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Abstract—We are witnessing pervasive use of wireless sensor
networks (WSN)s in a wide variety of applications such as
monitoring of road infrastructure. As they are expected to be
deployed in harsh environments for long durations, the research
community have turned their attention to tapping on ambient
energy to power such networks. However, since energy harvesting
rates are still significantly lower than the power consumption in
each wireless sensor node, the energy availability is sporadic,
making the design of runtime policies in WSN powered by am-
bient energy harvesting (WSN-HEAP) to maximize performance
an important but challenging task.

In this paper, using extensive simulations, we evaluate the
efficacy of transmission power control for 2-D WSN-HEAP
deployed in a grid topology in terms of throughput, data delivery
ratio and fairness. When a fixed power is assigned to all nodes, we
observe a trade-off between throughput and fairness: throughput
is maximized at lower powers at the expense of fairness and
vice versa. When nodes are assigned powers according to their
proximity from the sinks, we observe that assigning the minimum

transmission power required for each node to communicate
with its nearest sink maximizes all performance metrics. This
indicates that minimizing interference dominates over multi-sink
redundancy in a 2-D WSN-HEAP.

I. INTRODUCTION

With the advancement in Micro-Electro-Mechanical Sys-

tems (MEMS) technology, we are witnessing the use of

wireless sensor networks (WSNs) for a myriad of predictive

monitoring applications such as road infrastructure monitoring

[1]. Unlike event-driven monitoring applications (e.g., detec-

tion of threats and oil spills) where data dissemination is only

triggered upon the detection of abnormal phenomena, sensed

data is continuously being disseminated (e.g., periodically)

in predictive monitoring. Hence, while maintaining high data

reliability is of primary importance in event-driven monitoring,

achieving high data throughput and fairness is also essential

for predictive monitoring.

Since WSNs are expected to be deployed in harsh or

inaccessible environments for long periods of time, the WSN

research community have recently turned their attention to

tapping on ambient energy such as solar, vibrational, wind

and thermal energy to replace/supplement batteries to power

WSNs. Since ambient energy is always available, such WSNs

powered solely by ambient energy harvesting (which we

refer to as WSN-HEAP in this paper) are more effective and

economical in the long-term as they can remain operational

for very long durations until hardware failure. However, since

energy harvesting rates vary with the environment and are still

significantly lower than the power consumption in each wire-

less sensor node, the energy availability is sporadic, making

the design of runtime policies to maximize performance an

important but challenging task.

Most existing work in energy harvesting WSNs (e.g., [2])

assume that energy harvesting is used to supplement battery

supply, and focus on adapting duty cycles and task scheduling

by predicting future energy availability. Game theory is also

applied to find the optimal parameters for a sleep and wakeup

strategy to tradeoff between packet blocking and dropping

probabilities [3]. However, the prediction of future energy

availability is difficult in practice as empirical characterization

of energy harvesting sensor motes [4] have shown that the

energy harvesting times do not always exhibit time correlation.

Alternatively, the power consumption profile can be adapted

to fit the energy profile by tuning the transmission power on

a per-node basis. In traditional battery-powered WSNs, this

is widely used to maximize the network lifetime for a given

offered load subject to total network power constraint [5]. In

cellular networks, location-based power control schemes are

proposed [6] for mobile devices where the transmission power

of a device is continuously adjusted temporally according to

its distance from the base station (sink).

Since WSN-HEAP are not subject to network power con-

straints and mobility, transmission power control can be used

to adjust both the sending rate as well as reliability of packet

delivery to maximize performance. In our previous work

[7], we considered a linear WSN-HEAP for railroad health

monitoring and investigated the data delivery performance

when the transmission power assigned to each node is varied.

In this paper, we evaluate location-based transmission power

control schemes for a 2-D WSN-HEAP deployed in regular

grid topology for monitoring of road infrastructure. We show

via extensive simulations that throughput, data reliability and

fairness are maximized by assigning the minimum transmission

power required for each node to communicate with its nearest

sink.

We define our system model for a 2-D WSN-HEAP in Sec-

tion II. We describe several location-based transmission power

allocation schemes in Section III, and evaluate their impact on

the performance of a 2-D WSN-HEAP in Section IV. Finally,

we provide some concluding remarks and directions for future

research in Section V.



