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Abstract—Energy harvesting wireless sensor networks (EH-
WSNs) are gaining importance in smart homes, environmental
monitoring, health care and transportation systems, since they
enable much longer operation time as energy can be replenished
through energy harvesting. This is unlike WSN nodes that
use non-rechargeable batteries which need to be replaced once
energy is depleted. However, the sporadic availability of ambient
energy makes the design of networking protocols and predicting
network performance very challenging. In this paper, we perform
an empirical energy characterization of a time-slotted solar
energy harvesting node with different system and environmental
parameters. We use six different statistical models (uniform
distribution, geometric distribution, transformed geometric dis-
tribution, Poisson distribution, transformed Poisson distribution
and a Markovian model) to fit the empirical datasets. Our results
show that there is no single statistical model that can fit all the
datasets, thus justifying the need to use empirical data to validate
the theoretical analysis of any time-slotted MAC protocol for EH-
WSNs.

I. INTRODUCTION

In traditional wireless sensor networks (WSNs), the stored

energy in non-rechargeable batteries is used to operate the

nodes and determines the network lifetime since it depletes

with time. However, recent advances in energy harvesting tech-

nologies [1] have made it possible for low-power electronics

such as wireless sensor nodes to be powered solely by ambient

energy harvesting. Since harvesting rates achievable today still

fall short of typical power consumption levels in wireless sen-

sor nodes, the harvested energy may need to be accumulated in

storage devices (e.g., capacitors, supercapacitors or thin-film

batteries) to a sufficient level to operate the nodes.

Such energy harvesting wireless sensor networks (EH-

WSNs) present an attractive alternative to traditional WSNs

powered by non-renewable energy sources such as batteries

due to the availability of different sources of ambient energy

as well as the large number of recharge cycles (>tens of thou-

sands) achievable by storage devices such as supercapacitors.

For example, Mide, Microstrain, Micropelt, Enocean, Adap-

tivEnergy and Powercast have produced commercial energy

harvesters that can convert ambient energy such as solar energy

from light sources, vibrational energy from machinery, thermal

energy from heat sources, mechanical energy from movement

and RF energy from radio waves into electrical energy to

power sensor nodes.

However, the expected high variability in the energy har-

vesting process, in both time and space, has exemplified the

challenges in designing networking protocols [2] for EH-

WSNs. In particular, it is important to obtain an accurate

model of this process, and use this to drive the design

of networking protocols. However, most of the data-sheets

provided for commercial energy harvesters only describe the

technology, mechanism and average rate of energy harvesting,

while excluding important characteristics such as the time

varying behavior of energy harvesting.

Many performance studies on EH-WSNs have assumed

the use of a time-slotted system (e.g., [3]) with different

energy harvesting models. In [3], it is assumed that the

energy harvested in each slot is identical and independently

distributed. In [4], the energy harvesting process is assumed

to be deterministic while in [5], [6] and [7], the harvested

energy is described using a Markovian model. In [8], we have

carried out an empirical study to characterize the radio link as

well as the energy harvesting characteristics of solar powered

energy harvesting nodes to support our design, and evaluate the

performance, of an asynchronous (non time-slotted) polling-

based MAC protocol [9] for EH-WSNs.

In this paper, we extend our previous study to perform

empirical modeling of a solar-powered EH-WSN node for

time-slotted operation. Referring to Fig. 1, the output voltage

of the energy storage device is sampled every ts seconds, at the

beginning of each time slot. The EH-WSN node can transmit a

packet as long as the output voltage exceeds a certain operating

voltage, Vo. Various operating and environmental parameters

such as the transmit power, Ptx, the illuminance, I , as well as

the time slot size, ts, impact the time/space characteristics of

the stored energy, i.e., the energy model.

To quantify the validity of various statistical energy models

used in previous studies, we carried out extensive empirical

measurements (i) using different slot sizes, ts; (ii) under

different light intensity levels, I , in indoor and outdoor en-

vironments; (iii) using different transmit power levels, Ptx,

to characterize the energy model for a solar-powered energy

harvesting node for time-slotted operation. Then, we apply

well-known statistical models to fit the empirical data, and

establish the goodness-of-fit of each model.

