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Abstract

We consider the scheduling problem over wireless channels for real-timeapplications where the Quality of Service requirements
are given in terms of delay statistics. Although many wireless channel-statedependent (CSD) schedulers have been proposed
recently, their contributions lie in the design of the scheduling mechanism to meet some performance objectives. However, the
delay performance are specified in terms of first-order statistics, i.e.,average or worst-case values, which are insufficient to
characterize the scheduler’s performance.

In this paper, we develop a framework for the stochastic analysis of the delay performance of CSD schedulers. We derive
the delay probability density function and its moments for a Two-State MarkovChain Error Model using a matrix formulation
approach. We demonstrate the applicability of our analysis numerically by considering the admissibility of a wireless scheduler in
terms of a minimum throughput requirement. This translates to an upper bound on the mean Head-of-Line (HOL) packet delay.
Subsequently, we evaluate the buffer size requirement of the wireless receiver and highlight the trade-off between buffer size
requirements and channel efficiency.

I. I NTRODUCTION

A. Related work in Wireless Scheduling

An abundance of scheduling policies that provide guaranteed Quality of Service (QoS) for wireline networks exists in the
literature ([1], [2], [3], to name a few). However, direct application of these policies to the wireless media is not useful due
to the following unique characteristics: (a) high channel error rate (b) bursty and time-varying channel capacity (c) location
dependent channel capacity (d) user mobility and (e) power constraint of mobile users.

The notion of channel-state dependence (CSD) or awareness was introduced in [4] to improve the performance of wireline
schedulers when deployed in a wireless media by exploiting characteristics (b) and (c). [5] offers a comprehensive survey of
variants of CSD schedulers that differ in the mechanism of choosing the instantaneous ‘best’ flow to transmit while satisfying
different constraints. Such constraints can often be specified in terms of the long-term fraction of time to be allocatedto each
user (time-fraction requirement).

In [6], the authors defined the scheduling problem as one of maximizing the average system performance. An opportunistic
(equivalent to channel-state aware) scheduling policy is proposed that solves the scheduling problem optimally. In addition, the
algorithm also improves every user’s average performance relative to any non-opportunistic scheduling policy and also takes
into account the short-term performance requirements of users. However, it is unclear how the scheme performs in terms of
per-flow QoS when handling delay-sensitive traffic.

The concept of ‘compensation’ was introduced and employed in CSD schedulers proposed in [7], [8], [9], [10], [11], [12]
to achieve a tradeoff between channel efficiency and short-term fairness provision. While wireline scheduling is used under
error-free conditions, a wireless adaptation scheme is employed when these conditions no longer prevail. Essentially, flow
swapping takes place when an allocated flow is unable to transmit in order to maximize channel efficiency. Flows that ‘gave
up’ their allocated slots are subsequently compensated by flows that ‘acquired’ those additional slots so as to maintainshort-
term fairness. The performance of these schedulers in termsof throughput, delay and fairness was analyzed and comparedin
[13].

B. Research Contributions of This Paper

In this paper, we consider the scheduling problem for real-time applications (e.g., streaming and interactive audio/video)
whose QoS requirements can be specified in terms of delay statistics. Many wireless schedulers have been proposed in the
literature recently whose main contributions lie in the design of the scheduling mechanism to meet various performance
objectives. Although delay analysis has been performed forthe proposed schedulers, the metrics used are first order, i.e.,
average and worst-case values, which are inadequate to characterize the scheduler’s performance. For example, the receiver
buffer requirement depends on both the mean as well as the variance of the inter-arrival time (i.e. the HOL packet delay of
the scheduler).

Our focus is to propose a framework for stochastic analysis of the delay performance of CSD schedulers. Our approach is
similar to that adopted in [14], where the authors studied the delay performance of a simple ARQ error control strategy for
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communications over a bursty channel of asingleflow. In [15], the author investigated the characteristics and traffic effects of
variable-rate communication servers. It is shown that if all input connections to a fluctuation-constrained [16] work-conserving
server-node are burstiness-constrained [17], deterministic or statistical bounds on queue length and traffic delay inan isolated
work-conserving variable-rate server node can be computedas long as the stability criterion is satisfied. However, thescheduling
policy considered is not channel-aware since the channel isassumed to be location-independent. This characteristic is considered
in the resource allocation problem in [18], where the authors characterized the stability properties of the system and proposed
an optimal allocation policy that maximizes throughput andminimizes delay. However, the results are only applicable for an
uncorrelated channel, which is an impractical assumption (characteristic (b)).

We adopt a generic CSD scheduling architecture based on the proposed wireless schedulers and derive the delay probability
density function (pdf) for a wireless channel model that takes into account characteristics (b) and (c). Such an analysis offers
a more complete characterization of the delay performance of wireless schedulers.

The rest of the paper is organized as follows: In Section II, we define the wireless scheduling model considered in our
analysis. In Section III, we describe our approach for the delay analysis. Section IV describes the evaluation of the HOL
packet delay pdf while Section V considers the special case of uncorrelated channel errors. Numerical results are presented in
Section VI, where we consider an application of our analysis. Concluding remarks are presented in Section VII.

II. D ESCRIPTION OFCSD SCHEDULER ANDCHANNEL MODEL

We consider a K-flow centralized wireless scheduling scenario where channel access to each flow is allocated in terms of
fixed-size time slots. We assume that each flow is always backlogged and comprises constant-size packets with transmission
time of one slot. Each flowj is characterized by the integer parameterrj , where the ratio rj

K
∑

m=1

rm

denotes the time-fraction

requirement of flowj, i.e., the fraction of resources that should be allocated toflow j in the long term.

A. Wireless Channel Model

We use a Two-State Markov Chain to model the error behavior ofthe wireless channel of each flow, and definec
j
i to be

the channel state of flowj in slot i, wherec
j
i = Good or Bad. The state transition diagram of the error modelis shown in Fig.

1(a). For each flowj, the model is specified in terms of the parameters,p
j
G andpj

corr, which are defined as follows:

p
j
G = Steady State Probability of Channel of flowj

being in Good State

pj
corr = p

j
BG + p

j
GB

where

p
j
GB = Prob(cj

i = Bad | c
j
i−1 = Good)

p
j
BG = Prob(cj

i = Good | c
j
i−1 = Bad)

Given p
j
G andpj

corr, p
j
GB andp

j
BG are computed as follows:

p
j
BG = pj

corr · p
j
G

p
j
GB = pj

corr(1 − p
j
G)

The parameter,pj
corr, is inversely proportional to the level of correlation in the error behavior across successive slots for

flow j; a value close to 0 indicates high correlation while a value of 1.0 represents the special case of uncorrelated errors since
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Fig. 1. (a) State Transition Diagram of 2SMC Error Model (b) General Architecture of CSD Wireless Schedulers
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p
j
GB = p

j
BB = p

j
B and p

j
BG = p

j
GG = 1 − p

j
B . We assume that the channel state of each flow is independent of that of any

other flow.
In order to characterize the channel process, let us define the state variablexK

i as the decimal equivalent of the binary
representation given bycK

i cK−1
i · · · c1

i , where the binary representations ofGood and Bad states are 0 and 1 respectively, as
shown in Fig. 1. This is illustrated below for the case of K=2.

c2
i c

1
i x2

i

00 0
01 1
10 2
11 3

The state space of the channel process is given by the set{0, 1, 2, · · · 2K −1}. Therefore, the state transition probability matrix,
A

K

∗, is of dimensions2K × 2K and can be computed, forK ≥ 2, using the following recurrence relation:

A
K

=

[

A
K−1

· pK
00 A

K−1
· pK

01

A
K−1

· pK
10 A

K−1
· pK

11

]

where

A
1

=

[

p1
00 p1

01

p1
10 p1

11

]

If the row vectorf (i) denotes the pdf ofxK
i , i.e.,

f(i) = [Prob(xK
i = x)]2

K−1
x=0

then,

f(i) = f(i − 1) × A
K

(1)

B. CSD Scheduling Model

The CSD scheduling architecture comprises a slot allocation policy (SAP), a channel status monitor (CSM) and a packet
dispatcher, as depicted in Fig. 1(b) [4].