II. SYSTEM MODEL

In this section, we present our system model for WSN-

HEAP, which is motivated by existing commercial-off-the-

shelf energy harvesting sensor motes such as Ambio24 [8],

which (i) functions with solar and vibrational energy har-

vesters, (ii) operates in a single-hop architecture, i.e., it can

only be configured either as a source or a sink, and (iii)

transmits sensed data as soon as sufficient energy is harvested.

A. Energy and Traffic Model

Each WSN-HEAP node comprises various components as

illustrated in Figure 1. The energy harvesting device converts

ambient energy into electrical energy which is cumulatively

stored in the energy buffer (e.g., in supercapacitors), while the

node is idle. This is because the achievable harvesting rates

today are still significantly lower than the power consumption

of the other components.
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Fig. 1. Components of a WSN-HEAP device.

Once the stored energy reaches a useful level, Ef (J), the

microprocessor will actuate the low-power sensor, and the

sensed data is transmitted as a packet (sd bits) to the sink(s)

at α bps, while energy is still being harvested. The above is

repeated when the stored energy reaches an unusable level, as

shown in Figure 2.
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Fig. 2. Energy model of a WSN-HEAP device.

Assuming that the microprocessor and transceiver constitute

the main power consumers (consuming Pµ and Pδ W respec-

tively) in each WSN-HEAP node [9], the energy expended

during transmission of a data packet of duration td = sd

α
is

(Pδ + Pµ)td. To ensure that there is sufficient stored energy

in each cycle to transmit a packet, we set Ef = (Pδ + Pµ)td.
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Fig. 3. Illustration of communication (dC(a)) and interference (dI (a))
range for node a.

B. Propagation Model

We assume a simple free-space direct-ray path-loss model,

where, given transmission power of Pa from node a, the

received signal strength, Prec, at a distance d away can be

evaluated as follows:

Prec =
KPa

dγ
, (1)

where the propagation factor, K , depends on the antenna

gain and some reference distance, and γ is the path-loss

exponent that depends on the carrier frequency and the en-

vironment.

Node a’s transmission can be correctly decoded at node b

if its received signal strength exceeds the receiver sensitivity,

denoted by P̃s. Accordingly, we define the communication

range of node a, dC(a), as follows:

dC(a) = (
KPa

P̃s

)
1

γ . (2)

On the other hand, node a’s transmission will be detected

(but not correctly decoded) at (and hence, potentially interfere

with an intended transmission to) node b, if its receive signal

strength at node b exceeds the propagation limit, denoted by

P̃l, but falls below P̃s, where P̃l < P̃s. Accordingly, we define

the interference range of each potentially interfering node t,

dI(t), as follows:

dI(t) = (
KPt

P̃l

)
1

γ . (3)

This is illustrated in Figure 3. Accordingly, node a’s trans-

mission can be correctly decoded at node b at distance dab

away if the Signal-to-Interference Ratio (SINR) exceeds a

certain threshold, θ, where:

SINR = 10log10

KPa

d
γ

ab

Pnoise +
∑

j:djb≤dI(j)

KPj

d
γ

jb

,

and Pnoise is the receiver noise power.



C. Deployment Topology

WSN-HEAP can be deployed in many road infrastruc-

ture monitoring applications where ambient energy sources

are available. A possible application is in the monitoring

of bridge frost during winter, where the vibration of the

bridge can be harvested to power wireless sensor nodes. The

formation of road or bridge frost depends primarily on the

pavement temperature and dew point temperature. A real-

time, accurate “picture” of the pavement surface temperature

and the corresponding dew point temperature on sensitive

sections of the road or bridge network is useful to provide

information for decision makers to plan anti-icing operations

prior to manpower or materials dispatch and before surface

temperatures reach the freezing point. This can be achieved

by installing wireless sensors at regular intervals and a few

mains-powered sinks to relay the information.

For this paper, we deploy 16 such sinks in a 4 x 4 regular

grid, with grid size of x × x metres. WSN-HEAP nodes are

then deployed uniformly (with known locations obtained from

GPS during deployment) with n nodes in between each sink

and its nearest neighboring sink. An illustration for the case

of n = 2 is given in Figure 4.

x = 100m

n = 2

x = 100m

Perpetually-powered sink WSN-HEAP node

Fig. 4. Two-dimensional grid deployment of WSN-HEAP nodes and sinks.
The area inside the dotted box is the region of interest (ROI).

