
Integration of Streaming and Elastic
Traffic in a Single UMTS Cell: Modeling

and Performance Analysis
Onno J. Boxma

∗,†,‡ , Adriana F. Gabor
∗,† , Rudesindo Núñez-Queija
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Abstract— Using time-scale decomposition, we de-
velop approximations to evaluate the performance of
an admission control strategy for integrated services
in a single UMTS radio cell. Simulation results
suggest that the performance is almost insensitive to
traffic parameter distributions, and is well estimated
by our proposed approximations.

I. INTRODUCTION

UMTS is a 3G cellular network that is expected
to support a large variety of applications which are
commonly grouped into two broad categories:

Elastic flows correspond to the transfer of digital
documents (e.g., Web pages, emails, stored audio
/ videos). They are characterized by their size,
i.e., the volume of the document to be transferred.
These flows are flexible, or “elastic”, towards rate
fluctuations, the total transfer time being a typical
performance measure.

Streaming flows correspond to the real-time
transfer of various signals (e.g., voice, streaming
audio / video). They are characterized by their du-
ration as well as the transmission rate. For “stream-
ing” applications, stringent transmission rate guar-
antees are necessary to ensure real-time communi-
cation.

Various papers that study the integration of
elastic and streaming traffic have been published
recently [1], [2], [3], [4], [5], [6]. In terms of
bandwidth sharing policy, the classical approach is
to give head-of-line priority to packets of streaming
flows in order to offer packet delay and loss guaran-
tees [1], [2], [4]; alternatively, adaptive streaming
flows (that are TCP-friendly and mimic elastic
flows) are considered in [3], [5], [6].

In terms of modeling approach, while Marko-
vian models have been developed for the exact
analysis of the integrated-services system, they can
be numerically cumbersome. Hence, a fluid model
is proposed in [2], [3], [4], [5], [6] to provide
closed form limit results and approximations. These
results can serve as performance bounds, and hence
yield useful insight.

In this study, we define a model (Section II) for
a single UMTS cell that supports integrated ser-
vices and gives priority to streaming flows through
bandwidth reservation and ensures stability through
admission control on both types of flows. To eval-
uate its performance, we develop approximations
based on time-scale decomposition in Section III
and numerical results are presented in Section IV.
Some concluding remarks and future directions are
outlined in Section V.

II. MODEL

We consider a UMTS cell with a single downlink
channel whose limited resource (e.g., transmission
power at the base station) is shared amongst stream-
ing and elastic requests, that arrive as independent
Poisson processes with rate λs and λe respectively.
Let us denote by c the total amount of resource
available.

We assume that a part of the total resource,
cs ≤ c, is reserved for streaming requests, and each
admitted streaming request is allocated (statically)
an average rate rs (Kbps) during its entire lifetime,
ds, which is generally distributed with mean 1

µs

(sec). The resource not claimed by streaming traf-
fic is equally shared amongst all elastic requests,
where each requires a minimum average rate of re



(Kbps) at all times and the corresponding size, se,
is generally distributed with mean fe (bits). Note
that although the resource that can be maximally
ensured for on-going elastic transfers is ce = c-cs,
they are permitted to use more than ce. However,
the surplus is immediately allocated to streaming
traffic if a new streaming request arrives. The model
is illustrated in Fig. 1.
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Fig. 1. Model of a single UMTS cell with streaming and elastic
traffic.

A. Resource Sharing

Let P be the total power available at the base
station, and Pu be the power transmitted to user u,
where Pu ≤ P . The power received by a user u
is P r

u = PuΓu, where Γu denotes the attenuation
due to path-loss. As a measure of the quality of
service for user u, we consider the energy-per-bit
to noise-density ratio,

(
Eb

N0

)
u

, given by
(

Eb

N0

)

u

=
W

Ru

P r
u

η + Ia
u + Ir

u

,

where W is the chip rate, Ru is the instantaneous
data rate of user u, η is the background noise
(assumed to be constant throughout the cell) and
(Ia

u , Ir
u) is the intra / inter-cell interference at user

u respectively. The intra-cell interference arises due
to simultaneous transmissions to the other users in
the same cell as user u; on the other hand, the
inter-cell interference is due to the base stations’
transmissions in neighboring cells.

