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Abstract—Wireless multihop ad hoc networks face a multitude
of challenging problems including highly dynamic multihop
topologies, lossy and noisy communications channels, and spo-
radic connectivity which contribute to frequent link failures.
Rapid and accurate link failure detection is therefore important
to maintain correct and optimum operation of network routing
protocols. In this paper, we propose a unified link failure de-
tection and recovery architecture (ulfra) which uses link layer
feedback for rapid failure detection and packet salvaging for
packet recovery. While link layer feedback and packet salvaging
have been studied in simulations and simple experiments, no
thorough experimental study have been undertaken to evaluate
their real-world performance. This paper essentially fills this
void as we implement and evaluate ulfra in an IEEE 802.11
multihop ad hoc network. Our experimental results show that
link layer feedback, as modeled in current network simulators,
actually performs worse than hello beaconing as it generates
excessive false failure detections. To improve its performance,
we implement a veto mechanism to reduce spurious detections.
Experimental results show that the veto mechanism dramatically
improves the performance of link layer feedback in terms of
packet delivery, delay, and routing overhead as it considerably
reduces the number of false detections. Compared with hello, it
delivers 15–20% more packets at high node failure and 12–20%
more at high network traffic.

I. INTRODUCTION

Wireless multihop ad hoc networks face a multitude of chal-
lenging problems including highly dynamic multihop topolo-
gies, lossy and noisy communications channels, and sporadic
connectivity [1], [2]. These factors contribute to frequent link
failures which severely degrade the performance of network
protocols. Given that link failures are more the norm than
exception, rapid and accurate failure detection is therefore
important to ensure correct and optimum network operation.

In wired networks, rapid link failure detection is given
primary importance specially in mission-critical deployments
where stringent service level agreements must be guaranteed
[3]. And while wired networks are aiming for sub-50 mil-
liseconds failure detection and recovery in real deployments
[3], no similar proposal has ever been presented to improve
link failure detection in wireless ad hoc networks. The best
that has been accomplished are simple experimental studies
[4], [5] and numerous simulation-based studies [6], [7] on

failure detection using hello beaconing or link layer feedback.
In terms of real implementations, routing protocols employ
hello-based failure detection which is slow and suffers from
many serious problems [4].

In this paper, we introduce a unified link failure detection
and recovery architecture (ulfra) to address the deficiencies
in existing implementations. The cross-layer architecture is
routing protocol-independent and employs two well-known
techniques in ad hoc networks [8], [9]: link layer feedback to
improve failure detection and packet salvaging as a recovery
mechanism. We implement the architecture in Linux and
evaluate its performance in an IEEE 802.11-based wireless
multihop ad hoc network. While link layer feedback and
packet salvaging have been studied and used in simulations,
their real-world performance remain unknown.

Our experimental results reveal that in reality, link layer
feedback as modeled in widely-used network simulators [10],
[11], does not necessarily provide improvement. In the case of
link layer feedback which uses unicast packets as link probes,
it generates considerable false detections when the packet
sending rate is high and short-term link quality variations
occur. To minimize spurious detections, we implement a veto
mechanism into the basic link layer feedback. Our results
show that the veto mechanism dramatically improves the
performance of link layer feedback as it considerably reduces
false detections. Its packet delivery ratio (PDR) is 15–20%
and 12–20% more than that of hello at high node failure and
network traffic rates, respectively.

The remainder of this paper is organized as follows. Section
II presents an overview on link failure detection and related
work. Section III presents the design and implementation
of ulfra. Section IV discusses the performance evaluation
results, and Section V concludes the paper with a summary of
the important findings and future work.

II. LINK FAILURE DETECTION AND RELATED WORK

In wireless ad hoc networks, link failure detection mech-
anism can be performed using either periodic hello beacons
[4], [13] or link layer feedback [8], [9]. Table I summarizes
some relevant studies on failure detection. While there have
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TABLE I
WIRELESS AD HOC NETWORK LINK FAILURE DETECTION STUDIES

Authors Failure Detection Studied Methodology
Broch et al, 1998 [6] LLF Simulations
Chakeres & Royer, 2002 [4] Hello Experiments
Wang et al, 2005 [7] Hello Simulations
Huang et al, 2006 [12] Hello Simulations
Owada et al, 2007 [5] Hello and LLF Experiments

been numerous papers on this topic, most of them have been
conducted using simulations. The experimental studies by
Chakeres and Royer [4] and Owada et al. [5] were simple,
unrealistic, and did not thoroughly investigate the performance
of link layer feedback. As such, none of these efforts managed
to discover the severe problem of link layer feedback discussed
in Sections IV-A and IV-B.