III. TRANSMISSION POWER CONTROL SCHEMES

In this paper, we consider transmit power control as a

means to maximise throughput, reliability and fairness in a

2-D WSN-HEAP. The simplest power allocation scheme is

to assign the same (fixed) transmit power to all nodes (FP).

A large transmit power permits direct communication with

more sink(s) (multi-sink redundancy) but reduces the offered

load (longer harvesting period) and introduces the near-far

effect. On the other hand, assigning low transmit powers would

increase the offered load and reduce the level of interference,

at the expense of reducing the scope for exploiting multi-sink

redundancy.

However, since nodes have different (but known) proximity

to the sinks, intuitively, they should be assigned transmit

powers accordingly so as to balance the inherent trade-offs

between (high offered load, low interference) with multi-sink

redundancy with the FP scheme. Based on Eqn. (2), the

transmit power needed to reach a communication range of

x, P (x), is given by:

P (x) =
P̃s

K
xγ . (4)

Hence, each node can compute the transmission power

required to communicate with, or interfere with other trans-

missions at, the sink(s). Let dmin,i,j be the distance from node

i to its j nearest sink(s).

Accordingly, we propose the following location-based

power allocation schemes:

• Minimum-Interference Allocation (MI) To minimise

the near-far effect, node i sets its transmit power, Pi,

such that it only reaches its nearest sink, i.e.,

Pi = P (dmin,i,1).

• Multi-Sink Allocation (MS(j)) To maximise the scope

of multi-sink redundancy, node i sets its transmit power,

Pi, such that it can communicate with j of its nearest

sinks, j ≥ 2, i.e.,

Pi = P (dmin,i,j).

Although the communication range of some nodes may

span beyond the sinks, their impact is only manifested at

the sinks since WSN-HEAP nodes do not “receive”.

Figure 5 shows an example of these location-based power

control schemes for one specific node.

IV. SIMULATION RESULTS

We evaluate the performance of a 2-D WSN-HEAP for con-

dition monitoring of road infrastructures based on simulation

results obtained using the Qualnet [10] network simulator.

The power consumption parameters are obtained from the

specifications of commercially available MICAz sensor motes

[11], with an operating voltage of 3V. Based on the data

sheet of the CC2420 radio, we perform a polynomial fit

to obtain the approximate relationship between transceiver

power dissipation during packet transmission, Pδ and the

corresponding transmission power, Pt as shown in Figure 6(a).

The parameters used are summarised in Figure 6(b).

The propagation factor, K , is computed using Eqn. (2) based

on a communication range of 100m at maximum transmit

power of 1mW (0 dBm). We also set x to the communication

range to allow multi-sink redundancy to be exploited. We

consider an SINR threshold of 7 dB and assume a mean

charging rate, E[G] = 0.5mW for all nodes. The deployment

density considered in this study ranges from n=1 to 8.

To eliminate edge effects, we define a region of interest

(ROI) comprising N = 4n+n2 WSN-HEAP nodes and 4 sinks

(c.f. Figure 4) and only consider the packets transmitted and

received within this region − WSN-HEAP nodes outside this

region only contribute to interference at sinks.
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Fig. 5. Illustration of various location-based power control schemes.

(a) (b)

Parameter Value

x (m) 100

n [1, 2, 3, 4, 5, 6, 7, 8]

θ (dB) 7

Κ 3.1623x10
-6

P µ (mW) 24

α (kbps) 250

s d (bits) 800

E [G ] (mW) 0.5

γ 2

P noise (dBm) -120

P l (dBm) -100

P s (dBm) -95

P x (dBm) [-7, -6, -5, -4, -2, 0]

Fig. 6. (a) Transceiver power dissipation during packet transmission, Pδ (mW) vs transmit power, Pt (dBm) obtained with polynomial fit of CC2420 radio
data and (b) Parameters for numerical results.

Let ps,i and pr,i be the total number of packets sent by node

i ∈ ROI and unique packets received at the sinks respectively

over the simulation duration T . Node i’s throughput, Ri, is

then given by:

Ri =
pR,i

T
.

Hence, the network throughput density, S, is given by:

S =

∑
i∈ROI Ri

x2
.

Each packet from each WSN-HEAP node is successfully

delivered as long as it arrives at at least one sink. Hence, the

data delivery ratio for node i, DDRi is given by:

DDRi =
pr,i

ps,i

.

The average data delivery ratio, DDR, is then simply:

DDR =

∑
i∈ROI DDRi

N
.