Given a target error probability ε, in order to
ensure a good quality of service, it is necessary
that for each active user u,

(
Eb

N0

)
u
≥ ε, for some

threshold ε, which is assumed to be the same for
all users. A necessary condition for satisfying the
quality of service criterion is that the rate Ru of
each admitted user u satisfies:

Ru ≤ WP r
u

ε(η + Ia
u + Ir

u)
. (1)

To formulate the criterion for admission control, we
consider two types of resource sharing schemes:

Time-sharing : When the resource is time-
shared, Ia

u = 0 and Pu = P, since the base station

transmits all its power to one user at any time. If
φu denotes the fraction of time the base station
transmits to user u, where

∑
u φu = 1, then φuRu

corresponds to the average rate of user u and Eq.
(1) can be written as follows:

φuRu ≤ φuWPΓu

ε(η + Ir
u)

≤ φuWP

ε
min

u

Γu

(η + Ir
u)

=
φuWPΓmin

ε(η + Ir
max)

, (2)

where (Γmin, Ir
max) correspond to the maximum

attenuation due to path-loss and maximum inter-
cell interference in the cell. For typical propagation
models, the attenuation due to path-loss for a user
at distance δ from the base station is proportional
to 1

δγ , where γ is a positive path-loss component.
Hence, the maximum attenuation occurs when the
user is at the edge of the cell. For linear and
hexagonal networks [7], it can be shown that the
total inter-cell interference is maximum when the
user is at the edge of the cell.

To implement our resource reservation scheme,
we assume that a fixed fraction of time, φs, is
reserved for streaming traffic, such that φs = cs

c .
If (E, S) denote the set of on-going elastic and
streaming requests respectively, where (|E|, |S|) =
(Ne, Ns), then we have the following condition:

∑

u∈E
φu ≤ 1− φs.

For an admitted elastic request, its average rate,
φuRu, must satisfy re ≤ φuRu ≤ φuWPΓmin

ε(η+Ir
max) .

Summing Eq. (2) over E, we obtain the following:

Nere ≤ PWΓmin

ε(η + Ir
max)

∑

u∈E
φu

≤ W (1− φs)PΓmin

ε(η + Ir
max)

. (3)

Finally, summing Eq. (2) over E ∪ S, and noting
that φuRu = rs, u ∈ S, we obtain the following:

Nere + Nsrs ≤ WPΓmin

ε(η + Ir
max)

.

Power-sharing : With power-sharing, unlike in
a time-sharing system, the base station transmits to
all active users at the same time, and the received
signals of different users are distinguished through
codes. As a result, interference is also generated
by users in the same cell (intra-cell interference)
and is given by Ia

r = α(P −Pu)Γu, where α is the



code non-orthogonality factor. Then, Eq. (1) can be
written as follows:

Ru ≤ WPuΓu

ε[αΓu(P − Pu) + η + Ir
u]

,

which can be re-written as follows:
Ru

W + αεRu
≤ Pu

ε(η+Ir
u

Γu
+ αP )

≤ Pu

ε
min

u

1
η+Ir

u

Γu
+ αP

=
Pu

ε(η+Ir
max

Γmin
+ αP )

. (4)

Since the function Ru

W+αεRu
is an increasing func-

tion of Ru, it follows that for every elastic request
u, the following should hold:

re

W + αεre
≤ Pu

ε(η+Ir
max

Γmin
+ αP )

.

To implement our resource reservation scheme, we
assume that a fixed portion of P, Ps, is reserved
for streaming traffic. Then, we have the following
condition: ∑

u∈E
Pu ≤ P − Ps = Pe.

By summing over E, we obtain the following:
Nere

W + αεre
≤ Pe

ε(η+Ir
max

Γmin
+ αP )

. (5)

Finally, summing Eq. (4) over E ∪ S, and noting
that Ru = rs, u ∈ S, we obtain the following:

Nere

W + αεre
+

Nsrs

W + αεrs
≤ P

ε(η+Ir
max

Γmin
+ αP )

,

from which we obtain the following:

Nere + Nsrs ≤ P (W + αεr)

ε(η+Ir
max

Γmin
+ αP )

,

where r = max(re, rs).

B. Admission Control
Hence, with time-sharing and power-sharing, the

UMTS cell can be modeled as a link with capacity
c = WPΓmin

ε(η+Ir
max) and P (W+αεr)

ε(
η+Ir

max
Γmin

+αP )
respectively. We

note that the capacity c is independent of the alloca-
tion of resources to individual users, as long as the
total allocation satisfies the bandwidth reservation.

The admission control can be implemented based
on the number of ongoing requests, (Ne, Ns),
where a new elastic request will be accepted only
if the following conditions hold:

Nsrs + (Ne + 1)re ≤ c

(Ne + 1)re ≤ c− cs.

On the other hand, a new streaming request will be
admitted as long as

(Ns + 1)rs + Nere ≤ c.

