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Abstract—We present a novel event detection algorithm in
sensor networks for the case where the sensors are randomly
deployed in space. In particular we consider a random sensors
deployment according to a Homogeneous Finite Binomial Point
Process. We first derive the optimal event detection decision rule.
We then develop a novel algorithm to evaluate the intractable
marginal likelihood based on the Gram-Charlier series expansion.
We evaluate our algorithms through extensive Monte Carlo
simulations. Simulation results present the detection and false
alarm rates for different system parameters such as number of
sensors deployed, deployment region size etc.
Keywords: Sensor networks, Event detection, Finite Binomial
Point Process, Gram-Charlier series expansion.

I. INTRODUCTION

Sensor Networks (SN) have attracted considerable attention
due to the large number of applications, such as environmental
monitoring, weather forecasts [1]–[3], surveillance, health care,
and home automation [3], [4]. We consider SN which consist
of a set of spatially distributed sensors which monitor a
spatial physical phenomenon containing some desired attribute
(e.g pressure, temperature, concentrations of substance, sound
intensity, radiation levels, pollution concentrations etc.), and
regularly communicate their observations to a Fusion Centre
(FC) [5]–[7]. The FC collects these observations and fuses
them in order to perform event detection, based on which
effective actions are made [4]. It is therefore imperative for the
SN to be accurate in identifying a valid event (high detection
rate) while maintaining as low as possible false detection (low
false alarm). For example, in [8] the problem of distributed
detection was considered, where the sensors transmit their local
decisions over perfectly known wireless channels. Theoretical
performance analysis was derived in [9] for detection fusion
under conditionally dependent and independent local decisions.
Distributed detection in sensor networks over fading channels
with multiple receive antennas at the Gateway (GW) was
considered in [10].

While the problem of event detection for the case of
deterministic and known sensors deployment in SN has
been widely investigated [4], [9]–[12] and references within,
the problem of event detection where the sensors are randomly
deployed in the field has not been addressed before. This
problem is of great practical interest because in many cases the
locations of the sensors are unknown to the FC. For example,
the sensor nodes may be dropped by airplanes, unmanned
aerial vehicles or ships [13]. As a result, new models and
algorithms for event detection need to be developed for the
case of random deployment models and is the focus of this
paper.

In this paper we develop the first reported solution for
event detection in SN under random deployment. We consider
the practical case where the spatial distribution of the sensor
follows a Homogeneous Finite Binomial Point Process (HF-
BPP). In HFBPP sensor network deployment, fixed and known
number of sensors are spatially distributed in a given region
according to a spatial uniform distribution. If the target (event)
is present/active, it emits energy (acoustic or electromagnetic)
which is measured by each of the sensors. We assume an
energy decay model in which the amount of energy each
sensor measures falls off with distance and obeys an inverse
power-law where the exponent is known as the path loss
exponent [14]. All the measurements from the sensors are
then aggregated to the GW which makes the final decision
whether the target is present or absent. In contrast to previous
works, since we assume a random spatial deployment, the
distance from the target to the sensors is now a random
variable. The objective of the SN is to distinguish between
two hypotheses, such as the absence (Null Hypothesis), or
presence (Alternative Hypothesis) of a certain event [15]–[17].
The ability of a SN to perform such detection and decisions is
crucial for various applications, for example the detection of
the presence or absence of a target in a surveillance system,
detection of missiles, identification of chemical, biological
or nuclear plumes and many more [18]–[20]. The resulting
optimal detection algorithm involves the to derivation of the
likelihood ratio between the two hypotheses.

While deriving the marginal likelihood under the Null
hypothesis is trivial, the derivation of the marginal likelihood
under the Alternative hypothesis is intractable, as we show,
since it involves a multi-variate convolution which cannot
be solved exactly. Building on the approach for deriving
distance distributions in random networks taken in [21], [22],
we develop a novel algorithm to approximate the intractable
distribution of the marginal likelihood under the alternative
hypothesis. Our solution is based on the Gram-Charlier series
expansion. As we show, our algorithm only requires deriving
the first four cumulants to obtain good detection performance.
The Gram-Charlier series is found to be highly accurate and
captures the important tail behaviour of the marginal likelihood
under the alternative hypothesis.