At the beginning of each sloti, the SAP determines the flowj that has the highest priority to transmit in sloti according
to rf of each flowf using a Weighted-Round Robin (WRR) policy. The CSM maintainsthe history ofxK

i−m, m > 0 and
uses this information to predictxK

i . We assume, in this analysis, that channel prediction is perfect. If c
j
i = Good, the packet

dispatcher will transmit the HOL packet of flowj; otherwise, anarbitration schemewill be used to select an alternative flow
to transmit based onxK

i .

III. N OTION OF CONSTRAINED STATE TRANSITION MATRIX

Let E
f
j denote the transmission event of flowf in a slot that is allocated to flowj, where E∈ {S,F} is used to denote

a Successful and deFerred transmission respectively. For a given arbitration scheme, the values ofxK
i and j determine the

probability of occurrence ofEf
j in slot i. Conversely stated, given the value ofj, the occurrence ofEf

j in slot i imposes a
constraint on the pdf ofxK

i . We define theconstrained state transition matrixfor eventEf
j as follows:

Ef

j
= A

K
× M(Ef

j )

whereM(Ef
j ) is a diagonal matrix such that the diagonal element of rowm is the probability thatEf

j will occur if xK
i =m-1.

Therefore,

Sf

j
= A

K
× M(Sf

j )

F f

j
= A

K
× M(F f

j )

We note the following:

Sf

j
+ F f

j
= A

K
× M(Sf

j ) + A
K
× M(F f

j )

= A
K
× M(Sf

j ∪ F
f
j )

= A
K

∗Note that the notations Aand A denote vector and matrix A respectively. The notations . and× denote scalar and matrix products respectively.
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Hence,F f

j
can be expressed in terms ofSf

j
andA

K
.

If we replaceA
K

in Eq. (1) byEf

j
, we have the following:

f(i) = f(i − 1) × Ef

j

= [Prob(xK
i = x, E

f
j occurs in sloti)]2

K−1
x=0

Similarly,

f(i + 1) = f(i − 1) × Ef

j
× Ef

p

= [Prob(xK
i+1 = x, E

f
j , Ef

p occur in slotsi and i+1 respectively)]2
K−1

x=0

In general, if E(u) is the event in slotu and
i+n
⋂

u=i

E(u) denotes the sequence of events{E(i),E(i+1),· · · ,E(i+n)} in slots [i:i+n],

then we can define ajoint constrained state transition matrix,
i+n
∏

u=i

E(u), of
i+n
⋂

u=i

E(u) such that:†

f(i + n) = f(i − 1) ×

i+n
∏

u=i

E(u)

= [Prob(xK
i = x,

i+n
⋂

u=i

E(u) occurs)]2
K−1

x=0

Therefore,

Prob(
i+n
⋂

u=i

E(u) occurs) =
2K−1
∑

x=0

Prob(xK
i = x,

i+n
⋂

u=i

E(u) occurs)

= f(i + n) ×







1
...
1






(2)

= f(i − 1) ×
i+n
∏

u=i

E(u) ×







1
...
1







Example 1:Consider a 2-flow CSD scheduler wherer1=r2, and assume that a flow 1 packet becomes HOL at the beginning
of slot i that is allocated to flow 2. We would like to determine the probability that this packet will be transmitted in sloti+1,
i.e., Prob(HOL delay = 2 slots).

Sincer1=r2, the SAP allocates slots alternately to each flow and therefore slot i+1 is allocated to flow 1. For the packet to
be transmitted in sloti+1, the eventsF 1

2 andS1
1 must occur in slotsi and i+1 respectively. According to the CSD scheduling

mechanism,F 1
2 occurs in sloti if x2

i ={0,1,3}. Therefore,

F 1

2
= A

2
×









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1









Similarly, S1
1 occurs in sloti+1 if x2

i+1={0,2}. Therefore,

S1

1
= A

2
×









1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0









Hence,

Prob(HOL delay = 2 slots)= f(i − 1) × F 1

2
× S1

1
×







1
...
1







†Note that the notation
∏

b

a
when used with matrices refers to a sequence of matrix productswhere the order is important and given by a,a+1,a+2,· · · b.
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IV. EVALUATION OF HOL PACKET DELAY PDF

In our earlier work [19], we have developed a Markov model fora K-flow CSD scheduler in order to analyze its QoS
performance for the Two-State Markov Chain error model. We have assumedhomogeneityin both rate and channel, i.e.,rj=1
and (pj

G, pj
corr) = (pG, pcorr) respectively for 1≤ j ≤ K. We considered a uniform arbitration scheme, i.e., when an allocated

flow fails to transmit, a flow israndomlychosen to transmit amongst those with good channels. The scheduler model has been
shown to be ergodic, and therefore its delay pdf under steady-state conditions exists. We have numerically evaluated the delay
pdf for small values of K.

In this section, we extend the analysis by considering different arbitration schemes as well as channel heterogeneity.Let df (n)
denote the pdf of the HOL packet delayn for flow f under steady-state conditions. Since all flows are always backlogged,n
corresponds to the duration between two successive flowf transmissions. Let us assume thatS

f
j occurs in the first transmission,

and denote the sequence of subsequent events that must occurup to the second transmission byD
f
j (n), as illustrated in Fig.

2. We note that between two successive S events, there can only be F events.

........

 j       j+1    j+2 ........................... j        j+1       j+2............j+r

qK slots r slots

Sf
j

Sf
j+r

slot

allocation

n slots

Ff
j+1

Ff
j+2

Ff
j

Ff
j+1

Ff
j+2

Event D f
j
(n)

Fig. 2. Events between two successive transmissions of flowf

Then, as in Eq. (2),df (n) can be expressed as follows:

df (n) =

K
∑

j=1

Prob(Df
j (n))

=
K

∑

j=1

ff

j
× Df

j
(n) ×







1
...
1






(3)

whereff

j
= [Prob(xK = x, S

f
j occurs)]2

K−1
x=0 and Df

j
(n) is the joint constrained state transition matrix ofD

f
j (n) given as

follows:

Df

j
(n) = [Cf

j
]q × [

j+r−1
∏

m=j+1

F f

m
] × Sf

j+r
(4)

whereCf

j
=

j+K
∏

m=j+1

F f

m
, q = n−r

K
, andr is given as follows:

r =

{

n modulo K, n modulo K> 0;
K, otherwise.

We drop the slot indexi in the notationsf(i) andxK
i since i always refers to a slot where a flowf transmission take place.