The use of keep-alive packets (referred to as hello) for link
status monitoring has its origins in wired networks.It has been
adapted to wireless networks, in particular to wireless ad hoc
networks where it has been used by many routing protocols
for maintaining local connectivity [13], [14].

As the characteristics of wireless links differ significantly
from that of wired links, numerous problems arose with the
use of hello beacons in wireless ad hoc networks. Link layer
measurement studies show that wireless links are generally
lossy in nature [2] and that the loss rate is affected by several
factors including data rate, transmit power, noise, multi-path,
RF interference, and packet size [2], [15]. Links with non-
negligible loss rates affect the use of hello beacons in terms
of false link breakage detections.

The use of link layer acknowledgement to detect link
failures was proposed in on demand routing protocols, par-
ticularly DSR [6]. The feature exploits the widely-used IEEE
802.11 standard [16] as it provides ACKs for unicast packets.
Subsequently, various protocols (e.g. [9]) have incorporated
the use of link layer feedback for link breakage detection.
Unfortunately, due to the difficulty in implementing link layer
feedback (because of the need to modify device drivers),
existing routing protocol implementations still rely on hello
for detecting link failures [17]–[19]. As such, detection delay
in current implementations range in the order of seconds.

Packet recovery mechanisms have been proposed but are
tightly coupled with routing protocols. DSR [8] proposed the
use of packet salvaging wherein affected packets are purged
from the interface transmit queue and re-routed if alternative
routes are available. CHAMP [9] extended this idea further
by incorporating data caching to enable distributed packet
salvaging. ulfra was designed to decouple this recovery
function from routing protocols. In this manner, routing pro-
tocols can concentrate on their core function of building and
maintaining a consistent routing table. We have shown that
packet salvaging can indeed improve delivery but worsen delay
in real-world ad hoc networks.

Kawadia et al. [20] proposed an extension to the routing
architecture to address the requirements of on-demand routing.
Their extension incorporates “on-demand routing component”

Fig. 1. Unified link failure response architecture. The unshaded blocks are
part of the current routing architecture.

(ODRC) which implements the basic on-demand routing
functionalities such as informing the user-space daemon of
packets requiring route discovery, refreshing used routes, and
removing stale routes. ulfra is different from ODRC as it
focuses on rapid link failure detection and packet recovery.

III. UNIFIED ARCHITECTURE

We present the design and implementation of a unified link
failure detection and response architecture (ulfra) that will
address the shortcomings of the current routing architecture.

A. Design

The main design goal of ulfra is to support link layer
feedback and salvaging of post-routed packets that are affected
by link failures. Figure 1 shows ulfra and how it interacts
with the current routing architecture. ulfra is divided into
a device-independent module and a device-dependent mod-
ule. The former consists of a link failure monitor, recovery
manager, and salvage cache while the latter is patched into
the device driver and has three low-level functions: (i) to
detect link failures by tapping into the low-level functions
provided by the device; (ii) to purge the device transmit queue
of affected packets; and (iii) to en-queue the purged packets
into the salvage cache.

The link failure monitor can receive failure notifications
from several devices. When it receives a notification, it imme-
diately informs the routing daemon and recovery manager of
the link failure. The recovery manager then invokes the device-
dependent module to purge the interface queue and enqueue
affected packets in the salvage cache. The recovery manager
also checks if the salvaged packets can be re-routed (i.e., if
there is alternative route in the routing table). It also monitors
the routing table for modifications. If routes are added, it
checks if packets in the salvage cache can be re-routed.