II. SENSOR NETWORK SYSTEM MODEL

In this section we present the model assumptions. We begin
with a formal definition of a Homogeneously Finite Binomial
Point Process followed by system model assumptions.

Definition 1 (Finite Binomial Point Process (FBPP) [23]).



Fig. 1. A realization of sensors deployment according to a Homogeneous
Finite Binomial Point Process with 16 sensors in a circular region of radius
R. In case of event, the source emits energy which falls off with the distance
from each of the sensors.

FBPP Θ is formed as a result of independently uniformly
distributing N points in a compact set W . The density of the
BPP at any location x is defined to be λ (x) = (N/ |W |)1 (x).
For any set V ∈ W , the number of points in V , i.e.
Θ(V ), is binomial (n, p) with parameters n = N and
p = |V ∩W | / |W |

Θ(V ) |n = N ∼ binomial (V, n, p) . (1)

By this property, the number of nodes in disjoint sets is joined
via a multinomial distribution

We now present the system model for the sensor network
(see Fig. 1)

1) The SN consists of N sensors which are deployed
according to a homogenous FBPP in a 2 dimensional
circle with radius R, according to Definition 1.

2) The unknown random location of the kth sensor
(k = {1, · · · , N}) is Xk = [Xk, Yk].

3) The known location of the source (if present) is Xs =
[X0, Y0]. We assume without loss of generality, that
it is located in the center of circle.

4) The source is present (H1) or absent (H0). Under H1,
the source transmits constant power P0. Under H0,
the source does not transmit power.

5) The amount of energy the kth sensors measures is
given by

√
P0R

−α/2
k . The random variable Rk repre-

sents the random distance between the kth sensor and
the source. The parameter α is the path-loss exponent.

6) The observed signal at the GW from N sensors
(k=1,..., N ) at the sth time slot (s = {1, · · · , S}) is

given by:
H0 : Y (s) =

N∑
k=1

Wk (s)

H1 : Y (s) =

N∑
k=1

√
P0Rk(s)

−α/2
+

N∑
k=1

Wk (s) ,

where Rk(s) is the minimum radius of the ball
with center from Xs that contains at least k
points in the ball, i.e., Rk(s) = inf{r :
{R(1)(s), R(2)(s), · · · , R(k)(s)} ∈ BXs(r)}. BXs(r)
is the ball with radius r and center at Xs. The random
variable Wk(s) is the i.i.d additive Gaussian noise
N (0, σ2

Wk(s)
).

III. EVENT DETECTION ALGORITHM

In this section we develop the algorithm for event detection
in randomly deployed sensor networks. We first present the
optimal decision rule. We then derive the various components
required in order to evaluate the optimal decision rule.

A. Optimal Event Detection Decision Rule

The optimal decision rule is a threshold test based on the
likelihood ratio [24]. We consider a frame-by-frame detection,
where the length of each frame is S. The decision rule is then
given by:

Λ (Y (1 : S)) , p(Y (1 : S) |Xs,H0)

p (Y (1 : S) |Xs,H1)

H0

≷
H1

γ, (2)

where the threshold γ can be set to assure a fixed system
false-alarm rate under the Neyman-Pearson approach or can be
chosen to minimize the overall probability of error under the
Bayesian approach [25]. We can decompose the full marginals
under each hypothesis, p (Y (1 : S) |Xs,Hk), k = 0, 1, as

p(Y (1 : S) |Xs,Hk) =
S∏

s=1

p(Y (s) |Xs,Hk). (3)

This decomposition is useful as it allows us to work on a
lower dimensional space, resulting in efficiency gains for the
algorithm we develop and requiring no memory storage for
data.

B. Marginal Likelihood Calculation

The optimal decision rule in (2) involves calculating the
marginal likelihood under each model. The marginal likelihood
under H0 can be easily calculated as it follows a Normal distri-
bution. Obtaining the marginal likelihood under the alternative
hypothesis, p (Y (s) |Xs,H1), is not attainable in closed form
because in involves solving the 2N -fold convolution. The first
N terms of the convolution follow a non-standard distribution
as presented in Theorem 1 below, which is not closed under
convolution. To overcome this problem, we derive a novel
approximation for the marginal likelihood using the Gram-
Charlier series expansion which approximates a probability



distribution in terms of its cumulants [26]. The Gram-Charlier
series expansion for any density f(x) is given by:

f(x) ≈ 1√
2πσ

exp

(
− (x− µ)2

2σ2

)
×
(
1 +

κ3

6σ3
H3

(
x− µ

σ

)
+

κ4

24σ4
H4

(
x− µ

σ

))
,

(4)

where µ = κ1, σ2 = κ2, κ3 and κ4 are the third and fourth
cumulants of f(x). H3(x) = x3−3x and H4(x) = x4−6x2+3
are the Hermite polynomials.