In addition, we note that all subscripts corresponding to flow indices for all the matrix notations are modulo K.
From Eq. (3),df (n) can be expressed in terms of{Sf

j
, ff

j
}K

j=1. The evaluation of these terms are described next.

A. Evaluation offf

j

Since the SAP is independent of the channel process, packetm of flow f becomes HOL with a flowj+1 allocation if packet
m-1 is transmitted in a slot allocated to flowj. Hence, under steady-state conditions,ff

j
can be evaluated based on a recurrence

relation in terms of{ff

j
}K

j=1 and{Df

j
(n)}K

j=1. We begin with the evaluation offf

1
as follows:

ff

1
= ff

1
×

∞
∑

q=1

Df

1
(q · K) + ff

2
×

∞
∑

q=1

Df

2
(q · K − 1) + · · · + ff

K
×

∞
∑

q=1

Df

K
(q · K − [K − 1])

=
K

∑

t=1

∞
∑

q=1

ff

t
× Df

t
(q · K − [t − 1]) (5)
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Substituting Eq. (4) into Eq. (5) and simplifying, we obtainthe following equation forff

1
:

ff

1
=

K
∑

t=1

ff

t
× (I − Cf

t
)−1 ×

K
∏

m=t+1

F f

m
× Sf

1

In general, the recurrence equations forff

j
, 1 ≤ j ≤ K, can be written as follows:

ff

j
= [

j−1
∑

t=1

ff

t
× (I − Cf

t
)−1 ×

j−1
∏

m=t+1

F f

m
+

K
∑

t=j

ff

t
× (I − Cf

t
)−1 ×

K+j−1
∏

m=t+1

F f

m
] × Sf

j
(6)

We can express Eq. (6) in matrix form as follows:

f = f × InvC × FS

where

f =
[

ff

K
ff

K−1
· · · ff

1

]

InvC =













(I − Cf

K
)−1 0 · · · 0

0 (I − Cf

K−1
)−1 · · · 0

...
...

. ..
...

0 0 · · · (I − Cf

1
)−1













FS =



















K−1
∏

m=1
F f

m
× Sf

K
· · · F f

1
× Sf

2
Sf

1

Sf

K
· · · F f

K
× F f

1
× Sf

2
F f

K
× Sf

1
...

...
...

...
K−1
∏

m=2
F f

m
× Sf

K
· · · Sf

2
F f

2
· · ·F f

K
× Sf

1



















B. Evaluation ofSf

j

We recall thatSf

j
is defined in terms ofA

K
and a diagonal matrix,M(Sf

j ), where the diagonal element of rowm is the

probability thatSf
j will occur in a slot wherexK=m-1. Let M(Sf

j ) be a row vector comprising the diagonal elements of
M(Sf

j ), i.e.,

M(Sf
j ) = [Prob(Sf

j occurs| xK = x)]2
K−1

x=0

The evaluation ofM(Sf
j ) depends on the arbitration scheme used by the CSD scheduler,which determines the alternative flow

to transmit in the event that an allocated flow is unable to transmit. We consider two arbitration schemes: (a)uniform and (b)
prioritized arbitration.

1) Uniform Arbitration (CSDUA Scheduler): With uniform arbitration, a flow israndomly selected amongst those that
currently perceive good channels when an allocated flow is unable to transmit.

To determine the vectorM(Sf
j ), we first initialize it to a vector of zeros. For eachxK , the corresponding value ofcj for

1≤ j ≤ K (denotedcj(xK)) is given as follows:

cj(xK) =

{

0, d xK

2j−1 emodulo 2 = 1;
1, otherwise.

(7)

The necessary conditions forS
f
j to occur are given as follows:

cf (xK) = 0

cj(xK) = 1 (8)

Based on Eq. (7), we can determine the range ofxK , IndexxK , for which Eq. (8) are satisfied. For eachxK ε IndexxK ,
we determine the total number of flows (other than flowf ) contending for transmission,Total, i.e., total number of flowsflow,
such thatcflow(xK)=0. Since there are altogetherTotal + 1 flows that are eligible for transmission, the probabilitythat any
flow is selected for transmission is 1

Total+1 . Hence, the corresponding entry inM(Sf
j ) is 1

Total+1 .
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2) Prioritized Arbitration (CSDPA(Ph) Scheduler):An inherent characteristic of CSD scheduling is that flows are able
to transmit in other slots in addition to those allocated to them. Although this results in improvement in channel efficiency,
the delay variation may be increased, giving rise to larger receiver buffer requirements, which is undesirable. With uniform
arbitration, it is possible that a flow may transmit in two successive slots (including the slot allocated to it) and then remain
silent for about K slots until the next transmission in its allocated slot. This introduces a large delay variation, which can be
reduced by using prioritized arbitration. The motivation behind this arbitration scheme is that when an allocated flow is unable
to transmit,preferencefor transmission is given to flows whose next allocation is asfar away as possible from the given slot.
In this way, the delay variance can be reduced with respect tothat achievable with uniform arbitration.

Quantitatively, letFlow
j
P modulo K be the set of flows with priority level P, where 0≤ P ≤ Pmax, in a slot allocated to

flow j. For eachj, 1≤ j ≤ K, if a smaller P denotes ahigher priority of transmission, thenFlow
j
P is defined as follows:

Flow
j
P =

{

j, P = 0;
{j − Pmax + P − 1, j + Pmax − P + 1}, 1 ≤ P ≤ Pmax.

where

Pmax =

{

K−1
2 , Kodd;

K
2 , Keven.

Hence, in a slot allocated to flowj, flow j has the highest priority to transmit. In the event that it defers its transmission,
uniform arbitration is used to determine which of the flow(s)∈ Flow

j
1 will transmit. If none of the flows can transmit (i.e.,

all their channels are in bad state), we descend toFlow
j
2 and so on.

We can parametize the prioritized arbitration scheme such that in any slot allocated to flowj, only flows∈ {Flow
j
P }

Ph

P=0

are allowed to transmit. Hence, iff 6∈ {Flow
j
P }

Ph

P=0, then flow f will not be allowed to transmit. Hence, the choice ofPh

may represent a tradeoff between channel efficiency and delay variance under good channel conditions : a largerPh implies
more opportunities for flowf to transmit which may in turn result in a larger delay variance.

To determine the vectorM(Sf
j ), we first determine the priority level of flowf, Prf , using Eq. (9). IfPrf > Ph, then flow

f is unable to transmit in the given slot and we setM(Sf
j ) to a vector of zeros. Otherwise, for eachxK , for S

f
j to occur,

in addition to Eq. (8), all flows with priority< Prf must have erroneous channels. The latter condition can be expressed as
follows:

cflow(xK) = 1 ∀ flow ∈ {Flow
j
P }

Prf−1
P=1 (9)

Based on Eq. (7), we can determine the range ofxK , IndexxK , such that Eq. (8) and Eq. (9) are satisfied.
Next, we determine the flowfl that has the same priority level as flowf using Eq. (9). For eachxK ε IndexxK , if cfl(xK)=0,

then we have two contending flows (including flowf ) and the entry inM(Sf
j ) = 1

2 ; otherwise, flowf is the only eligible flow
to transmit and therefore the entry inM(Sf

j )=1.