The lifetime of the packets in the salvage cache is controlled
by the routing daemon. When a link failure occurs, the routing
protocol may perform route repair or a new route discovery.
When it fails to find an alternative route, it must purge the
salvage cache accordingly.
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B. Implementation

We implemented ulfra on the Mikrotik RB-433 router
platform which runs the Linux operating system. It is equipped
with a wireless LAN card that uses the Atheros AR5212
chipset. The router board itself has an Atheros AR7130 CPU
(MIPS) that operates at 300 MHz. The system has 32 MB
of main memory and 64 MB of flash storage space. We
chose the Atheros chipset as the driver source codes are
publicly available in an open-source project called madwifi
[21]. We replaced the Mikrotik firmware with the OpenWRT
distribution (Kamikaze version 8.09). Controlling the various
parameters of the wireless interface card was accomplished
with the use of wireless-tools package.

1) Device-Independent ulfra Module: We implemented
the device-independent ulfra module as a stand-alone load-
able kernel module in Linux (version 2.6). Netlink socket facil-
ities were used to communicate with user-space applications.
The architecture required modifications to the Linux network
stack to allow direct access to the packet forwarder but this
was avoided as it may cause the system to become unstable.
Instead, the implementation used the netfilter hooks to
re-inject packets back into the network stack.

2) Device-Dependent ulfra Module: While implement-
ing the device-independent ulfra module was straight-
forward, implementing the device-dependent ulfra module
into the Atheros madwifi driver (revision r3314) was more
challenging. We implemented the required functionalities into
the if_ath.c source file. This file has a function named
ath_tx_processq() that is invoked after the hardware
completed processing the packets in its transmit buffers. For
every packet in the buffer, the hardware marks whether it has
been successfully transmitted or not. When a packet is marked
as not successfully transmitted due to excessive retransmission
attempts, the device-independent ulfra module is imme-
diately notified about the failure by invoking the interface
function. This approach mimics the link layer feedback model
implemented in simulators such as ns-2 [10] and Qualnet [11].

3) Routing Protocol: To complete the implementation, an
ad hoc routing protocol needs to be integrated into the archi-
tecture. For this purpose, we chose the AODV [13] imple-
mentation from the University of Uppsala [17]. The AODV
daemon was modified to communicate with ulfra through a
netlink socket. Whenever a link failure notification is received
by the daemon, the function neighbor_link_break() is
invoked. This function removes the link to the node that failed
and all the other routes that pass through the failed link.

IV. EXPERIMENTAL EVALUATION

In this section, we present the performance evaluation of
ulfra using experimentation. We used all the six routers
shown in Figure 2 to establish the topology shown in Figure
3. By ensuring the existence of a path from node 1 to node 6 at
all times, we are ensuring that losses are mainly due to failure
detection delay and not due to path unavailability. Similarly,
the provision of high quality links (by fixing the data rate at

Fig. 2. Indoor testbed deployment map.
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Fig. 3. Topology for performance evaluation of link layer feedback and hello

11Mbps and transmit power at 18dBm) ensures that losses not
due to wireless transmission errors.

In the experiments, node 1 was configured to send CBR
traffic to node 6 for 300 seconds. Packet size was fixed at
1400 bytes while the sending rate was varied from 25 to 200
packets per second (pkt/sec). The nodes 2–5 are made to fail
alternately by switching the channel of the ”failed” node and
reducing its transmit power to 1dBm. The rate of failure was
varied from 0 (no failure) to 4 (each node failed 4 times every
minute.) We used K = 2 (number of consecutive hello packets
lost before link is marked as down) and L = 7 (MAC retry
limit) as they provided balanced performance for hello and link
layer feedback, respectively, in our preliminary optimizations.
Each experiment was repeated fourteen times and we present
the average PDR, end-to-end (e2e) delay, routing overhead
and false link failure detections.

A. Performance of Link Layer Feedback

First, we evaluated the PDR and delay of link layer feedback
with hello at 25 pkt/sec and as the node failure rate varies from
0 to 4. Although both schemes show significant degradation as
node failures increase, hello outperforms link layer feedback
by as much as 50% in both performance metrics. This is
clearly unexpected since it has been widely reported that link
layer feedback can detect link breakages faster and it should
therefore have lower packet loss.

To understand the poor performance of link layer feedback,
we logged all false detections generated by ulfra. We noted
that link layer feedback triggers numerous false detections,
more than 30 times that of hello when there are node failures.
Given that every experiment lasts for 300 seconds, link layer
feedback effectively generates an average of more than one
false detection per second. This significantly high false detec-
tion rate causes severe impact on the operation of the routing
protocol. In particular, it causes numerous route discoveries to
be invoked, which results in higher routing overload.