In our model we set f(x) = p (Y (s) |Xs,H1). To this end
we need to find the first four cumulants of p (Y (s) |Xs,H1).
To obtain that we perform the following procedure:

1) Find the distance probability density function of each
sensor reading Rk(s) under the alternative hypothesis
f (Rk(s)|Xs,H1) .

2) Derive the probability density function of the trans-
formed random variable f(Zk)(s)|Xs,H1 where
Zk(s) := Rk(s)

−α/2.
3) Calculate the Moment Generating function (MGF)

(MZk(s)(t)) for Zk(s).
4) Calculate the Moment Generating function (MGF)

(MY (s)(t)) for Y (s) =
∑N

k=1

√
P0Zk(s) +∑N

k=1 Wk(s).
5) Use Gram-Charlier series expansions to approximate

the probability density function of Y (s).

We begin with obtaining the distance distribution
f(Rk(s)|Xs,H1). In [21], the distance Rk(s) is shown to
follow a generalized beta distribution, as follows:

fRk(s) (r(s)|Xs,H1)

=
2

R

Γ(k + 1
2 )Γ(N + 1)

Γ(k)Γ(N + 3
2 )

β(
r(s)2

R2
; k +

1

2
, N − k + 1)

where N points uniformly randomly distributed in 2-
dimensional circle with radius R and 0 < r(s) < R.

Next, we derive the density f(Zk(s)|Xs,H1).

Theorem 1. The density f (Zk(s)|Xs,H1) =
fZk(s)

(
r(s)−α/2|Xs,H1

)
is given by

f (Zk(s)|Xs,H1) =
4

Rα

Γ(k + 1
2 )Γ(N + 1)

Γ(k)Γ(N + 3
2 )

zk(s)
−2/α−1

× β(
zk(s)

−4/α

R2
; k +

1

2
, N − k + 1)

where Zk(s) ∈ (R−α/2,+∞)

Proof: See Appendix A

The MGF of Zk(s) is given by (5). Solving this integral
directly is difficult. Instead, we calculate the mth moment for
Zk(s) and then derive the MGF based on the moments.

Theorem 2. The mth moment of Zk(s) is given by:

E[Zk(s)
m] =

{
R−α

2 m Γ(N+1)Γ(k−α
4 m)

Γ(k)Γ(N−α
4 m+1) , k − α

4 , m /∈ Z≤0

∞, otherwise

(6)

Proof: See Appendix B

Now that we have derived a general expression for the
moments of Zk(s), we derive its MGF:

Theorem 3. The moment generating function
MZk(s) (t) |Xs,H1 is given by:

MZk
(t) = 1 +

∞∑
m=1

tm

m!
R−α

2 mΓ(N + 1)Γ(k − α
4m)

Γ(k)Γ(N − α
4m+ 1)

Proof: See Appendix C

Next, we find the Moment Generating Function MY (s)(t)

for
N∑

k=1

√
P0Zk(s)︸ ︷︷ ︸

V (s)

+Wk(s), under the assumption that

Z1(s), Z2(s), · · · , ZN (s), W1(s),W2(s), · · · ,WN (s) are con-
ditionally independent as well as Zk(s) and Wk(s).

Corollary 1. The Moment Generating Function MY (s)(t) is
given by:

MY (s)(t) =
N∏

k=1

(
1 +

∞∑
m=1

(
√
P0t)

m

m!
R−α

2 mΓ(N + 1)Γ(k − α
4m)

Γ(k)Γ(N − α
4m+ 1)

)
e

1
2σ

2
wt2 .

Proof: See Appendix D.

In order to derive the Gram-Charlier series expansion, we
need to find the cumulants denoted as κ. In Lemma 1, we
express the cumulants.