Finally, by using Jain’s fairness index [12], the overall

network throughput fairness, F , is given by:

F =
(
∑

i∈ROI Ri)
2

N
∑

i∈ROI R2
i

.

A. Fixed Power Comparison

We begin by first investigating the effect of assigning a fixed

power for all WSN-HEAP nodes. We plot each performance

metric as a function of deployment density for FP (PFP ) for

various PFP ∈ [-7, -6, -5, -4, -2, 0] dBm in Figure 7.

1) Throughput: For each power, there is an optimal

throughput which can be observed at different node densities.

Prior to the optimal point, the throughput shows consistent

increase, indicating that the additional packets generated by

the added nodes can be accommodated by the network. After

the optimal point, further increase in the number of nodes

decreases the throughput which means that the additional

traffic causes severe contention. The density at which the

throughput reaches its peak depends on the transmit power.

From 0 to -4 dBm, the throughput peaks at n = 4, while

at -5 and -6 dBm, the throughput peaks at n = 5. At the

lowest transmit power of -7 dBm, the throughput reaches

the peak at n = 6. A more important observation is that at

lower transmit power, peak throughput is higher compared to

higher transmit power. At 0 dBm, peak throughput is 0.0024

packets/sec/m2 while at -6 and -7 dBm, peak throughput is

0.0034 packets/sec/m2. This result can be explained by the

fact that when transmit power is low, the interference level

is also low and therefore more nodes can be accommodated

by the network before severe contention kicks in. Whereas

when the transmit power is high, the interference level is

also high, and the addition of fewer nodes can already cause
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Fig. 7. Comparison of network throughput density (left), data delivery ratio (centre) and throughput fairness (right) obtained with FP scheme (θ = 7dB)

severe contention. Hence, using low transmit power enables

the deployment of more nodes which in turn leads to more

packets being generated resulting in higher throughput density.

2) Data Delivery Ratio: For all the transmit powers evalu-

ated, the data delivery ratio decreases with increasing deploy-

ment density. Note that at -7 dBm, the delivery ratio at n = 1
is 0 due to the fact that -7 dBm is not sufficient for all of the

nodes to reach any of the sinks (at n = 1, minimum transmit

power required is -6 dBm). Since the packet generation rate of

all the nodes are roughly the same, higher deployment density

entails higher overall packet generation rate. The decrease

in DDR can therefore be attributed to increased level of

contention due to the higher packet generation rate at higher

node densities. There is essentially no clear winner in terms

of DDR as the difference among the transmit powers are not

significant except for -7 dBm which shows significantly low

DDR at low deployment densities.

3) Fairness: Similar to DDR, fairness also shows a de-

crease as deployment density is increased for all transmit

powers. This is because at higher node densities, contention

becomes more severe resulting in nodes closer to the sink

becoming more favored (near-far problem). In terms of trans-

mit power, the higher transmit powers of 0 and -2 dBm

consistently show the best fairness up to node density n = 5.

This is expected since the use of high transmit power enables

distant nodes in the network to deliver their packets to sinks.

This may not be true at lower transmit power where only

nodes physically closer to the sinks are more likely to deliver

their packets. To clarify this point, we compute the required

transmit power of nodes at the center of the ROI. Using Eqn.

(4), we can calculate the required transmit power of a node at

the center of the ROI (which is 50
√

2 meters from any of the

sinks):

PdBm(x) = 10 logP (x)

= 10 log P̃s + 10 logxγ − 10 logK

= −95 + 20 log(50
√

2) − 10 log(.0000031623)

= −95 + 37 + 55 = −3

This means that a node at that location requires at least -

3 dBm. Clearly, for transmit powers less than or equal to -4

dBm, nodes close to the middle of the ROI have no chance

of having their packets reach the destination.

In summary, we observe a trade-off between network

throughput density and fairness when assigning transmit power

with the FP scheme: assigning high power maximizes fairness

at the expense of throughput and vice versa. As such, for the

rest of the study, 0 dBm (best in fairness) and -6dB (best in

throughput) will be used for comparison against location-based

schemes.

B. Comparison of Power Control Schemes

We now compare the performance of the fixed power

scheme along with the different dynamic power control

schemes. We plot each performance metric versus deployment

density for various power control schemes in Figure 8.

