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Abstract—Incentive is key to the success of crowdsourcing which
heavily depends on the level of user participation. This paper
designs an incentive mechanism to motivate a heterogeneous crowd
of users to actively participate in crowdsourcing campaigns. We
cast the problem in a new, asymmetric all-pay contest model
with incomplete information, where an arbitrary n of users exert
irrevocable effort to compete for a prize tuple. The prize tuple is
an array of prize functions as opposed to a single constant prize
typically used by conventional contests. We design an optimal
contest that (a) induces the maximum profit—total user effort
minus the prize payout—for the crowdsourcer, and (b) ensures
users to strictly have incentive to participate. In stark contrast
to intuition and prior related work, our mechanism induces an
equilibrium in which heterogeneous users behave independently of
one another as if they were in a homogeneous setting. This newly
discovered property, which we coin as strategy autonomy (SA), is
of practical significance: it (a) reduces computational and storage
complexity by n-fold for each user, (b) increases the crowdsourcer’s
revenue by counteracting an effort reservation effect existing in
asymmetric contests, and (c) neutralizes the (almost universal)
law of diminishing marginal returns (DMR). Through an extensive
numerical case study, we demonstrate and scrutinize the superior
profitability of our mechanism, as well as draw insights into the
SA property.

Index Terms—Incentive mechanism, all-pay auction, asymmetric
contest, strategy autonomy, participatory sensing, network eco-
nomics.

I. INTRODUCTION

Crowdsourcing offers a cost-effective approach to distributed
problem solving and data collection by soliciting contributions
(solutions, ideas, data, etc.) from a large group of people. Com-
pared to conventional means of hiring employees, crowdsourc-
ing can be potentially more cost-efficient. It has thus catalyzed
new computing and sensing paradigms such as participatory
sensing [1].

Key to the viability of crowdsourcing is providing incentives
to attain a sufficient level of user participation. While incentives
can be classified into intrinsic motivation (e.g., self-fulfillment,
enjoyment, and esteem) and extrinsic incentives (e.g., peer pres-
sure, financial rewards) [2], we focus on monetary incentives
which fall in the second category and have wider applications
in practice. Specifically, in this paper, we employ the theory
of mechanism design, in particular auctions [3], to design an
incentive mechanism for crowdsourcing.

We choose auction theory to be the tool primarily because,
to reward users for their contributions, a unilaterally stipulated
pricing scheme—say by some authority—for such informational
products as ideas, data, solutions, etc., is hard to satisfy both
the crowdsourcer and users. On the other hand, auctions offer
a perfect mechanism for a principal (crowdsourcer) and agents
(users) to implicitly negotiate and mutually agree on a deal

(e.g., solving a problem, contributing data). Indeed, auctions as
a bilateral pricing scheme have been widely adopted by a sizable
body of literature [4]–[7].

In this paper, we design an incentive mechanism by modeling
crowdsourcing as an all-pay contest [8]. All-pay contests are
isomorphic to all-pay auctions [3]—given an equilibrium in
one model, one can construct one and only one equilibrium
in the other model1—yet contests are semantically closer to
our mechanism which uses prizes as auctioned goods. Auctions
have many flavors in which the most common and well-known
ones, such as English (or second-price) and Dutch (or first-
price) auctions, belong to the intuitive “winner-pay” genre—
only the winner (i.e., the highest bidder) pays for a bid. On
the contrary, “all-pay” auctions require every bidder to pay for
his bid regardless of who wins the auction. This seemingly
peculiar form, however, precisely describes most crowdsourc-
ing platforms (e.g., Amazon mechanical turk (AMT), task.cn,
TaskRabbit.com) in which there is only one winner but all
participants will have to exert their irrevocable effort before
the winner is announced. This is why we model crowdsourcing
as an all-pay auction or contest.

The vast majority of prior work using auctions (either all-
pay or winner-pay) [5]–[7], [9]–[11] is based on symmetric
auctions where bidders are ex post or ex ante identical, i.e.,
either they have exactly the same type2 (ex post), or their
types follow the same, single probabilistic distribution (ex ante).
As a result, they all model an environment of homogeneous
agents, which is amicable to analysis. However, in many real
crowdsourcing scenarios (e.g., AMT, task.cn, TaskRabbit.com,
TopCoder.com), users come from dissimilar backgrounds and
possess different skill levels, constituting a heterogeneous en-
vironment. Therefore, a more realistic model would be asym-
metric auctions. Unfortunately, asymmetric auctions are much
less studied and understood because their associated analysis
is much more challenging, due to the fact that the most
celebrated revenue equivalence theorem3 [12], [13] breaks under
asymmetry. Thus, as a compromise for analytical tractability,
most research on asymmetric auctions is limited to two-player
cases [14]–[16] or complete-information settings [8], [17] in
which all types are commonly known. A significant progress

1Drawing an analogy may shed light on the isomorphism: contestants exerting
effort in a contest is like bidders tendering bids in an auction, and the highest-
effort contestant winning the prize is like the highest bidder securing the
auctioned good.