V. SPECIAL CASE: UNCORRELATED CHANNEL ERRORS

In Section IV, we developed a matrix formulation to determine the pdf of the HOL packet delayn for an arbitrary flowf
in terms of the channel parameters as well as the arbitrationscheme employed by the CSD scheduler. In this section, we will
illustrate the derivation of moments ofn under the following assumptions for 1≤ j ≤ K:

(a) channel errors are uncorrelated, i.e.,pj
corr=1.0 and

(b) channel process is homogeneous, i.e., (p
j
G,pj

corr) = (pG,pcorr).
Assumption (a) implies that the matrices defined in Section IV collapse into scalar quantities. Hence, we will drop

from these notations for this section. Together with rate-homogeneity, assumption (b) implies that the scheduling system is
homogeneous and hence, the delay performance of all flows areidentical. Therefore, we drop the superscriptf and consider
only the performance of flow 1.

SinceFm is a scalar, we note thatCj = C =
K
∏

m=1
Fm, 1≤ j ≤ K. Hence, the corresponding matrix form for Eq. (6) is given

as follows:

f = f × InvC × FS (10)
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where

f =
[

fK fK−1 · · · f1

]

InvC =
1

1 − C











1 0 · · · 0
0 1 · · · 0
...

...
.. .

...
0 0 · · · 1











FS =



















K−1
∏

m=1
Fm · SK · · · F1 · S2 S1

SK · · · FK · F1 · S2 FK · S1

...
...

...
...

K−1
∏

m=2
Fm · SK · · · S2 F2 · ·FK · S1



















We have K-1 independent equations in Eq. (10) to solve for K unknowns. The sum of probability,
K
∑

j=1

fj = 1, offers the

additional equation needed to solve forfj . We notice that in Eq. (10), for each equation withfj on the LHS, there is a
common factor,Sj , on the RHS. Hence, a good guess for the solution offj is fj =

Sj

CONST
. According to the sum of

probability, we have CONST =
K
∑

f=1

Sf (henceforth, denotedΣS).

Lemma 1:For uncorrelated channel errors, the probability that a flow1 packet transmits in a slot allocated to flowj, fj ,
for a homogeneous K-flow CSD scheduler is given by:

fj =
Sj

K
∑

f=1

Sf

=
Sj

ΣS

Proof: Substituting the expression forfj into the RHS of Eq. (10), we have the following:

RHS =
Sj

ΣS(1 − C)
[

j−1
∑

u=1

Su

j−1
∏

m=u+1

Fm +
K

∑

u=j

Su

K+j−1
∏

m=u+1

Fm]

Expanding the terms within the brackets (denotedΣ), and writing them in decreasing order of the number of elements within
each term, we obtain the following summation:

Σ = Sj · Fj+1 · Fj+2 · · ·FK · F1 · · ·Fj−1

+ Sj+1 · Fj+2 · Fj+3 · · ·Fj−1

...

+ Sj−2 · Fj−1

+ Sj−1

Adding C =
K
∏

f=1

Ff = Fj ·Fj+1 · · ·FK ·F1 · · ·Fj−1 to the first term of the RHS ofΣ, we obtainFj+1 ·Fj+2 · · ·FK ·F1 · · ·Fj−1.

Adding this to the second term, we obtainFj+2 · Fj+3 · · ·FK · F1 · · ·Fj−1. Proceeding in the same manner, eventually, we
obtain

Σ + C = 1

Therefore, we have the following:

RHS =
Sj

ΣS(1 − C)
(1 − C)

=
Sj

ΣS

= LHS

If we write n = q · K + r, whereq ≥ 0, 1 ≤ r ≤ K, then from Eq. (3) and Lemma 1, we have the following:
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Theorem 1:For uncorrelated channel errors, the pdf of the HOL packet delay of any flow for a homogeneous K-flow
CSD-scheduler is given as follows:

d(q · K + r) =
Cq

ΣS

K
∑

j=1

Sj · Sj+r

j+r−1
∏

m=j+1

Fm

where q ≥ 0, 1 ≤ r ≤ K

A. Evaluation of the moments of the HOL packet delay, n

In this section, we shall obtain expressions for the first andsecond moment ofn.
Theorem 2:For uncorrelated channel errors, the expected HOL packet delay for a homogeneous K-flow CSD scheduler is

given as follows:

E[n] =
K

ΣS
Proof: Beginning with the definition of E[n] and using Theorem 1, we have the following:

E[n] =

∞
∑

q=0

K
∑

r=1

(q · K + r).d(q · K + r)

=

∞
∑

q=0

q · K

k
∑

r=1

d(q · K + r) +

∞
∑

q=0

K
∑

r=1

r · d(q · K + r)

=
∞
∑

q=0

q · K · Cq

ΣS

K
∑

r=1

K
∑

j=1

Sj · Sj+r

j+r−1
∏

m=j+1

Fm +
∞
∑

q=0

Cq

ΣS

K
∑

r=1

r

K
∑

j=1

Sj · Sj+r

j+r−1
∏

m=j+1

Fm

=
K · C

ΣS(1 − C)2
Σ0 +

1

ΣS(1 − C)
Σ1 (11)

where

Σi =

K
∑

r=1

ri

K
∑

j=1

Sj · Sj+r

j+r−1
∏

m=j+1

Fm

Using the fact that sum of probabilities is 1, we have
∞
∑

q=0

K
∑

r=1
d(q ·K + r)=1. Substituting forDq.K+r, we have the following:

∞
∑

q=0

Cq

ΣS
Σ0 = 1

⇒ 1
ΣS(1−C)Σ0 = 1

⇒ Σ0 = ΣS(1 − C)

Σ1 can be expanded as follows:

S1 · S2 +S2 · S3 · · · +SK · S1

+2[S1 · F2 · S3 +S2 · F3 · S4 · · · +SK · F1 · S2]
+3[S1 · F2 · F3 · S4 +S2 · F3 · F4 · S5 · · · +SK · F1 · F2 · S3]
...

...
...

...
+K[S1 · F2 · ·FK · S1 +S2 · F3 · ·F1 · S2 · · · +SK · F1 · ·FK−1 · SK ]

Let us consider the elements of the first column ofΣ1. Excluding the common factor,S1, the summation can be written
alternatively as follows:

K{S2 +F2 · S3 · · · +F2 · · ·FK−1 · SK +F2 · · ·FK · S1}
−{S2 +F2 · S3 · · · +F2 · · ·FK−1 · SK }

...
...

...
...

−{S2 +F2 · S3 }
−{S2 }

The above summation can be simplified to the following expression:

K(1 − C) −

K
∑

j=2

(1 −

j
∏

m=2

Fm) = 1 +

K
∑

j=2

j
∏

m=2

Fm − K · C
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Similarly, excluding the common factor,S2, the summation of the elements of the second column ofΣ1 can be expressed as
the following expression:

1 +

K+1
∑

j=3

j
∏

m=3

Fm − K · C

Proceeding in the same manner for the remaining columns, we obtain the following expression forΣ1:

Σ1 =
K

∑

u=1

[1 +
K+u−1

∑

j=u+1

j
∏

m=u+1

Fm − K · C]Su

Substituting forSj = 1-Fj , and after cancellation of common terms and simplification,we have the following:

Σ1 = K(1 − C) − ΣSK · C

Substituting forΣ0 andΣ1 in Eq. (11), we have the following:

E[n] =
K · CΣS(1 − C)

ΣS(1 − C)2
+

K(1 − C) − ΣSK · C

ΣS(1 − C)

=
K · C

1 − C
+

K

ΣS

−
K · C

1 − C

=
K

ΣS

Remark 1:The expression for E[n] can also be derived intuitively. We begin by giving a qualitative interpretation ofΣS .
SinceSj denotes the probability of flow 1 transmission in a slot allocated to flowj, ΣS denotes the probability that flow 1
will transmit (at all) within a period of K slots. Hence,ΣS

K
denotes the probability that flow 1 transmits inany slot, which is

equivalent to its throughput. Since the mean HOL packet delay and throughput are reciprocals of each other, we have E[n] =
1

throughput
= K

ΣS
.