B. Improving Link Layer Feedback

The results in the preceding section reveals the danger of
using raw link layer feedback for link failure detection. Note
that link layer feedback treats unicast packets as “probes”.
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Fig. 4. Time correlation and CDF of false detection intervals.

From the experiments, we find that false detections, when
taken as a percentage of the total number of unicast packets
sent, ranges from 2% to 6%. Although not substantial, the
absolute number of false detections becomes significant when
the sending rate is high. It is well-known in failure detection
theory that systems designed to respond quickly to abrupt
changes are necessarily sensitive to certain high frequency
effects [22].

To analyze the false detections, we plot the time correla-
tion and cumulative distribution function (CDF) of the false
detection intervals, as shown in Figure 4. The auto-correlation
suggests the false detections occur at random while the CDF
indicates that more than 90% occurs within one second of each
other. The fact that a bulk of the false detections (60%) occurs
within 25 ms from each other suggests that raw link layer
feedback is sensitive to short-term link quality degradations.

To address the above issues, we propose a veto mechanism,
implemented at the device-dependent module, to minimize the
number of false detections generated by device drivers.When
a link failure is detected after failing to send a packet, the
module starts a link failure notification (lfn) timer, instead of
immediately informing the device-independent module. When
an ACK is subsequently received after successfully sending
another packet and the lfn timer has not expired yet, a veto
action is performed by cancelling the lfn timer. When no
ACK is received and the timer expires, a notification is sent
to the device-independent module.

A critical aspect of the veto mechanism is the selection of
an appropriate lfn timeout value. We performed experiments
and varied the lfn timeout period from 0 to 250 ms. From
the CDF (see Figure 4b), this range covers more than 70%
of the false detection intervals. Figure 5 shows the different
performance metrics as the lfn timeout period varies from 0
to 250 ms, under two packet sending rates: 25 and 100 pkt/sec.
From 0 to 50 ms, the PDR increases more than two-fold at
100 pkt/sec and increases by more than 20% at 25 pkt/sec.
There is dramatic improvement in the delay as well, which

drops by more than eight times for both packet sending rates.
The improvement in both metrics can be attributed to the

significant drop in false detections. From 0 to 50 ms, false
detections drop by more than 20 and 8 times at 25 and 100
pkt/sec, respectively. This leads to a significant reduction in
routing overhead as AODV performs significantly less route
discoveries. The significant performance improvement of link
layer feedback arising from the application of a small lfn
timeout value confirms our hypothesis that short term link
quality degradation, in the order of several tens of millisec-
onds, is responsible for a large number of false detections.

C. Performance Comparison

We now compare the performance of the link layer feedback
(with veto mechanism) with hello beaconing. We used a
conservative timeout value of 200 ms for the lfn timer as
it provided stable performance. Note that the timeout poses a
slight trade-off. A short timeout ensures rapid failure detection
but increases false detections while a long timeout lessens false
detections but increases failure detection delay.

In Figure 6, we present the PDR and delay of hello
beaconing, link layer feedback, salvaging, and their combina-
tions. ‘Hello+salvaging” denotes the use of hello beaconing in
tandem with packet salvaging while “llf+salvaging” represents
the use of link layer feedback with packet salvaging.

We studied the impact of node failures and sending rate on
the different schemes. The packet sending rate was fixed at
25 pkt/sec for the experiments while the node failure rate was
varied (Figures 6a and 6b). Likewise, the node failure rate was
fixed at one failure per node per minute for the experiments
while the packet sending rate was varied (Figures 6c and 6d).

Impact of Node Failures: The PDR (see Figure 6a) of all the
schemes drops almost linearly as the number of node failures
increase from 0 to 4. When there is no failure, all schemes
deliver around 100% of the packets. When there are node
failures, llf and llf+salvaging significantly outperforms both
hello and hello+salvaging. Notably, llf delivers 15–20% more
packets than hello when there are node failures.