Note that our admission control model is conser-
vative, since it implicitly assumes that all users are
located at the edge of the cell. In addition, while
the admission control proposed in [2] is similar, it
results in equal blocking probabilities for both types
of traffic, which is not the case with our strategy
due to bandwidth reservation.

For the convenience of the analysis that follows,
we define Ke(ns) = bmin{c−nsrs, ce}

re
c and Ks(ne)

= b c−nere

rs
c, where K

nj

i is the maximum number
of type-i flows when nj type-j flows are present.
In addition, we denote the conditional probability
of event B, given event A, P (B | A) as PB

A.

III. ANALYSIS

Since exact analysis of our model is non-
tractable in general and computationally involved
when assuming exponentially distributed holding
times and file sizes, we develop various approxima-
tion techniques and assess their accuracy through
comparison with simulation.

A. Quasi-stationary Approximation for Elastic
Flows

For the quasi-stationary approximation, to be
denoted A(Q), we assume that the dynamics of
streaming flows take place on a much slower time
scale than those of elastic flows. More specif-
ically, we assume that elastic traffic practically
reaches statistical equilibrium while the number
of active streaming calls remains unchanged. The
corresponding condition is that

µsE[Ns] + λs <<
c− rsE[Ns]

fe
+ λe, (6)

where the expression on the LHS (RHS) corre-
sponds to the average rate at which the number
of streaming (elastic) flows changes. Although the
above condition cannot be easily checked (due to
the dependence on E[Ns]), it is ensured to be
satisfied if

µs
c

rs
+ λs << λe.

This assumption is reasonable when we consider
the combination of voice calls (streaming) and web-
browsing or email (elastic) applications. Under this
assumption, the dynamics of elastic flows can be
studied by considering a fixed number of streaming
flows, i.e., Ns = ns. We construct an approximation
assuming that the number of active elastic flows in-
stantaneously reaches a new statistical equilibrium



whenever the number of streaming flows changes.
To avoid any confusion we will mark all quantities
(such as queue lengths and performance measures)
resulting from this approximation approach by
adding a superscript Q to the notation.

From the capacity constraint and the reserva-
tion policy, it follows that nere ≤ min{c −
nsrs, ce}. In this case, elastic traffic behaves like
an M/G/1/Ke(ns) processor-sharing (PS) queue
with Ke(ns) service positions, capacity c − nsrs

and average departure rate µe(ns) = c−nsrs

fe
.

Hence, from [8],

PNQ
e =ne

NQ
s =ns

≡ P (NQ
e = ne | NQ

s = ns)

=
ρe(ns)ne(1− ρe(ns))
1− ρe(ns)Ke(ns)+1

, (7)

where ρe(ns) = λe

µe(ns) = λefe

c−nsrs
. Notice [8]

that this expression is insensitive to the file size
distribution, other than through its mean. As a
further remark, we observe that whether or not
ρe(ns) < 1 is of no concern, since NQ

e is limited
due to the assumption that re > 0. Often, when ap-
plying a time-scale decomposition, this matter is of
importance, giving rise to an additional assumption
commonly referred to as uniform stability [4].

Next, we consider the dynamics of streaming
flows. When NQ

s =ns, streaming flows depart at
a rate nsµs. When a new streaming flow arrives,
due to admission control, we have two possible
scenarios: either the newly arrived streaming flow
is accepted or it is blocked. Under our approxima-
tion assumptions, the probability of acceptance is
P(NQ

e re+(ns+1)rs ≤ c | NQ
s =ns). Notice that the

admission probability of streaming flows equals 1
if (ns + 1)rs ≤ cs. Substituting Eq. (7) into this
expression and noting that NQ

e re ≤ ce, the effective
arrival rate of streaming flows, Λs(ns), is given as
follows:

Λs(ns) = λsP (NQ
e ≤ Ke(ns + 1) | NQ

s = ns)

= λs
1− ρe(ns)Ke(ns+1)+1

1− ρe(ns)Ke(ns)+1
.

Hence, it follows that, for 0≤ ns ≤ b c
rs
c:

P (NQ
s = ns) =

∏ns−1
i=0 Λs(i)
ns!µns

s
P (NQ

s = 0),

where P(NQ
s =0) can be computed using∑b c

rs
c

ns=0 P (NQ
s = ns)=1. Consequently, it follows

that:

P (NQ
e = ne) =

b c
rs
c∑

ns=0

PNQ
e =ne

NQ
s =ns

P (NQ
s = ns).

