)

)
. (36)

We are interested in evaluating the average amount of packets
successfully transmitted by a node per unit energy, that we
term energy efficiency of the protocol and denote by η. For
the sake of simplicity, we refer to the static case, even if
the analysis can be easily extended to the mobile case, and
consider a slot length of 1 second. The energy efficiency is
given by the ratio of the number of successful transmissions
per frame over the total amount of energy spent per frame.
Since there is at least one successful transmission per frame,
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Fig. 4. Graphical representation of the capacity/delay tradeoffs achievable by TSMA in both static and mobile networks and comparison with the optimal
values.

we get:

η(n) = Ω
(

1
Ptx(n)T (n)

)
= Ω

(
1

Ptx(n)
√

L(n)

)
. (37)

We can then obtain the following:

Proposition 6: Given Ptx(n) = ΨW
K

(
log n+c(n)

n

)α
2

, with
c(n) = Θ(log n), the energy efficiency of a TSMA scheme
satisfies:

η(n) = Ω

(
n

α
2 log log n

[log n]
α+4

2

)
. (38)

A perfect/centralized scheduling scheme achieves an energy
efficiency given by:

η(n) = Θ
(

1
Ptx(n)

)
= Θ

(
n

α
2

[log n]
α
2

)
(39)

Comparing (38) with (39) we can see that in this case we are
at most a factor log log n

log2 n
away from the optimal value. The

upper bound on the energy efficiency of TSMA can be easily
seen to coincide with the optimal value and is therefore of
little interest.

IV. MODEL EXTENSIONS AND NUMERICAL RESULTS

The model can be extended to include time-varying error-
prone channels. In particular, let us assume that the loss
process is stationary ergodic and has a “memory” shorter
than L(n), the time frame. Hence transmissions in successful
frames fail independently with probability p, which denotes
the (stationary) probability of packet error events. The time
between two successful transmission is thus given by the
product of the frame length and a geometric random variable

of parameter p, and has mean L(n)
1−p = Θ(L(n)). As a

consequence, the scaling laws for capacity and delay remain
the same as in the ideal channel case. Clearly, due to the
randomness induced by the time-varying channel, the scaling
law for the access delay is now given in terms of average delay
and not deterministic upper-bound on the same quantity.

An important aspect to consider is the network size (in terms
of number of nodes) at which the asymptotic behavior starts
appearing. Indeed, in real-world deployments, asymptotes are
of little interest if they arise only for extremely large values of
n. To do so, we run some numerical simulations, generating
random topologies and evaluating, for a scaling of the type (iii)
in Proposition 1 (in our case R(n) =

√
log n

n ) the ratio of the
actual maximum node degree against the one predicted by the
asymptotic behavior. Assuming a network area of 100 × 100
m2, we reported in Fig. 5 the 95% confidence interval for
such ratio for n in the range 100, . . . , 4100 nodes. Results, in
terms of mean value only, are reported for a wider range, up
to 105 nodes (in logarithmic scale), in Fig. 6. As it can be
seen, the convergence is pretty slow, and even at 105 nodes
we are not close to the asymptotic behavior. Nonetheless, what
is interesting from an application point of view is that the
convergence is monotonic from below, which suggests that
the asymptotic may be safely used in the dimensioning phase
even for small values of n.

The model can also be extended to account for a grid-
like topology (as depicted in Fig. 7), which may be of
interest for those situations in which it is possible to control
the deployment of nodes into the environment (e.g., sensor
networks). In such a case, under an appropriate scaling of the
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Fig. 6. Ratio of the simulated maximum node degree over the asymptotic
value, 95% confidence value over 100 simulations.

transmission power, we can get a connected network while
keeping a finite ∆ for any n. We only need to ensure that
each node is able to communicate with its 4 closest neighbors
(placed at a distance 1√

n
), which implies a scaling of the

transmission power of the form Ptx = ΨW
K n−

α
2 . Under such

conditions, the frame length scales as O(log2 n) and Ω(log n).
We thus obtain the following results:

Proposition 7: Given n nodes deployed in a regular grid
over the unit torus, and given a transmission power of the
form: Ptx = ΨW

K n−
α
2 , the following holds:

(i) The total network capacity scales as:

S(n) = O

(
n√
log n

)
(40)

S(n) = Ω
(

n

log2 n

)
. (41)

Fig. 7. The grid topology; the distance between neighboring nodes is 1√
n

.

(ii) The per-connection throughput scales as:

λ(n) = O

(
1√

n log n

)
(42)

λ(n) = Ω
(

1√
n log2(n)

)
. (43)

(iii) The average packet delay scales as:

D(n) = O
(√

n log2 n
)

(44)

D(n) = Ω
(√

n log n
)

. (45)

(iv) The energy efficiency scales as:

η(n) = Ω
(

n
α
2

log n

)
. (46)

Proof: The proof follows considering the scaling
O(log2 n) and Ω(log n) for L(n) and repeating the reasoning
presented for the case of nodes randomly placed on the torus.

Note that, with respect to the scaling we used for the random
node distribution, here we get a higher throughput and a better
energy efficiency at the expense of a higher packet delay.
Choosing the scaling for Ptx(n) used in Sec. III would lead
to the same results obtained for the random topology, since
all results depend just on the scaling of the frame length. It
is worth noting that, in terms of throughput, we gain a factor√

log n over the random case. A similar result is also in [1].
It remains an open question for future studies the possibility
of closing such gap along the lines of what proposed in [17].

V. CONCLUSIONS

In this paper, we have studied the asymptotic behavior of an
ad hoc network employing a topology-transparent scheduling
algorithm. Using some limiting results from the theory of Geo-
metric Random Graphs, we have characterized the asymptotic
behavior of the maximum node degree for various regimes
of the communication range. Such results have been used to
derive the limiting behavior of the frame length in a Chlamtac-
Faragó TSMA scheme. From that, scaling laws for the capacity
and delay have been derived. The extension of the proposed
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analytical framework to the case of mobile nodes has been
presented, and a characterization of the energy efficiency of
TSMA protocols has been introduced and discussed.

There are two directions we are currently pursuing for
extending the presented results. The first one deals with an
attempt to close down (or at least refine) the bounds obtained
for the frame length (and consequently for capacity and delay).
The second one deals with the impact of “spatial” channel
impairments, when the communication range is not any longer
a fixed value but is a random variable whose distribution may
account for the impact of shadowing and fading, as in [21].

APPENDIX

We prove that, under our assumptions on the node distri-
bution, if a(n) ≥ 3 log n

nfmin
, there is P-a.s. at least one node

per squarelet. The proof follows along the lines of [25]. Let
m = 1

a(n) be the number of squarelets. For each squarelet i,
we denote by Ai the event that there are no nodes in i. Since
the probability of not having a given node in squarelet i is
upperbounded by 1− fmin

m , we have:

P[Ai] ≤
(

1− fmin

m

)n

.

By the union bound, the probability that at least one square is
empty is upperbounded by:

pn = m

(
1− fmin

m

)n

.

Since 1− x ≤ e−x,

pn ≤ me−
fminn

m ≤ n

3fmin log n
e3 log n =

1
3n2fmin log n

≤ 1
n2

.

Since
+∞∑
n=1

pn < +∞, using the Borel-Cantelli lemma we con-

clude that almost surely no squarelet is empty for sufficiently
large n.
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