The decrease in the PDR as the failure rate increases is
expected. This is due to the fact that when there are more node
failures, path switching needs to be done more frequently. A
path switch involves three steps: link failure detection, route
discovery to find another path to the destination, and re-routing
of packets. Since losses due to route discovery and packet
re-routing are roughly the same in both hello and llf, the
difference in the performance can be attributed to the link
failure detection mechanism. It is therefore clear that the rapid
failure detection provided by link layer feedback can yield
considerable performance improvement.

We now examine the effect of packet salvaging. For hello,
salvaging improves its delivery ratio by 8% on the average
when there are node failures. Despite this, hello+salvaging
still lags behind llf. Salvaging does not give significant perfor-
mance improvement in llf because the device transmit queues
are almost always empty since llf detects link failures rapidly
(leaving insufficient time for queues to be filled up.) Thus, only
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Fig. 5. Performance of link layer feedback with varying lfn timeout values.

a few packets are actually salvaged. In contrast, hello takes a
long time to detect link failures and, the transmit queues are
filled with substantially more packets. Thus, salvaging causes
a significant increase in delay (see Figure 6b) and is clearly
not necessary when llf is used. Nevertheless, it can be used
when hello is the only available failure detection mechanism.

Impact of Traffic Load: The PDR (Figure 6c) of all schemes
drops as the sending rate increases. The significant drop occurs
between 100 and 150 pkt/sec. Again, llf and llf+salvaging
performs significantly better than hello and hello+salvaging at
all sending rates. Regardless of salvaging, llf delivers 12–20%
more packets than hello at higher sending rates.

While packet salvaging improves hello and llf when load
is constant (6a), the results in this experiment show other-
wise. When load increases, salvaging worsens the network
contention. Suppose the packet sending rate is R and the link
failure detection delay is Ddetn. Then, the number of packets
salvaged during a link failure, Nsalv , is given by:

Nsalv = R ∗Ddetn (1)

In addition, AODV also buffers packets while waiting for a
route reply. If the router discovery delay is Ddisc, then the
number of packets buffered by AODV, Naodv, is given by:

Naodv = R ∗Ddisc (2)

Upon receipt of a route reply, AODV and the salvage cache
simultaneously “flush” their packets into the network. The
number of flushed packets is Nsalv + Naodv = R(Ddetn +
Ddisc). If R or (Ddetn +Ddisc) is large, then the number of

flushed packets could be substantial. E.g., let R = 100 pkt/sec
and Ddetn+Ddisc = 4 (a value observed when hello is used);
then, the number of packets flushed right after route discovery
is 400 packets. This would cause significant contention and
hence lower the network throughput. One possible solution
would be to moderate the flushing of both AODV send buffer
and salvage cache after route discovery.

As expected, increasing network traffic consistently in-
creases the delay of all the schemes (see Figure 6d.) At 200
pkt/sec, the delay of all schemes reaches around 100 ms which
is significantly higher than their respective delays at 25 pkt/sec.
The delay of hello does not significantly increase because
salvaging does not contribute to its PDR.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a unified link failure detection
and recovery architecture (ulfra) to improve the resilience
of IEEE 802.11 ad hoc networks to persistent link failures.
The cross-layer architecture is routing protocol-independent
and employs link layer feedback for rapid failure detection and
packet salvaging as a recovery mechanism. We implemented
and deployed the architecture in a real IEEE 802.11 wireless
multihop ad hoc network.

Our experimental study of link layer feedback (as modeled
in network simulators) show that it performs worse than hello
beaconing. It generates excessive false detections that severely
degrades the network performance. The problem is worse
at higher network load as the number of false detections is
proportional to the packet sending rate. Link layer feedback is
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Fig. 6. Performance comparison of the different mechanisms implemented in ulfra.

also sensitive to short-term link quality variations. To address
these issues, we incorporated a veto mechanism into the
basic link layer feedback to suppress spurious detections. This
dramatically improves the performance of link layer feedback
in terms of packet delivery, delay, and routing overhead as false
detections are considerably reduced. Compared with hello, it
delivers 15–20% more packets at high node failure and 12–
20% more at high network traffic.

Link layer feedback with the veto mechanism and the
ulfra architecture clearly needs to be investigated further
and, we plan to investigate the effect of mobility, auto-rate,
and links with marginal qualities. We also plan to integrate
other routing protocols into the architecture, particularly DSR
and CHAMP, as they are designed to exploit packet salvaging.
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