1) Throughput: For each scheme, there is an optimal

throughput which can be observed at different node densi-

ties. For the MS schemes, peak throughput is obtained at

n = 4. For the MI scheme which shows the best throughput

performance, peak throughput of 0.0042 packets/sec/m2 is

attained at n = 5. The underlying reason behind the superior

performance of MI is that it enables greater spatial reuse.

By transmitting only to the nearest sink, the MI scheme

enables more nodes (at different locations) to have successful

simultaneous transmissions. One interesting observation is that

the fixed power scheme (-6 dBm) provides the best throughput

at higher node densities (n > 6). One main difference between

FP(-6 dBm) and MI is that in the latter, all nodes use -6 dBm

transmit power regardless of their location1. Whereas in the

former, the farthest nodes from the sink located in the middle

of the ROI use transmit power of around -3 dBm which is

greater than -6 dBm. The worse performance of MI at n > 6
can therefore be attributed to the increased interference caused

by these nodes. It is quite surprising that the MS schemes did

not perform well in the simulations. In fact, MS(2) and MS(3)

are only slightly better than FP(0 dBm) while MS(4) does not

show any improvement over FP(0 dBm). This is due to the

fact that the transmit powers allocated by these schemes are

in the -2 to 0 dBm. Note that the throughput of MS(2) is

comparable to that of FP(-2 dBm) while the throughput of

MS3() is in between FP(-2 dBm) and FP(0 dBm).

1Note however that at transmit power of -6 dBm, nodes in the middle
section of the ROI does not really reach any of the sinks. This partly explains
the low fairness of FP(-6 dBm) compared to MI.
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Fig. 8. Comparison of network throughput density (left), data delivery ratio (centre) and throughput fairness (right) obtained with various schemes (θ = 7dB)

2) Data Delivery Ratio: For all the schemes, it can be

observed that data delivery ratio decreases with increasing

deployment density. As mentioned, this decrease is due mainly

to the increased contention as the number of nodes is increased

in the network. Similar to the DDR in FP, there is no clear

winner in terms of the DDR as the difference among the

different schemes are not significant. We expected the MS

schemes to provide higher DDR as packets can reach multiple

sinks. However, the impact of interference seems to outweigh

the potential benefit of multi-sink redundancy.

3) Fairness: Except for MI, the fairness of all the other

schemes decreases as the deployment density increases due to

near-far problem where nodes closer to the sink become more

favored. The MI scheme, which shows the best performance,

maintained a fairness value close to 1 at all node densities. This

is possible because MI’s low interference level enables the

reception of data packets even from farther nodes. Recall that

with the capture effect (SINR), when the interference level is

low, there is a higher probability of decoding packets correctly

even when the received power is low.

V. CONCLUSIONS

As wireless sensor networks are expected to be deployed in

harsh environments for long durations, the research commu-

nity have turned their attention to tapping on ambient energy

as an alternative source to batteries to power such networks.

However, since energy harvesting rates are still significantly

lower than the power consumption, the energy availability

is sporadic, making the design of runtime policies to maxi-

mize performance in Wireless Sensor Networks Powered by

Ambient Energy Harvesting (WSN-HEAP) an important but

challenging task.

We consider a 2-D WSN-HEAP for monitoring of bridge

frost that comprises ac-powered sinks deployed in a regular

grid, with WSN-HEAP nodes deployed uniformly amongst the

sinks. Vibration energy generated from passing traffic is used

to power the nodes, such that a data packet is sent directly

to the sink(s) whenever sufficient energy is accumulated. We

consider a fixed power scheme FP(P ) where every node is

assigned the same power, P , and a multi-sink scheme MS(j),

where each node is assigned a power level just sufficient to

communicate with its nearest j sinks. We denote by MI the

special case where j = 1, since this scheme minimizes the

interference while ensuring connectedness. We evaluate the

efficacy of these schemes in terms of throughput, data delivery

ratio and fairness using simulations for various node densities.

For FP(P ), we observe that there is an optimal density,

n∗, that maximizes the throughput, where n∗ is reduced as P

is increased. Further, there is a trade-off between throughput

and fairness: throughput is maximized at lower powers at

the expense of fairness and vice versa. When compared

against the MS and MI schemes, we observe that the MI

scheme maximizes both throughput and fairness for all node

densities. This indicates that the impact of interference seems

to outweigh the potential benefits of multi-sink redundancy.

For future work, we plan to extend the evaluation to

more realistic scenarios where energy harvesting rates vary

temporally as well as spatially.
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