Theorem 3:For uncorrelated channel errors, the second moment of the HOL packet delay for a homogeneous K-flow CSD
scheduler is given as follows:

E[n2] =

K(1 + C) + 2
K
∑

r=1

K−1
∑

i=1

r+i−1
∏

m=r

Fm

(1 − C)ΣS

Proof: Beginning with the definition of E[n2] and using Theorem 1, we have the following:

E[n2] =
∞
∑

q=0

K
∑

r=1

(q · K + r)2d(q · K + r) (12)

=

∞
∑

q=0

K
∑

r=1

(q2K2 + r2 + 2q · K · r)Cq

K
∑

j=1

Sj · Sj+r

j+r−1
∏

m=j+1

Fm

=
1

ΣS

[

∞
∑

q=0

q2K2CqΣ0 +

∞
∑

q=0

Cq2q · KΣ1 +

∞
∑

q=0

Cq

K
∑

r=1

r2Σ2]

=
1

ΣS

[
K2C(1 + C)

(1 − C)3
Σ0 +

2K · C

(1 − C)2
Σ1 +

1

(1 − C)
Σ2]

=
K2C

1 − C
+

2K2C

(1 − C)ΣS

+
1

ΣS(1 − C)
Σ2

In a manner similar toΣ1, Σ2 can be written as follows:

S1 · S2 +S2 · S3 · · · +SK · S1

+22[S1 · F2 · S3 +S2 · F3 · S4 · · · +SK · F1 · S2]
+32[S1 · F2 · F3 · S4 +S2 · F3 · F4 · S5 · · · +SK · F1 · F2 · S3]
...

...
...

...
+K2[S1 · F2 · ·FK · S1 +S2 · F3 · ·F1 · S2 · · · +SK · F1 · ·FK−1 · SK ]
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Let us consider the elements of the first column ofΣ2. Excluding the common factor,S1, the summation can be written
alternatively as follows:

K2{S2 +F2 · S3 · · · +F2 · F3 · · ·FK−2 · SK−1 +F2 · F3 · · ·FK−1 · SK +F2 · F3 · · ·FK · S1} −
(2K − 1){S2 +F2 · S3 · · · +F2 · F3 · · ·FK−2 · SK−1 +F2 · F3 · · ·FK−1 · SK } −
(2K − 3){S2 +F2 · S3 · · · +F2 · F3 · · ·FK−2 · SK−1 } −

... −
5{S2 +F2 · S3 } −
3{S2 }

The above summation can be simplified as follows:

K
2(1 − C) − (2K − 1)(1 − F2 · F3 · · ·FK) − (2K − 3)(1 − F2 · F3 · · ·FK−1) − · · · − 5(1 − F2 · F3) − 3(1 − F2)

= K
2(1 − C) −

K−1
∑

r=0

(2r + 1) + {1 + 3F2 + 5F2 · F3 + · · · + (2K − 1)(F2 · F3 · · ·FK)}

=

−K2C + 1 +F2 +F2 · F3 · · · +F2 · F3 · · ·FK−1 +F2 · F3 · · ·FK

+2(F2 +F2 · F3 · · · +F2 · F3 · · ·FK−1 +F2 · F3 · · ·FK)
+2(F2 · F3 · · · +F2 · F3 · · ·FK−1 +F2 · F3 · · ·FK)

...
+2(F2 · F3 · · ·FK−1 +F2 · F3 · · ·FK)

+2F2 · F3 · · ·FK

Taking into consideration the common factor,S1=1-F1, we obtain the following:

−K2C · S1 + 1 +F2 +F2 · F3 · · · +F2 · F3 · · ·FK−1 +F2 · F3 · · ·FK

+2(F2 +F2 · F3 · · · +F2 · F3 · · ·FK−1 +F2 · F3 · · ·FK)
+2(F2 · F3 · · · +F2 · F3 · · ·FK−1 +F2 · F3 · · ·FK)

...
+2(F2 · F3 · · ·FK−1 +F2 · F3 · · ·FK)

+2F2 · F3 · · ·FK

−F1 −F1 · F2 −F1 · F2 · F3 · · · −F1 · F2 · F3 · · ·FK−1 −F1 · F2 · F3 · · ·FK

−2(F1 · F2 +F1 · F2 · F3 · · · +F1 · F2 · F3 · · ·FK−1 +F1 · F2 · F3 · · ·FK)
−2(F1 · F2 · F3 · · · +F1 · F2 · F3 · · ·FK−1 +F1 · F2 · F3 · · ·FK)

...
−2(F1 · F2 · F3 · · ·FK−1 +F1 · F2 · F3 · · ·FK)

−2F1 · F2 · F3 · · ·FK

In a similar manner, the elements of the second column ofΣ2 can be expressed as follows:

−K2C · S2 + 1 +F3 +F3 · F4 · · · +F3 · F4 · · ·FK +F3 · F4 · · ·F1

+2(F3 +F3 · F4 · · · +F3 · F4 · · ·FK +F3 · F4 · · ·F1)
+2(F3 · F4 · · · +F3 · F4 · · ·FK +F3 · F4 · · ·F1)

...
+2(F3 · F4 · · ·FK +F3 · F4 · · ·F1)

+2F3 · F4 · · ·F1

−F2 −F2 · F3 −F2 · F3 · F4 · · · −F2 · F3 · F4 · · ·FK −F2 · F3 · F4 · · ·F1

−2(F2 · F3 +F2 · F3 · F4 · · · +F2 · F3 · F4 · · ·FK +F2 · F3 · F4 · · ·F1)
−2(F2 · F3 · F4 · · · +F2 · F3 · F4 · · ·FK +F2 · F3 · F4 · · ·F1)

...
−2(F2 · F3 · F4 · · ·FK +F2 · F3 · F4 · · ·F1)

−2F2 · F3 · F4 · · ·F1

The elements of the remaining columns ofΣ2 can be expressed in a similar manner. By summing these expressions, after
cancelling out common terms, we obtain the following:

Σ2 = −K2CΣS + K(1 − (2K − 1)C) + 2

K
∑

r=1

K−1
∑

i=1

r+i−1
∏

m=r

Fm
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Hence, substituting into Eq. (12), we obtain the following:

E[n2] =
K2C

1 − C
+

2K2C

(1 − C)ΣS

+

−K2CΣS + K(1 − (2K − 1)C) + 2
K
∑

r=1

K−1
∑

i=1

r+i−1
∏

m=r

Fm

ΣS(1 − C)

=

K(1 + C) + 2
K
∑

r=1

K−1
∑

i=1

r+i−1
∏

m=r

Fm

(1 − C)ΣS

B. Evaluation ofSj

1) CSDUA: With uniform arbitration, when an allocated flow is unable totransmit, amongst those flows that currently
perceive good channels, a flow is randomly selected for transmission. Considering flow 1’s performance, flow 1 will transmit
in a slot allocated to it as long as it perceives an error-freechannel, i.e.,S1 = pG, since it has the highest priority to transmit.
In any slot that is not allocated to flow 1, due to our assumption of homogeneity, we haveS2=S3=· · ·=SK .