Lemma 1. The first four cumulants of Y (s)|Xs,H1, κi, i =
1, 2, 3, 4 are given by:

κ1 =

N∑
k=1

√
P0Z̄k1,

κ2 =
N∑

k=1

P0

(
Z̄k2 − Z̄2

k1

)
+ σ2

W ,

κ3 =

N∑
k=1

√
P0

3 (
Z̄k3 − 3Z̄k2Z̄k1 + 2Z̄3

k1

)
,

κ4 =
N∑

k=1

P 2
0

(
Z̄k4 − 4Z̄k3Z̄k1 − 3Z̄2

k2 + 12Z̄k2Z̄
2
k1 − 6Z̄4

k1

)
.

where Z̄ki, i = 1, 2, 3, 4 are the ith moment of Zk(s) presented
in Theorem 2.

Proof: See Appendix E.

Now that we have derived the four cumulants, we use
the Gram-Charlier series expansion in (4) to approximate
p (Y (s) |Xs,H1). Finally, the Event Detection algorithm un-
der Homogenous HFBPP is presented in Algorithm 1.



MZk(s)|Xs,H1
(t) = Ef(Zk(s))

[
exptZk(s)

]
=

∫
4

Rα

Γ(k + 1
2 )Γ(N + 1)

Γ(k)Γ(N + 3
2 )

β(
zk(s)

−4/α

R2
; k +

1

2
, N − k + 1)zk(s)

−2/α−1 exptzk(s) dzk(s)
(5)

Algorithm 1 Event Detection in Sensor Networks with Ran-
dom Deployment according to Homogenous FBPP
Input: Y (s), γ, N , R, α, σwk

Output: Binary decision (H1, H0)
1) Calculate f(Zk(s)) according to Theorem 1.
2) Calculate cumulants κi according the Lemma 1.
3) Evaluate the Gram-Charlier series expansion in (4) to

find p (Y (s) |Xs,H1) .
4) Calculate Λ(Y (s)) via (2) and compare to the thresh-

old γ.

IV. SIMULATION RESULTS

In this section, we present the detection performance of our
algorithm via Monte Carlo simulations. The simulations setting
are as follows: the additive noise is assumed i.i.d Gaussian dis-
tributed at each sensor. The results are obtained from 50, 000
realizations for a given parameter set of N, σw, P0, R, α.

First, in Fig. 2 we present an example of the Gram-
Chalier series expansion approximation of p (Y (s) |Xs,H1).
The result presents that the Monte Carlo density estimation and
the Gram-Chalier series expansion are in perfect agreement.
This shows the effectiveness and accuracy of our approach.
We note that similar results were obtained for a large number
of parameters.

Fig. 2. Probability density estimation of p (Y (s) |Xs,H1) using Monte
Carlo simulation and Gram-Chalier series expansion (R = 100, N = 50, α =
2, σw = 0.01, P0 = 1).

We now present the detection performance of the al-
gorithms via Receiver Operating characteristics (ROC) for
different configurations: Gaussian Noise variance σw =
{0.005, 0.01, 0.015, 0.02, 0.025, 0.03}, source power P0 =
{1, 2, 3, 4, 5} , field radius R = {50, 60, 70, 80, 90, 100} and
propagation loss coefficient α = {2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6}.

Fig. 3. ROC performance under different configurations of σw σw ∈
{0.005, 0.01, 0.015, 0.02, 0.025, 0.03}, (R = 100, α = 2, N = 50, P0 =
1)

Fig. 3 presents ROC results for various vaues of the noise
variance σw. This result clearly shows the effect the additive
noise has on the ROC performance.

Fig. 4. ROC performance under different configurations of P0, P0 ∈
{1, 2, 3, 4, 5}, (R = 100, α = 2, σw = 0.01, N = 50)

Fig. 4 presents ROC performance as a function of the
transmitted power P0. The result shows that with the increase
of P0, the performance of the algorithm increases. This is
expected as high P0 at the source will make it easier for the
algorithm to distinguish between the two hypotheses.