In particular, the conditional blocking probability
of newly-arrived streaming flows is P (NQ

e re +
(ns + 1)rs > c | NQ

s = ns). Un-conditioning on
NQ

s , and noting that blocking can occur only for
b cs

rs
c ≤ ns ≤ b c

rs
c, the blocking probability for

streaming flows, pQ
s , is given as follows:

pQ
s =

b c
rs
c∑

ns=b cs
rs
c
PNQ

e >Ke(ns+1)

NQ
s =ns

P (NQ
s = ns)

= 1− 1
λs

b c
rs
c∑

ns=b cs
rs
c
Λs(ns)P (NQ

s = ns).

The corresponding blocking probability for elastic
flows, pQ

e , is given as follows:

pQ
e =

b c
rs
c∑

ns=0

PNQ
e ≥Ke(ns)

NQ
s =ns

P (NQ
s = ns).

B. Fluid Approximation for Elastic Flows

For the fluid approximation, denoted by A(F),
we assume that the dynamics of elastic flows are
much slower than those of streaming flows, i.e.,

c− rsE[Ns]
fe

+ λe << µsE[Ns] + λs, (8)

which is certainly true if c
fe

+ λe << λs. This
assumption is valid when we consider the combina-
tion of voice calls (streaming) and large file transfer
(elastic) applications. Under this assumption, the
dynamics of streaming flows can be studied by
considering a fixed number of elastic flows. Sim-
ilar to A(Q), we will construct an approximating
two-dimensional process under the assumption that
Ns immediately reach steady state, whenever Ne

changes. This approximation will be reflected in
the notation by adding a superscript F whenever
not doing so might give rise to confusion.

From the capacity constraint, it follows that
nsrs ≤ c − nere. By modeling the streaming
flows as an Erlang-loss queue with finite capacity
Ks(ne), it follows that:

PNF
s =ns

NF
e =ne

≡ P (NF
s = ns | NF

e = ne)

=
ρns

s

ns!∑Ks(ne)
i=0

ρi
s

i!

, (9)

where ρs = λs

µs
. As before, we emphasize that

the above expression depends on the holding time
distribution only through its mean.

Next, we consider the dynamics of elastic flows.
When NF

e =ne > 0, elastic flows depart at a rate



µe(ne) given as follows:

µe(ne) =
E[c−NF

s rs | NF
e = ne]

fe

=
Ks(ne)∑
ns=0

c− nsrs

fe
PNF

s =ns

NF
e =ne

.

Hence, from the admission control conditions and
Eq. (9), the effective arrival rate of elastic flows,
Λe(ne), is given as follows:

Λe(ne) = λe · PNF
s ≤Ks(ne+1)

NF
e =ne

= λe

Ks(ne+1)∑

l=0

ρl
s

l!∑Ks(ne)
i=0

ρi
s

i!

.

Using Cohen’s results for his generalized PS model
[8] for general service times with service rate
µe(ne) and arrival rate Λe(ne), it follows that, for
0≤ ne ≤ b ce

re
c:

P (NF
e = ne) =

ne−1∏

i=0

Λe(i)
µe(i + 1)

P (NF
e = 0),

(10)
where P(NF

e =0) can be computed using∑Ks(ne+1)
ne=0 P (NF

e = ne)=1. Consequently,
P (NF

s = ns) is obtained by substituting Eq. (9)
and Eq. (10) into the following expression:

P (NF
s = ns) =

b ce
re
c∑

ne=0

PNF
s =ns

NF
e =ne

· P (NF
e = ne).

On the other hand, the newly-arrived elastic flow
is blocked if ne = b ce

re
c or if NF

s rs+(ne+1)re > c.
Hence, the blocking probability for elastic flows,
pF

e , is given by:

pF
e =

b ce
re
c−1∑

ne=0

PNF
s >Ks(ne+1)

NF
e =ne

· P (NF
e = ne)

+ P (NF
e =

⌊
ce

re

⌋
).

The corresponding blocking probability for stream-
ing flows, pF

s , is given as follows:

pF
s =

b ce
re
c∑

ne=0

PNF
s ≥Ks(ne

NF
e =ne

P (NF
e = ne).

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of
a single UMTS cell with elastic and streaming re-
quests (Fig. 1) through simulation for the following
cell parameters: c = 1000 Kbps, cs = 500 Kbps, rs

= 60 Kbps and re = 40 Kbps. While the arrival
processes are assumed to be Poisson, we consider

the following distributions for (ds, se), given that
E[ds] = 1

µs
and E[se] = fe:

Hyper-exponential distribution : A common
distribution that can be used to characterize the
behavior of (ds, se) is the hyper-exponential dis-
tribution with balanced means, which is defined as
follows (cf.[9], p. 359):

∀d ≥ 0, P (ds > d) =
ase

−asdµs + e
−dµs

as

as + 1
,

∀s ≥ 0, P (se > s) =
aee

−aes
fe + e

−s
aefe

ae + 1
.