Let us consider a slot that is allocated for flowj and evaluateSj , 2 ≤ j ≤ K. For flow 1 to transmit in this slot, the
necessary conditions are that flow 1 must perceive an error-free channel and flowj must perceive an erroneous channel, and
these occur with probabilitypG(1 − pG).

For the remaining K-2 flows, the probability thatm flows will have error-free channels while the remaining K-2-m flows
will have erroneous channels is given as follows:

(

K − 2

m

)

pm
G (1 − pG)K−2−m, 0 ≤ m ≤ K − 2

Suppose thatm=M. In this case, there are M+1 flows contending for transmission, and therefore, the probability that flow 1
will be selected to transmit is 1

M+1 .
Putting all the terms together, we obtain the following expression:

Sj =

K−2
∑

m=0

(

K−2
m

)

pm
G (1 − pG)K−2−mpG(1 − pG)

m + 1

2 ≤ j ≤ K (13)

Multiplying the RHS of Eq. (13) by (K-1), we obtain the following:

K−2
∑

m=0

(K − 2)!(K − 1)pm
G (1 − pG)K−2−mpG(1 − pG)

(K − 2 − m)!m!(m + 1)

=

K−2
∑

m=0

(K − 1)!

(K − 2 − m)!(m + 1)!
pm

G (1 − pG)K−2−mpG(1 − pG)

=

K−2
∑

m=0

(

K − 1

m + 1

)

pm+1
G (1 − pG)K−2−m(1 − pG)

=

K−1
∑

w=1

(

K − 1

w

)

pw
G(1 − pG)K−1−w(1 − pG)

= [
K−1
∑

w=0

(

K − 1

w

)

pw
G(1 − pG)K−1−w](1 − pG) − (1 − pG)K

According to binomial theorem,
n
∑

k=0

(

n
k

)

xkyn−k = (x + y)n. Therefore, we have

(K − 1)Sj = (1 − pG) − (1 − pG)K

Sj =
1 − pG − (1 − pG)K

K − 1

Hence, for the homogeneous K-flowCSDUA scheduler, when channel errors are uncorrelated, we have the following:

Sj =

{

pG, j = 1;
1−pG−(1−pG)K

K−1 , 2 ≤ j ≤ K.
(14)
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2) CSDPA(Ph), K odd: In this case,Pmax = K−1
2 and there are two candidate flows for each priority level, P>0. Recall

that Ph specifies the lowest priority level for which a flow can contend for transmission in a given slot. Hence, ifPr1 is the
priority level of flow 1 in a slot allocated to flowj, then flow 1 cannot transmit ifPr1 > Ph, i.e., Sj = 0.

Let us assume thatPr1 ≤ Ph. If Pr1 = 1, i.e., j=K+1
2 or j=3−k

2 , then we have the following:

SK+1

2

= S 3−k
2

= (1 − pG)pG

1
∑

m=0

(

1
m

)

pm
G (1 − pG)1−m

m + 1

=
(1 − pG)pG(2 − pG)

2

Similarly, if Pr1 = 2, i.e., j= K+3
2 or j = 5−K

2 , then we have the following:

SK+3

2

= S 5−K
2

= (1 − pG)pG[
1

∑

m=0

(

1
m

)

pm
G (1 − pG)1−m

m + 1
](1 − pG)2

=
(1 − pG)3pG(2 − pG)

2
In general, forPr1 ≤ Ph, we have the following:

SK+3

2
−Pr1

= SK+1

2
+Pr1

=
(1 − pG)2Pr1−1pG(2 − pG)

2

Hence, for the homogeneous K-flowCSDPA(Ph) scheduler, when channel errors are uncorrelated and K is odd, we have the
following:

Sj =







pG, j = 1;
(1−pG)2P r1−1pG(2−pG)

2 , 1 ≤ Pr1 ≤ Ph, j = {K+3
2 − Pr1,

K+1
2 + Pr1};

0, Ph + 1 ≤ Pr1 ≤ Pmax.

(15)

3) CSDPA(Ph), K even: In this case,Pmax = K
2 and there are two candidate flows for each P>1, and one candidate flow

each for P=0 and P=1. Consider the case wherej 6= 1. If Pr1 = 1, i.e., j=1+K
2 , since it is the only candidate flow, we have

the following:

S1+ K
2

= (1 − pG)pG

However, ifPr1 = 2, i.e., j= K
2 or j = K

2 +2, then we have the following:

SK
2

= SK
2

+2 = (1 − pG)2pG

1
∑

m=0

(

1
m

)

pm
G (1 − pG)1−m

m + 1

=
(1 − pG)2pG(2 − pG)

2

Next, if Pr1 = 3, i.e., j = K
2 -1 or j = K

2 +3, then we have the following:

SK
2
−1 = SK

2
+3 = (1 − pG)2pG[

1
∑

m=0

(

1
m

)

pm
G (1 − pG)1−m

m + 1
](1 − pG)2

=
(1 − pG)4pG(2 − pG)

2

Hence, for the homogeneous K-flowCSDPA(Ph) scheduler, when channel errors are uncorrelated and K is even, we have
the following:

Sj =















pG, j = 1;
pG(1 − pG), j = K

2 + 1, P r1 = 1, P1 ≤ Ph;
(1−pG)2P r1−2pG(2−pG)

2 , j = {K
2 + 2 − Pr1,

K
2 + Pr1}, 2 ≤ Pr1 ≤ Ph;

0, Ph + 1 ≤ Pr1 ≤ Pmax.

(16)

VI. A PPLICATION: ADMISSIBILITY OF WIRELESSSCHEDULER BASED ONEFFICIENCY REQUIREMENT AND

DETERMINATION OF RECEIVER BUFFERSIZE

We shall present some numerical results for the case of uncorrelated errors by considering an application of our analysis.
Suppose we have a K-flow homogeneous scheduling scenario that is constrained by an efficiency requirement in terms of a
minimum required overall throughput,ηmin. We would like to determine whether a given scheduler can meet this requirement,
and if so, to compute the required buffer length,NQ, at the wireless receiver.
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A. Admissibility of Wireless Scheduler based onηmin

The throughput of any flow is given as the average number of packet transmissions of that flow per slot and can be expressed
in terms of E[n] as follows:

flow throughput =
1

E[n]

For a homogeneous K-flow system, the overall throughput,η, is given as follows:

η =
K

E[n]

Hence, in order to satisfy the overall throughput requirement, ηmin, we must have the following:

η ≥ ηmin

The above equation can be expressed in terms of an upper boundon E[n] as follows:

E[n] ≤
K

ηmin

(17)

The expressions for E[n] for various schedulers are given asfollows:
1) CSDUA: From Eq. (14), we can evaluateΣS as follows:

ΣS = pG + (K − 1)
1 − pG − (1 − pG)K−1

K

= pG + 1 − pG − (1 − pG)K

= 1 − (1 − pG)K

Hence, we obtain the following:

E[n] =
K

ΣS

=
K

1 − (1 − pG)K

2) CSDPA(Ph): For odd values of K, using Eq. (15), we can evaluateΣS as follows:

ΣS = pG + 2

Ph
∑

m=1

(1 − pG)2m−1pG(2 − pG)

2

= pG +
(1 − pG)(2 − pG)pG[1 − (1 − pG)2Ph ]

1 − (1 − pG)2

= pG +
(1 − pG)(2 − pG)pG[1 − (1 − pG)2Ph ]

(1 − (1 − pG)(1 + (1 − pG))

= pG + 1 − pG − (1 − pG)2Ph+1

= 1 − (1 − pG)2Ph+1

For even values of K, using Eq. (16), we have:

ΣS = pG + pG(1 − pG) + 2

Ph
∑

m=2

(1 − pG)2m−2pG(2 − pG)

2

= 2pG − p
2
G +

(1 − pG)2(2 − pG)pG[1 − (1 − pG)2Ph−2]

1 − (1 − pG)2

= 2pG − p
2
G +

(1 − pG)2(2 − pG)pG[1 − (1 − pG)2Ph−2]

(1 − (1 − pG)(1 + (1 − pG))

= 2pG − p
2
G + 1 − 2pG + p

2
G − (1 − pG)2Ph

= 1 − (1 − pG)2Ph , Ph ≥ 1

Hence, we obtain the following:

E[n] =

{

K
1−(1−pG)2Ph+1 , K odd;

K
1−(1−pG)2Ph

, K even.
(18)

3) CSDPA(Ph = Pmax): Substituting forPh = Pmax in Eq. (18), we obtain E[n] = K
1−(1−pG)K which is the same as that

obtained for theCSDUA scheduler.
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4) CSDPA(Ph = 0): This corresponds to the simple WRR scheduler, since in this case, flows are only allowed to transmit
in slots allocated to them. Substituting forPh = 0 into Eq. (18), we obtain E[n] =K

pG
, which is theworst-caseexpected HOL

packet delay of CSD schedulers.
The expression for E[n2] is given as follows:

E[n2] =
K2(2 − pG)

p2
G

5) Fair Aggregation (FA) Scheduler:We consider the FA scheduler [19] as a variant of the WRR scheduler, where the
motivation is to reduce the delay variance relative to the WRRscheduler while retaining the channel efficiency. Instead of
switching resource allocation between flows at each slot, this is performed upon eachsuccessfulpacket transmission. Hence,
the FA flow transmission sequence corresponds to the WRR flow allocation sequence and is shown in Fig. 3. In this way, the
likelihood that a flow will transmit at least once within eachcycle of K slots is increased compared to the WRR scheduler.

According to Fig. 3, after each flow 1 transmission, the flow transmission sequence before the next flow 1 transmission is
fixed and given by{2, 3, 4, · · ·K}. These K-1 packets must be transmitted in the firstn-1 slots before flow 1 transmits in slot
n. Hence, in the firstn-1 slots, there must be exactly K-1 slots where the channel iserror-free; in addition, the channel must
be error-free in slotn. Therefore, we can write the pdf ofn as follows:

d(n) =

{ (

K+i−1
i

)

(1 − pG)ipK
G , n = K + i, i ≥ 0;

0, n < K.
(19)

From Eq. (19), we can compute E[n] as follows:

E[n] =
∑

n

n · d(n)

=

∞
∑

i=0

(K + i)

(

K + i − 1

i

)

(1 − pG)ipK
G

=

∞
∑

i=0

(K + i)
(K + i − 1)!

i!(K − 1)!
(1 − pG)ipK

G

=

∞
∑

i=0

K(K + i)!

K · i!(K − 1)!
(1 − pG)ipK

G

= K · pK
G

∞
∑

i=0

(

K + i

i

)

(1 − pG)i

Using the following result from Binomial theorem:
∞
∑

i=0

(

K + i

i

)

xi =
1

(1 − x)K+1
(20)

we obtain

E[n] =
K · pK

G

(1 − (1 − pG))K+1
=

K

pG

Similarly, we can compute E[n2] as follows:

E[n2] =
∑

n

n2 · d(n)

=

∞
∑

i=0

(K + i)2
(

K + i − 1

i

)

(1 − pG)ipK
G

= K.

∞
∑

i=0

(K + i)

(

K + i

i

)

(1 − pG)ipK
G

K1 .......

transmission of flow j packet

K-1 3 2 1 K K-1

flow transmission cycle

time

j

Fig. 3. Flow transmission sequence in K-flow homogeneous FA scheduling
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Fig. 4. Operating Regions (K,Ph,pG) for various schedulers to satisfyηmin = (a) 0.8 and (b) 0.9

Differentiating Eq. (20), we obtain the following:
∞
∑

i=0

i

(

K + i

i

)

xi−1 =
K + 1

(1 − x)K+2

Hence, we obtain

E[n2] = K2
∞
∑

i=0

(

K + i

i

)

(1 − pG)ipK
G

+ K

∞
∑

i=0

i

(

K + i

i

)

(1 − pG)ipK
G

= K2 pK
G

pK+1
G

+ K · pK
G (1 − pG)

K + 1

pK+2
G

=
K2 + K − K · pG

p2
G

We substitute the expressions of E[n] for each wireless scheduler into Eq. (17) and illustrate the constraint graphically in Fig.
4 with ηmin= 0.8 and 0.90 respectively.

We can partition the operating region into three sub-regions. The region denoted byAll, given bypG ≥ ηmin, indicates that
all schedulers can be deployed for any K while satisfying thethroughput constraint. On the other extreme, the region denoted
by None, whereK < Kmin for CSDUA andPh < Pmin for CSDPA(Ph), indicates that none of the schedulers can satisfy
the throughput constraint. The remaining region stipulates the requirements on K andPh for CSD schedulers to satisfy the
requirement. Hence, givenηmin, K andpG, we can determine which of the scheduler(s) are admissible with respect toηmin.

B. Determination ofNQ in terms of HOL Packet Delay Statistics

A G/G/1 system can be used to model the queueing behavior at a wireless receiver, as shown in Fig. 5. Based on queueing
theory, the average waiting time in the queue under steady-state conditions satisfies the following [20]:

W ≤
λ(σ2

a + σ2
b )

2(1 − ρ)
−

λ(1 − ρ)σ2
a

2
(21)

where

σ2
a = Variance of inter-arrival times

σ2
b = Variance of the service times

λ = Average arrival rate
1

µ
= Average service time

ρ = Utilization factor=
λ

µ
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If we assume a constant-rate server (i.e.,σb=0), and a constant utilization factorρ, then Eq. (21) can be written as follows:

W ≤ Cλσ2
a, where C =

ρ(2 − ρ)

2(1 − ρ)
= constant

Using Little’s formula, which is valid when steady-state conditions exists, the average number of packets waiting in the queue
can be expressed as follows:

NW = λW

≤ Cλ2σ2
a

Hence, we can choose a suitableNQ in terms of arrival statistics,λ andσa, as follows:

NQ = Cλ2σ2
a

However, we note the following relationship between arrival statistics to the buffer and departure statistics from thescheduler:

λ =
1

E[n]

σ2
a = V ar[n]

where

V ar[n] = E[n2] − (E[n])2

Hence,NQ can be computed in terms of the HOL packet delay statistics ofthe wireless scheduler as follows:

NQ = C ·
V ar[n]

E[n]2

From Section VI-A, we can obtain closed-form expressions for the ratio V ar[n]
E[n]2 for the WRR and FA schedulers as follows:

V ar[n]

E[n]2
=

{

1 − pG, WRR scheduler;
1−pG

K
, FA scheduler.