This paper is organized as follows: In Section II, we
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Fig. 1. Time Variation of Stored Energy in a EH-WSN node

describe the experimental setup. In Section III, we derive

the parameters and probability distributions of well-known

statistical models to our collected data. Then, we present and

discuss the measurement results in Section IV. Finally, we

conclude the paper and outline our future work in Section V.

II. EXPERIMENTAL SETUP

The solar-powered EH-WSN platform that we use in this

study is the Texas Instruments eZ430-RF2500-SEH platform

[10], as shown in Fig. 2. Each platform consists of a target

board, eZ430-RF2500T, as well as a SEH-01-DK solar energy

harvesting board. The target board comprises a MSP430

microcontroller, an on-board antenna and a CC2500 radio

transceiver [11] that operates in the 2.4 GHz band with data

rate of 250 kbps. The transceiver is designed for low-power

wireless applications and supports many transmit power levels

(Ptx); Table I lists the corresponding current consumption for

various Ptx. The solar energy harvesting board comprises a

solar panel and energy management electronics, where the har-

vested energy is stored in thin-film EnerChip manufactured by

Cymbet. Compared to normal batteries, the thin-film EnerChip

is rechargeable and has little self-discharge, making it suitable

for use in an EH-WSN node.
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Fig. 2. The eZ430-RF2500-SEH Solar-Powered EH-WSN Platform

Each experimental setup comprises an eZ430-RF2500-SEH

platform configured as the transmitter, and a target board

configured as the receiver which is connected to (and powered)

by a laptop for data logging. Referring to Fig. 1, at the

beginning of each time slot, the microcontroller would be

turned on and the node will check its voltage (which consumes

a very small amount of energy). If the measured voltage

exceeds the operating voltage, Vo (set to 3V in this study

[10]), the transceiver will be switched on and a packet of size

TABLE I
TRANSCEIVER CURRENT CONSUMPTION AT VARIOUS TRANSMIT POWER

LEVELS

Transmit Power, Ptx (dBm) Current Consumption (mA)

-22 10.0

-10 12.2

-8 14.1

-4 16.2

-2 17.7

0 21.2

40 bytes (with 11 bytes of physical layer overheads) will be

transmitted. Then, the transceiver and microcontroller would

be switched off until the start of the next time slot and the

entire process is repeated. Both the transmitter and receiver

are placed very close together, so that transmission losses can

be assumed to be negligible.

The time-slotted energy model in an EH-WSN node can

be characterized empirically by measuring Ri, which denotes

the number of inactive slots (where packet transmissions are

not possible) between the ith and (i + 1)th data packet

transmissions. After nr measurements (set to 1,000 in this

paper) are collected, the average transmission rate, α, in

packets per second, can be computed as:

α =
nr

nr +
∑nr

i=1 Ri

(

1

ts

)

(1)

We repeat the above measurements by varying various

system and environmental parameters including the slot size,

light intensity, power level and the type of environment: (i)

ts is varied from 5 ms to 1 second; (ii) indoor light intensity,

I , is varied by placing the transmitter at different distances

from a desk fluorescent lamp (Fig. 3a) in our indoor lab; (iii)

outdoor light intensity, I , is varied by deploying the setup in

an outdoor carpark as shown in Fig. 3b at various times of the

day; and (iv) Ptx is varied according to Table I.
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Fig. 3. Placement of solar-powered EH-WSN node for energy measurements

III. STATISTICAL ENERGY MODELS FOR TIME-SLOTTED

EH-WSN

In this section, we describe various statistical models that

we will use to fit the measurements, {Ri}
nr

i=1, obtained from

the experiments described in Section II. These models include

the discrete uniform distribution, the geometric distribution,

the Poisson distribution and a two-state Markovian model.