The parameters (as, ae) completely characterizes
the behavior of (ds, se) respectively and can be
interpreted as follows: A fraction as

as+1 ( ae

ae+1 ) of
small streaming (elastic) requests of mean duration
(size) 1

asµs
( fe

ae
)and a fraction 1

as+1 ( 1
ae+1 ) of

large streaming (elastic) requests of mean duration
(size) as

µs
(aefe). Increasing the parameter as (ae)

increases the variance of ds (se). If as (or ae) =
1, the hyper-exponential distribution reduces to an
exponential distribution.
Erlang distribution : Another common distribu-
tion that is useful for characterizing the behavior
of ds is the Erlang distribution, which has the
following density:

∀d ≥ 0 and k > 0, fs(d) =
kµs(kµsd)k−1

(k − 1)!
e−kµsd,

where Var[ds]= 1
kµ2

s
. Hence, a larger value of k

implies a smaller variance for ds. If k=1, the Erlang
distribution reduces to an exponential distribution.

Once the distribution of (ds, se) is selected, we
characterize each simulation run according to the
following procedure:

1. Fix the total offered traffic by choosing the
loading factor, α > 0, where ue + us = α c,

ue = λefe and us = λsrs

µs
;

2. For each α, fix the traffic mix, ue

αc , by choosing
ue, 0 ≤ ue ≤ α c;
3. For each traffic mix, select (λe, λs) to fit one
of the following traffic regimes:

a. Quasi-stationary Regime (denoted by S(Q)),
where Eq. (6) is satisfied;

b. Fluid Regime (denoted by S(F)),
where Eq. (8) is satisfied;

c. Neutral Regime (denoted by S(N)),
where neither Eq. (6) nor (8) is satisfied.

We note that in Step 3 of the above procedure, fe

and µs can be computed once (α, ρe, λe, λs) are
specified. The simulation duration, T, is selected



such that

min{λe, λs} · T ≥ Nc,

where Nc is chosen (default value = 10000) such
that Nc ·min{pe, ps} is not too small.

From the simulations, we compute various per-
formance metrics which are of interest to our
integrated-services model. In addition to the queue
length as well as blocking probability for each
class of traffic, the expected residence time for each
admitted elastic request, E[Re], can be computed
in terms of (E[Ne], pe) using Little’ Theorem as
follows:

E[Re] =
E[Ne]

λe(1− pe)
.

We define the stretch, Se, for each admitted elastic
flow by normalizing E[Re] by fe as follows:

Se =
E[Re]

fe
.

Applying Little’s Theorem to each admitted stream-
ing flow, we have the following:

E[Rs] =
E[Ns]

λs(1− ps)
.

Since E[Rs] = 1
µs

, ps can be expressed in terms of
(λs, µs) and E[Ns] as follows:

ps = 1− E[Ns]
µs

λs
. (11)

Eq. (11) is used to verify the corresponding expres-
sion for ps obtained for each approximation.

A. Approximation Techniques : Limiting behavior
and Accuracy

We apply each approximation technique, A ∈
{A(Q), A(F)}, developed in Section III to estimate
the performance of our model. We first analyze the
limiting behavior of each approximation technique
for the following extreme regimes: (i) us → 0 (ii)
ue → 0, where ue + us = α c, α > 0. The limiting
values of (pe, ps, Se) for each approximation
technique can be expressed in terms of the cell
parameters and α as shown in Table I.

In regime (i), where the offered load comprises
almost entirely of elastic requests, the limiting
performance for each approximation technique is
the same. Almost all streaming requests are ad-
mitted (ps → 0) since us << cs, the bandwidth
reserved for this class of flows. The performance
for elastic requests can be well-approximated by
a processor sharing queue with limited capacity,
Ke=b ce

re
c, where the blocking probability, pe →

αKe−αKe+1

1−αKe+1 as ue → α c (us → 0). As the capacity
Ke increases, the likelihood of blocking is reduced

and hence, more elastic requests are admitted (i.e.,
E[Ne] increases). Since Se = E[Ne]

ue(1−pe) , the behav-
ior of Se with increased Ke is not immediately
obvious.