(22)

In addition, we have the following:
Theorem 4:For uncorrelated channel errors, the ratioV ar[n]

E[n]2 for a homogeneous K-flow CSD scheduler is asymptotically
upper bounded.

Proof: From Theorem 2 and 3, we have the following expression:

V ar[n]

E[n]2
=

K(1 + C) + 2
K
∑

r=1

K−1
∑

i=1

r+i−1
∏

m=r

Fm

(1 − C)ΣS

·
Σ2

S

K2

SinceFj ≤ 1, 1≤ j ≤ K, we have the following:

V ar[n]

E[n]2
≤

K(1 + C) + 2
K
∑

r=1

K−1
∑

i=1

(1 − C)ΣS

·
Σ2

S

K2

=
K(1 + C) + 2K(K − 1)

(1 − C)ΣS

·
Σ2

S

K2

=
K(2K − 1 + C)

(1 − C)ΣS

×
Σ2

S

K2

=
2ΣS

1 − C
−

ΣS

K

(λ,σ
a
) (µ,σ

b
)

W

Fig. 5. G/G/1 Queueing representation of receiver buffer
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Fig. 6. V ar[n]

E[n]2
of various schedulers forpG = (a) 0.9 and (b) 0.99

From Section VI-A, we know that 0≤ ΣS ≤ 1. Hence,

V ar[n]

E[n]2
≤

2ΣS

1 − C

Since 0≤ C ≤ 1, the RHS of the above equation is finite and hence, the ratioV ar[n]
E[n]2 is upper bounded.

Hence, the queueing system at the buffer isstablefor the wireless schedulers considered in our analysis.
For a throughput constraint ofηmin = 0.90, we would like to determine the admissibility and compare the ratioV ar[n]

E[n]2 for
each scheduler for two cases: (1)pG ≥ ηmin and (2)pG < ηmin.

1) pG ≥ ηmin: According to Fig. 4, in this region, all schedulers are admissible in terms of the throughput constraint. We
plot the ratio V ar[n]

E[n]2 for each scheduler as a function of K forpG = 0.9 and 0.99 in Fig. 6.
We can categorize the FA and theCSDPA(Ph = 0) schedulers as channel-unaware schedulers since their transmission

heuristics are independent of the channel process. Since the channel conditions are very good, most flows transmit in their
allocated slots. Hence, the additional transmission opportunities available for channel-aware schedulers actuallyresults in an
increased buffer requirement since delay variance is increased while the mean delay is reduced compared to channel-unaware
schedulers. However, the lower buffer requirement of channel-unaware schedulers is traded-off with lower channel efficiency
compared with channel-aware schedulers.

Under very good channel conditions, the expression of E[n] for theCSDUA andCSDPA(Ph=Pmax) can be approximated by
K. As K increases, therandomnessof transmissions (i.e., Var[n]) in theCSDUA scheduler increases while theCSDPA(Ph =
Pmax) scheduler becomes more effective in controlling therandomnessof transmission. As a result, although E[n] increases
with K, the buffer requirements of theCSDUA scheduler increases while that of theCSDPA(Ph = Pmax) scheduler decreases
as K increases since Var[n] is the dominant term in the ratio.However, for large K, the E[n] term becomes dominant and
hence, the ratio converges asymptotically for both schedulers. The buffer size requirement forPh < Pmax is similar to that of
Ph = Pmax since most transmissions take place in allocated slots under very good channel conditions.

2) pG < ηmin: According to Fig. 4, in this region, the FA andCSDPA(Ph = 0) schedulers are inadmissible. Hence, we
compareV ar[n]

E[n]2 of the CSDUA andCSDPA(Ph > 0) schedulers as a function of K forpG = 0.8 and 0.5 in Fig. 7.
We observe the same trend betweenCSDUA and CSDPA(Ph = Pmax) schedulers as when the channel conditions are

very good. However, the buffer size requirement for theCSDPA(Ph) scheduler is reduced asPh is reduced. Under poor
channel conditions, a substantial amount of transmissionsoccur in non-allocated slots, and therefore, a smallerPh is effective
in limiting these transmissions, thereby reducing the delay variance, at the expense of reduced channel efficiency.

C. Effects of non-zero channel error correlation

In this section, for a throughput constraint ofηmin = 0.90, we would like to determine the admissibility and compare the
ratio V ar[n]

E[n]2 for each scheduler for two cases: (1)pG ≥ ηmin and (2)pG < ηmin, whenpcorr = 0.1.
1) pG ≥ ηmin: According to Fig. 4, in this region, all schedulers are admissible in terms of the throughput constraint

when channel errors are uncorrelated. In [19], we observed that with respect to the case of uncorrelated errors, the throughput
achieved by the FA scheduler is degraded significantly as thelevel of error correlation is increased, while that achieved with
the WRR and CSD schedulers is invariant with the level of errorcorrelation. Hence, the FA scheduler is not admissible when
channel errors are correlated.
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We plot the ratioV ar[n]
E[n]2 for the WRR and CSD schedulers as a function of K forpG = 0.90 in Fig. 8(a). As K increases, if a

flow misses its allocated slot due to channel errors, it is less likely to miss the next allocated slot since the duration till the next
allocation is increased. Therefore, the delay variation (i.e., Var[n]) due to transmission in non-allocated slots is reduced and
therefore, the ratioV ar[n]

E[n]2 is reduced. We also note that the ratio tends asymptoticallyto the corresponding value achieved for
uncorrelated errors. Therefore, the buffer system at the wireless receiver is stable. In addition, the relative bufferrequirements
amongst the schedulers are preserved as in the case of uncorrelated errors.

2) pG < ηmin: According to Fig. 4, in this region, the WRR scheduler is inadmissible. Hence, we compare the ratioV ar[n]
E[n]2

for different arbitration schemes of the CSD scheduler as a function of K forpG = 0.8 in Fig. 8(b). Similar trends are observed
in terms of the relative buffer requirements amongst the schedulers as forpG = 0.90.

VII. C ONCLUSIONS

In this paper, we developed a framework for the stochastic analysis of the delay performance of channel-state dependent
wireless schedulers. These schedulers differ in the mechanism of choosing the ‘instantaneous’ best flow (arbitration scheme)
to transmit based on available channel information in orderto satisfy some performance requirements. We adopted a generic
scheduling architecture based on proposed wireless schedulers in the literature, and defined variants that differ in terms of the
arbitration scheme. We derived the delay probability density function and its moments for a Two-State Markov Chain Error
Model using a matrix formulation approach.

We demonstrated the applicability of our analysis numerically by considering the admissibility of a wireless scheduler in terms
of a minimum throughput requirement. This translates to an upper bound on the mean HOL packet delay. Given the channel
condition and the total number of flows, we illustrated graphically the admissible region of each scheduler. Subsequently, we
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evaluated the buffer size requirement of the wireless receiver and highlighted the trade-off between buffer size requirements
and channel efficiency.
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