Fig. 5 presents ROC results as the radius R of the deployed
field varies. As expected, when the other parameters are fixed,



Fig. 5. ROC performance under different configurations of radius R ∈
{50, 60, 70, 80, 90, 100}, (N = 50, α = 2, σw = 0.01, P0 = 1)

the performance of algorithm improves with decreasingly R.
This is because the larger R, the signals travel larger distances
and as a result decay more, which makes it harder for GW to
make a correct decision.

Fig. 6. ROC performance under different configurations of propagation loss
coefficient α ∈ {2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6}, (R = 100, N = 50, σw =
0.01, P0 = 1)

Fig. 6 presents ROC results as the radius propagation loss
coefficient α varies. When the other parameters are fixed, the
performance of algorithm improves with decreasingly α. This
is because the smaller α, the stronger the signal the sensor
observes, which makes it easier for GW to make a correct
decision.

V. CONCLUSION

We presented a new and novel event detection algorithm in
sensor networks where the spatial deployment of the sensors
is random. Our algorithm is based on the Gram-Charlier series
expansion to approximate the intractable marginal likelihood

under the alternative hypothesis and obtain the optimal like-
lihood ratio test. Through extensive simulations we demon-
strated accuracy of the Gram-Charlier series and the detection
performance of the algorithm under various scenarios.
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APPENDIX A
PROOF OF THEOREM 1

Proof: Let Zk(s) = ϕ(r) = r−α/2, y ∈ (0,∞).

According to [22], if z = ϕ(x) is differentiable, then
the PDF of the random variable z is given by g(z) =

−f
(
ϕ−1 (z)

) dϕ−1(z)
dz , if dϕ−1(x)

dx < 0.
It is easy to see that for the transformation we consider,
the derivative is negative, as follows: ϕ−1(x) = x−2/α.
dϕ−1(x)

dx = − 2
αx

−2/α−1 < 0.

By applying the change of variable rule, we obtain: let
zk = r−α/2, ϕ(zk) = z

−α/2
k . Then:

ϕ−1(zk) = z
−2/α
k , dϕ−1(zk)

dzk
= − 2

αz
−2/α−1
k

Therefore,

f(Zk(s)) = −f(ϕ−1(Zk(s)))
dϕ−1(Zk(s))

dZk(s)

= −Cβ(
(Zk(s)

−2/α)2

R2
; k +

1

2
, N − k + 1)(− 2

α
)Zk(s)

−2/α−1

= Cβ(
Zk(s)

−4/α

R2
; k +

1

2
, N − k + 1)z

−2/α−1
k

where

C = − 4

Rα

Γ(k + 1
2 )Γ(N + 1)

Γ(k)Γ(N + 3
2 )

APPENDIX B
PROOF OF THEOREM 2

Proof: Let x = Zk(s)
−4/α

R2 , Zk(s) = (xR2)−
α
4 .

Let C = − 4
Rα

Γ(k+ 1
2 )Γ(N+1)

Γ(k)Γ(N+ 3
2 )

. Then E[Zk(s)
m] can be

expressed in (7)

C2 =
4

Rα

Γ(k + 1
2 )Γ(N + 1)

Γ(k)Γ(N + 3
2 )

R(1−α
2 m)(−α

4 )

B(k + 1
2 , N − k + 1)

=
4

Rα

Γ(k + 1
2 )Γ(N + 1)

Γ(k)Γ(N + 3
2 )

R(1−α
2 m)(−α

4 )Γ(N + 1.5)

Γ(k + 0.5)Γ(N − k + 1)

= R−α
2 m Γ(N + 1)

Γ(k)Γ(N − k + 1)



E[Zk(s)
m] =

∫
Cβ(x; k +

1

2
, N − k + 1)(xR2)−

α
4 (− 2

α−1)(xR2)−α/4m d(xR2)−α/4

dx
dx

= C(R2)
1
2+α/4(R2)−4/αm(R2)−α/4(−α/4)

∫
β(x; k +

1

2
, N − k + 1)(x)

1
2+

α
4 x−α/4m−α/4−1dx

= CR2( 1
2−

α
4 m)(−α/4)

∫
β(x; k +

1

2
, N − k + 1)(x)

1
2+

α
4 x−α/4m−α/4−1dx

= C1

∫
β(x;n+

1

2
, N − k + 1)x− 1

2−
α
4 mdx

= C1
1

B(k + 1
2 , N − k + 1)