In regime (ii), the offered load comprises al-
most entirely of streaming requests, and hence, the
performance with respect to these requests can be
well-approximated by an Erlang-loss queue with
limited capacity, Ks = b c

rs
c, where the blocking

probability, ps, is given in Table I. Almost all elastic
requests are admitted (i.e., pe → 0) since c-Ksrs ≥
re for the given set of cell parameters, i.e., even
with the maximum number of admitted streaming
requests, there is sufficient residual capacity to
serve an elastic request. However, in contrast to
regime (i), the stretch of each admitted elastic
request depends on the traffic regime, as shown in
Table I.

For a few special cases of α, the expressions for
lim

us→0
pe and lim

us→0
Se can be further simplified as

follows:

lim
us→0

pe =





0, α → 0;
1

Ke+1 , α = 1;
1, α →∞.

lim
us→0

Se =





1
c , α → 0;
Ke+1

2c , α = 1;
Ke

c , α →∞.

Next, for a fully-loaded cell (i.e., α = 1), we
plot (pe, ps) as a function of the traffic mix, ue

c ,
0≤ ue ≤ c, for each approximation technique in
Fig. 2 and Fig. 3 respectively. For each traffic
mix, we generate simulation results with 5 sets of
traffic parameters for each traffic regime and plot
them together with the approximations in Fig. 2-3,
assuming that (ds, se) are exponentially distributed,
i.e., ae = 1 and k = as = 1. Qualitatively, we note
that A(Q) (A(F)) is accurate in the quasi-stationary
(fluid) regime in terms of each metric.

A Weighted Approximation for Blocking
Probabilities : For the neutral traffic regime, Fig.
2-3 suggest that the blocking probabilities obtained
(with simulation) are typically in between A(Q)
and A(F). Hence, it seems worthwhile to try and
obtain a good estimate of the performance for such
a regime by weighing the performance obtained
with A(Q) and A(F) (denoted A(W)).

According to Eq. (6) and Eq. (8), the criteria used
to define the traffic regime is the relative dynamics
of streaming and elastic flows, given by µsE[Ns]+
λs and c−rsE[Ns]

fe
+λe respectively. Hence, a natural

approach to define the weight allocated to the quasi-
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TABLE I
LIMITING PROPERTIES FOR EXTREME REGIMES (I) us → 0 AND (II) ue → 0.
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Fig. 2. Blocking probability for elastic requests vs normalized offered elastic load obtained for the 5 cases in quasi-stationary
and fluid regimes (left) and neutral regime (right).
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Fig. 3. Blocking probability for streaming requests vs normalized offered elastic load obtained for the 5 cases in quasi-stationary
and fluid regimes (left) and neutral regime (right).

stationary approximation, wQ, is as follows:

wQ =
c−rsE[Ns]

fe
+ λe

c−rsE[Ns]
fe

+ λe + µsE[Ns] + λs

, (12)

where the corresponding weight allocated to the
fluid approximation, wF = 1- wQ. In this way,
when the dynamics of elastic flows occur at a



faster rate than that of streaming flows (towards
quasi-stationary regime), wQ > wF and vice versa.
As a result, if xA denotes the performance metric
x obtained with approximation A, then we can
define the performance obtained with the weighted
approximation as follows:

xA(W) = wQxA(Q) + wF xA(F).

Accordingly, E[Ns] = wQE[Ns]A(Q) + (1-
wQ)E[Ns]A(F), and together with Eq. (12), wQ can
be computed by solving the following quadratic
equation:

Aw2
Q + BwQ = C,

where

A = (E[Ns]A(Q) − E[Ns]A(F))(µsfe − rs)
B = c + (λe + λs)fe + E[Ns]A(F)(µsfe − rs)

− rs(E[Ns]A(F) − E[Ns]A(Q))
C = c + λefe − rsE[Ns]A(F)

We demonstrate the accuracy of A(W) for the
case of balanced traffic mix. We consider wQ ∈
{0.1, 0.2, · · · , 0.9}, and for each wQ, we generate
simulation runs by selecting 9 sets of traffic param-
eters. We plot the blocking probabilities obtained
alongside the corresponding estimates with A(Q),
A(F) and A(W) in Fig. 4. We observe that the
blocking probabilities for both types of requests are
well-estimated by A(W).

To quantify the accuracy of the approximations,
for a given traffic mix, let βS,A denote the pro-
portion of simulation runs such that |xS−xA

xA
| ≤ γ,

where xS , xA is the value of metric x obtained with
simulation run S and approximation A respectively,
where S ∈ {S(Q), S(F), S(N)} and A ∈ {A(Q),
A(F)}. We say that A is an accurate approximation
for traffic regime S if βS,A exceeds some threshold
β0. In addition, if βS,A(Q) > βS,A(F ), then we
say that approximation A(Q) is a better fit in
traffic regime S than A(F). Some results for the
quantitative assessment of the accuracy of each
approximation technique are tabulated in Table II.
According to Fig. 2-3 and Table II, A(W) seems
to be a promising approximation for the blocking
probabilities in all traffic regimes.