A. Discrete uniform distribution

In the discrete uniform distribution (UD), the random vari-

able R assumes each of its value with equal probabilities. We

let Rmin and Rmax be the minimum and maximum value

of the collected values (R1 to Rnr
) in each scenario. The

distribution of R is given by

P (R = x) =
1

Rmax − Rmin + 1
, (2)

where x ∈ [Rmin, Rmin + 1, ..., Rmax].

B. Geometric distribution

In the geometric distribution (GD), the random variable

R is defined as the number of inactive slots before a data

transmission can take place. The probability of transmission

in a slot, pGD, is given by:

pGD =
nr

nr +
∑nr

i=1 Ri

, (3)

and the distribution of R is given by

P (R = x) = (1 − pGD)xpGD, (4)

where x ∈ [0, 1, 2, ...,∞).

C. Transformed Geometric distribution

In some scenarios, the fitting can be improved by doing

some transformation to the data before using the geometric

distribution. For example, we can use the following transfor-

mation Si = Ri − Rmin. We denote this distribution as the

transformed geometric distribution (TGD). The corresponding

probability of transmission, pTGD, is given by:

pTGD =
nr

nr +
∑nr

i=1 Si

, (5)

and the distribution of R is given by

P (R = x) = P (S = x − Rmin)

= (1 − pTGD)x−RminpTGD, (6)

where x ∈ [Rmin, Rmin + 1, ...,∞).

D. Poisson distribution

In the Poisson distribution (PD), the sample average of the

measured R values is given by Ravg =

∑

nr

i=1
Ri

nr
. Accordingly,

the distribution of R is given by

P (R = x) =
e−RavgRavg

x

x!
, (7)

where x ∈ [0, 1, 2, ...,∞).

E. Transformed Poisson distribution

Similar to the geometric distribution, it is possible to

improve the fitting to the Poisson distribution by using the

transformation Si = Ri − Rmin. We denote this distribution

as the transformed Poisson distribution (TPD). We denote the

sample average of the measured S values by Savg =

∑

nr

i=1
Si

nr
.

The distribution of R is then given by

P (R = x) = P (S = x − Rmin)

=
e−SavgSavg

(x−Rmin)

(x − Rmin)!
(8)

where x ∈ [Rmin, Rmin + 1, ...,∞).

F. Markovian model

Finally, we consider a two-state Markovian model (MM)

in this paper as illustrated in Fig. 4 with the transition proba-

bilities (p00, p01, p10 and p11) calculated from each empirical

dataset. In each time slot, the node will be in one of the two

states: in the “0” state, the node cannot transmit a data packet

as there is insufficient energy harvested while in the “1” state,

the node can transmit a data packet.

0 1

p01

p10

p11p00

Fig. 4. Two-state Markovian model

The distribution of R is given by

P (R = x) =

{

p11, x = 0
p10 ∗ p00

x−1 ∗ p01, x = 1, 2, ...,∞
(9)

For each statistical model, X, we use a chi-square goodness-

of-fit test with a 95% confidence interval to determine if it fits

the empirical datasets, and denote a successful fit by X(F). If

there is no successful fit for all the six statistical distributions,

we denote the nearest fit, Y (with the lowest chi-square value)

by Y(NF).

IV. RESULTS AND DISCUSSION

In this section, we illustrate the results for the transmission

rate as well as distribution fitting for each dataset. To illustrate

the time variability of solar energy harvesting, we first placed

the transmitter under a desk fluorescent lamp with a constant

light intensity of 1,000 lux (measured by using a lux meter)

with transmission power of 0 dBm. Fig. 5 shows the number

of inactive slots required to harvest enough energy for the ith

data packet before it can be transmitted. The results show that

the harvesting time exhibits significant variation in time even

in the absence of mobility and under controlled illuminance.