∫ 1

0

xk− 1
2 (1− x)N−kx− 1

2−
α
4 mdx

= C2

∫ 1

0

xk−1−α
4 m(1− x)N−kdx

= C2B(k − α

4
m,N − k + 1)

(7)

E[Zk(s)
m] = R−α

2 m Γ(N + 1)

Γ(k)Γ(N − k + 1)

×
Γ(k − α

4m)Γ(N − k + 1)

Γ(N − α
4m+ 1)

= R−α
2 mΓ(N + 1)Γ(k − α

4m)

Γ(k)Γ(N − α
4m+ 1)

APPENDIX C
PROOF OF THEOREM 3

Proof: The MGF for function f(x) is given by the
following series expansion:

MX(t) = E
[
etX
]

= 1 + tE [X] +
t2E

[
X2
]

2!
+

t3E
[
X3
]

3!
+ · · ·+ tnE [Xn]

n!

= 1 + tm1 +
t2m2

2!
+

t3m3

3!
+ · · ·+ tnmn

n!
+ · · · .

Using the result in Theorem 2 we can now express the MGF
for MZk(s) (t) |Xs,H1 as follows

MZk(s) (t) |Xs,H1 = 1 +

∞∑
m=1

tm

m!
R−α

2 mΓ(N + 1)Γ(k − α
4m)

Γ(k)Γ(N − α
4m+ 1)

.

APPENDIX D
PROOF OF COROLLARY 1

Proof:

Due to the independence of Zk(s) for 1 ≤ k ≤ N , we
have:

MV (t) = MZ1(t)MZ2(t) · · ·MZN
(t)

=
N∏

k=1

(
1 +

∞∑
m=1

(
√
P0t)

m

m!
R−α

2 mΓ(N + 1)Γ(k − α
4m)

Γ(k)Γ(N − α
4m+ 1)

)
Similarly, we find the Moment Generating Function for
y(n)|H1 denoted as MY (t).

Since W (s) is i.i.d. Gaussian distribution, the Moment
Generating Function for W (s) is:

MWs(t) = e
1
2σ

2
w(s)t

2

where σ2
w(s) =

∑N
k=1 σ

2
wk(s)

. Due to the independence of V (s)
and W (s), we have:

MY (s)(t)

= MV (s)(t)MW (s)(t)

=

N∏
k=1

(
1 +

∞∑
m=1

(
√
P0t)

m

m!
R−α

2 mΓ(N + 1)Γ(k − α
4m)

Γ(k)Γ(N − α
4m+ 1)

)
e

1
2σ

2
wt2

APPENDIX E
PROOF OF LEMMA 1

Proof: We first derive the cumulant generating function
g(t).

g(t) = logMY (s)(t)

=
N∑

k=1

log

(
1 +

∞∑
m=1

(
√
P0t)

m

m!
R−α

2 mh(k)

)
+

1

2
σ2
wt

2,

where

h(k) :=
Γ(N + 1)Γ(k − α

4m)

Γ(k)Γ(N − α
4m+ 1)

.

Next we obtain the first cumulant κ4 as follows:

κ1 =
dg(t)

dt
|t=0

=
N∑

k=1

√
P0t

0

1 R−α
2 h(k) +

∑∞
m=2 m

(
√
P0)

mtm−1

m! R−α
2 mh(k)

1 +
∑∞

m=1
(
√
P0t)m

m! R−α
2 mh(k)

|t=0

+ σ2
wt|t=0

=
N∑

k=1

√
P0R

−α
2 h(k)

=

N∑
k=1

√
P0Z̄k1.



Similarly, by taking the second, third and forth derivative of
g(t). We next find the κ2, κ3 and κ4.

κ2 =
N∑

k=1

P0

(
Z̄k2 − Z̄2

k1

)
+ σ2

W .

κ3 =

N∑
k=1

√
P0

3 (
Z̄k3 − 3Z̄k2Z̄k1 + 2Z̄3

k1

)
.

κ4 =
N∑

k=1

P 2
0

(
Z̄k4 − 4Z̄k3Z̄k1 − 3Z̄2

k2 + 12Z̄k2Z̄
2
k1 − 6Z̄4

k1

)
,

where Z̄ki for i = 1, 2, 3, 4 is the ith moment of Zk(s) given
in Theorem 2.
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