B. Performance Insensitivity with Traffic Parameter
Distribution

Next, we evaluate the impact of the distribution
of (ds, se) on the performance of the integrated-
services system in different traffic regimes. Since
each performance measure obtained with the ap-
proximation techniques converges to the same value
for ue → c, we focus on the following cases: (i)

ue

c = 0.5 (Balanced traffic mix) and (ii) ue

c = 0.1
(Dominant composition of streaming traffic).

1) Hyper-exponential distribution for (ds, se):
While the simulations have been conducted for [ae,
as] = [1,1] in Section IV-A, we repeat the simula-
tions for (a) [ae, as] = [1,100] and (b) [ae, as] =
[100,1], where a larger value of ae (or as) implies a
larger variance for se (ds). We compute the sample
mean for (pe, ps, Se) over all the simulation runs
for each traffic mix, and the results are tabulated
in Table III. We observe that the performance
measures are almost insensitive to the variance of
the traffic parameters. Quantitatively, in terms of
Se, the performance measures obtained for cases (a)
and (b) are within 2% of the corresponding mea-
sures obtained assuming exponentially distributed
(se, ds).

2) Erlang-k distribution for ds with exponen-
tially distributed se: We repeat the simulations in
the previous section for scenarios where se is expo-
nentially distributed (i.e., ae = 1) and ds is Erlang-
k distributed, for k ∈ {1,2,3}. The corresponding
results are shown in Table IV. We observe that
the performance measures are almost insensitive to
the value of k Quantitatively, in terms of Se, the
performance measures obtained for k = 2 and k = 3
are within 4% and 10% of the corresponding mea-
sures obtained assuming exponentially distributed
(se, ds) for ue

c = 0.5 and 0.1 respectively.

C. Impact of traffic load on performance

The results from the previous sections have been
obtained assuming a fully-loaded UMTS cell, i.e.,
α = 1, where ue + us = α c. Here, we plot (pe, ps)
as a function of α for each approximation technique
in Fig. 5, assuming a balanced traffic mix and
exponentially distributed (ds, se). For α ∈ {0.2,
0.4, · · · , 1.8}, we run the simulation for 9 sets
of traffic parameters for each traffic regime and
plot a representative set of results together with
the approximations in Fig. 5. Some results for the
quantitative assessment of the accuracy of each
approximation technique are tabulated in Table V.

Regarding the performance of elastic flows, we
observe that a cross-over point, α0 ≈ 1.3, exists
such that for α < (>) α0, A(Q) achieves a better
(worse) performance than A(F). On the other hand,
the A(Q) always results in higher blocking for
streaming flows than A(F). According to Table I,
the limiting behavior of A(Q) and A(F) coincides
and is given as follows:

lim
α→y

pe = lim
α→y

ps =
{

0, y = 0;
1, y = ∞.

(13)
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Fig. 4. Blocking probability for elastic (left) and streaming (right) requests for neutral traffic regime, assuming balanced traffic
mix, fully-loaded cell and exponentially-distributed (ds, se).

S

wQ

A A(Q) A(F) A(W) A(Q) A(F) A(W) A(Q) A(F) A(W) A(Q) A(F) A(W) A(Q) A(F) A(W) A(Q) A(F) A(W)

pe 0,00 0,67 0,89 0,00 0,33 0,56 0,00 0,11 0,67 0,11 0,00 0,89 0,89 0,00 1,00 1,00 0,00 1,00

ps 0,00 0,67 1,00 0,00 0,11 0,89 0,00 0,00 0,78 0,00 0,00 0,67 0,00 0,00 0,78 0,22 0,00 1,00

S(Q)

~0 0,2 0,4 0,6 0,8 ~1

S(F) S(N)

TABLE II
ACCURACY OF APPROXIMATION TECHNIQUES IN TERMS OF βS,A FOR A FULLY-LOADED UMTS CELL, EXPONENTIALLY

DISTRIBUTED (ds , se), γ = 0.1 AND BALANCED TRAFFIC MIX IN VARIOUS TRAFFIC REGIMES.