Next, we fit the six different statistical models to the dataset

collected for the above scenario, and the results are shown in

Fig. 6. There is no suitable fit using the chi-square test but the

transformed Poisson distribution gives the nearest fit with the

lowest chi-square value.
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A. Stored energy characteristics vs time slot duration (Ptx=0

dBm, I=1,000 lux)

Fig. 7 shows the variation of average transmission rate with

the time slot duration for the indoor environment, with Ptx =

0 dBm, and I = 1,000 lux. When ts is sufficiently high (i.e.,

0.5 to 1 sec), the number of inactive slots is 0 since sufficient

energy is harvested at the beginning of each slot, and thus, we

can increase the sending rate by reducing ts. The maximum

sending rate is obtained by setting ts to 0.1 second. Below

that, the sending rate is reduced since measuring the voltage

at the start of each time slot would require a small amount of

energy, therefore reducing the slot duration would increase the

voltage sampling rate, thereby decreasing the available amount

of harvested energy for sending data packets.

Fig. 8 shows the best distribution fit for each dataset

obtained at various ts. Since R = 0 for ts = 0.5 and 1, there is

no statistical fit for these values. For ts = 0.2, the Markovian

model fits the empirical data perfectly while for the other

values of ts, there is no statistical distribution that fits, with

the transformed Poisson distribution having the nearest fit.

B. Stored energy characteristics vs illuminance (Ptx=0 dBm,

ts=5 ms)

Next, we fixed the time slot duration to 5 ms and vary the

light intensity by changing the distance between the transmitter

and the desk fluorescent lamp, and the corresponding results
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Fig. 7. Average transmission rate (α) for various time slot durations
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Fig. 8. Best-fitting statistical model obtained for various time slot durations



are plotted in Figs. 9 and 10. When the light intensity

increases, the transmission rate increases while the average

number of inactive time slots decreases. In this scenario, the

transformed Poisson distribution has the nearest fit for all the

datasets.
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Fig. 9. Average transmission rate (α) for different light intensity
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Fig. 10. Energy harvesting characteristics for different light intensity

C. Stored energy characteristics vs transmission power

(I=1,000 lux, ts=5 ms)

Next, for the same indoor scenario, we vary the transmit

power while keeping the light intensity constant at 1,000 lux

and ts = 5 ms, and plot the corresponding results in Figs. 11

and 12. As the transmit power increases, the average number

of transmission decreases because the energy required to send

a data packet increases. All the datasets in this scenario have

the transformed Poisson distribution as the nearest fit.
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Fig. 11. Average transmission rate (α) for different transmit powers

D. Stored energy characteristics in outdoor environment

(Ptx= 0 dBm, ts=5 ms)

Finally, we placed the experimental setup in an outdoor

carpark and repeated the measurements at different times of

the day (from 0800 to 1800 hrs). The transmit power is

set to 0 dBm, and the time slot duration is set to 5 ms.

The corresponding results are plotted in Figs. 13 and 14. As

expected, the energy harvesting rate increases as we approach

noon, when the sun is the strongest, but decreases towards

the evening, when the sun begins to set. For this scenario, the

uniform distribution has the nearest fit for two datasets while

the transformed Poisson distribution has the nearest fit for four

datasets.

V. CONCLUSION AND FUTURE WORK

In this paper, we have carried out extensive measurements

for empirical modeling of a solar-energy powered wireless

sensor node for time-slotted operation. Our empirical measure-

ments show that the stored energy characteristics depend on

many factors including the time slot duration, light intensity,

power level as well as the deployment environment. We

also evaluated the goodness-of-fit of six statistical models

to the collected measurements. Our results show that the

transformed Poisson distribution achieves the nearest fit for

most datasets, while the two-state Markovian model achieves

a successful fit only for one particular data set. This illustrates

the need to validate analytical results from theoretical analysis

with empirical measurements, as well as the need for better

statistical models that may achieve more accurate fitting.

For future work, we are planning to extend our measure-

ments to other type of energy harvesters including thermal
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Fig. 12. Energy harvesting characteristics for different transmit powers
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and vibrational energy harvesters. Furthermore, we are also

investigating other statistical models to improve the modeling

accuracy of the energy harvesting process.
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