ue/c

S

[ae,as] [1,1] [1,100] [100,1] [1,1] [1,100] [100,1] [1,1] [1,100] [100,1] [1,1] [1,100] [100,1] [1,1] [1,100] [100,1] [1,1] [1,100] [100,1]

pe 0,086 0,087 0,086 0,057 0,059 0,055 0,069 0,072 0,069 0,122 0,117 0,119 0,075 0,075 0,072 0,103 0,105 0,101

ps 0,097 0,100 0,100 0,057 0,057 0,055 0,070 0,075 0,071 0,164 0,161 0,164 0,152 0,153 0,153 0,157 0,160 0,157

Se 10,159 10,154 10,163 10,088 10,152 10,018 10,114 10,291 10,228 7,916 7,817 7,892 5,996 6,092 5,927 7,606 7,720 7,509

0,5

S(Q) S(F) S(N)

0,1

S(Q) S(F) S(N)

TABLE III
IMPACT OF DISTRIBUTION OF TRAFFIC PARAMETERS (se , ds) ON (pe , ps , Se) FOR ue

c
=0.5 AND 0.1.

ue/c

S

k 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

pe 0,086 0,087 0,085 0,057 0,056 0,058 0,069 0,072 0,071 0,117 0,123 0,120 0,075 0,072 0,072 0,105 0,104 0,110

ps 0,097 0,099 0,097 0,057 0,057 0,056 0,070 0,075 0,074 0,161 0,165 0,162 0,153 0,152 0,152 0,160 0,161 0,162

Se 10,088 10,144 10,065 10,088 10,152 10,018 10,114 10,447 10,384 7,817 7,975 7,903 6,092 6,651 6,610 7,720 7,658 7,765

0,5 0,1

S(Q) S(F) S(N) S(Q) S(F) S(N)

TABLE IV
IMPACT OF DISTRIBUTION OF TRAFFIC PARAMETERS (se , ds) ON (pe , ps , Se) FOR ue

c
=0.5 AND 0.1.

lim
α→y

Se ≈
{

1
c , y = 0;
1
re

, y = ∞.
(14)

In fact, according to Fig. 5, for α = 0.2 (1.8), the
overall load is sufficiently low (high) such that the
performance converges to the limiting performance
given in Eq. (13) and (14). Hence, under very

low or high loading conditions, the performance
can be accurately estimated by A(Q) or A(F). For
intermediate values of traffic load, according to
Table V, A(Q) (A(F)) is accurate in the quasi-
stationary (fluid) traffic regime.
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Fig. 5. Blocking probability for elastic (left) and streaming (right) traffic vs traffic load obtained with simulation and various
approximation techniques (Balanced traffic mix).

A(Q) A(F) A(L) A(Q) A(F) A(L) A(Q) A(F) A(L) A(Q) A(F) A(L) A(Q) A(F) A(L)

S(Q) 1,00 1,00 1,00 1,00 0,00 0,00 1,00 1,00 0,00 1,00 0,00 0,00 1,00 1,00 1,00

S S(F) 1,00 1,00 1,00 0,00 0,89 1,00 1,00 1,00 0,00 0,00 1,00 0,00 1,00 1,00 1,00

S(N) 1,00 1,00 1,00 0,00 0,00 0,00 0,89 0,78 0,00 0,22 1,00 0,00 1,00 1,00 1,00

1,0 1,2 1,8

A

α 0,2 0,8

TABLE V
TABULATION OF βS,A TO ASSESS ROBUSTNESS OF APPROXIMATION TECHNIQUES, A, IN VARIOUS TRAFFIC REGIMES, S ([ae ,

as]=[1,1], ue
αc

=0.5 AND γ = 0.05).

V. CONCLUSIONS AND FUTURE WORK

In this study, we evaluate the performance of an
admission control strategy for integrated services
in a single UMTS cell. The integrated services
comprise elastic and streaming requests, and prior-
ity is given to streaming requests through resource
reservation. We model the UMTS cell as a link
with fixed capacity that is independent of the actual
resource allocation to individual requests.

We develop a quasi-stationary (fluid) approxi-
mation to estimate the cell performance in traffic
regimes where the dynamics of streaming requests
take place on a much slower (faster) time scale than
those of elastic requests. In addition, we propose
a weighted version of the quasi-stationary and
fluid approximations for traffic regimes where the
relative dynamics of both request types are similar
(neutral traffic regime). Simulation results suggest
that the cell performance is almost insensitive to
traffic parameter distributions, and is accurately
estimated by the proposed approximations.

We currently explore other approximation tech-
niques for the neutral traffic regime. In addition,
our existing model for admission control is conser-
vative since it assumes that all users are at the edge
of the cell. We consider extensions to the model by

relaxing the assumptions and explicitly taking into
account the location of the users.
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