2In Bayesian games and mechanism design, type is a term that refers to an
agent’s private information or signal (e.g., ability, skill level, valuation of the
auctioned good), which essentially characterizes an agent.

3This theorem states that, under a set of standard assumptions including
symmetric agents, any auction generates the same revenue for the principal.
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was made by [18] toward understanding asymmetric first-price
auctions with multiple players and incomplete information, but
only an approximate solution was obtained and it only applies
to weakly asymmetric agents. Other studies in this context resort
to numerical methods [19].

Unlike prior work, our model accommodates asymmetric—
regardless of weak or strong—all-pay contests with an arbitrary
n of players and incomplete information (i.e., agent types are
uncertain). This is a much closer characterization of most
real crowdsourcing scenarios. Furthermore, we obtain precise,
analytical solutions rather than approximate or numerical ones.
Thus, this work presents the first attempt to offer a rigorous
understanding toward more realistic crowdsourcing campaigns,
with results of a much wider applicability. This constitutes the
first contribution of this paper.

The second contribution is that we explore another degree of
freedom in contest design, by furnishing the contest with a prize
tuple that consists of an array of n prize functions to cater for
the heterogeneous agents. This is distinct from all the standard
contests or auctions where a single fixed prize or good is used.
The rationale for this exploration is to understand whether and
how such a prize tuple can elicit higher profit—revenue (agent
effort) minus cost (prize payout)—for the principal. In this
paper, we derive the optimal prize tuple under asymmetry, and
demonstrate that it can induce significantly higher profit than
both symmetric and asymmetric fixed-prize contests.

The third contribution is that this paper is the first to
incorporate the principal’s valuation of the prize into profit
formulation, thereby enabling our model and results to apply
to different crowdsourcers. It also means that, even if a contest
adopts a fixed prize, the cost (valuation of the prize) can still
be variable. Therefore, regardless of fixed or variable prizes,
this work provides an example of how to cover different
crowdsourcers or the same crowdsourcer’s varying valuations.

Our fourth contribution, which we stress, is the discov-
ery and investigation of a new and counter-intuitive property
pertaining to asymmetric auctions and contests, called strategy
autonomy (SA). It captures the phenomenon that agents in an
asymmetric equilibrium behave independently of one another
as if they were in a symmetric one. This is in stark contrast to
all prior work on asymmetric auctions, and has three practical
significances: it (a) reduces computational and storage complex-
ity from O(n) to O(1) for each agent, (b) increases principal’s
revenue by counteracting an effort reservation effect engendered
by asymmetric belief, and (c) dramatically enhances the system
scalability by neutralizing the (almost universal) law of dimin-
ishing marginal returns (DMR). Moreover, in addition to SA,
our mechanism also strictly satisfies individual rationality (IR),
which means that all agents strictly have incentive to participate
in our mechanism.

The rest of this paper proceeds as follows. Section II reviews
the literature. Section III presents our model and Section IV
provides the analysis. A detailed numerical case study is then
given in Section V which demonstrates key results, offers
intuitions, as well as draw some insights. Section VI concludes
the paper.

II. RELATED WORK

A. Incentive mechanisms and Symmetric auctions
While auctions are widely recognized as an effective incentive

mechanism for various activities such as online sales, govern-

ment procurement, crowdsourcing and participatory sensing, the
vast majority of prior work on auction-based incentive presumes
symmetric auctions. For example, in [5] and [6], users bid
their costs and the crowdsourcer or service provider determines
their payments such that the users bid their costs truthfully.
Along a different spirit, [7] investigates an all-pay auction
based incentive mechanism that is tailored to realistic settings,
including uncertain population sizes, unknown (yet symmetric)
user types, and risk-averse (subsuming risk-neutral) users.

Other studies on optimal design of auctions or contests
consider different approaches and objectives. For example, [11],
[20] investigate whether a single or multiple prizes is optimal in
terms of maximizing the highest k bids [11] or total bids [20].
Under a similar setting, [9] shows that the highest bid is at least
half of the total bids, and [21] finds that there is no advantage
to have multiple prizes under certain conditions. Similarly
in a symmetric model, [22] introduces variable rewards and
examines a paradoxical behavior where a reduction in reward
or an increase in cost may increase the total or the highest bid
in expectation.

Indeed, almost all auction theory, including the above, con-
cerns symmetric auctions, as concurred by [23]. On the contrary,
this paper tackles the challenge of asymmetry in order to
accommodate heterogeneous and more realistic crowdsourcing
environments.

B. Asymmetric auctions

This domain is relatively much less understood due to its
analytical complexity. Most work in this domain is devoted
to two-player cases or complete-information settings for the
sake of tractability. Amann and Leininger’s seminal work [15]
offers an analysis of the equilibrium strategies for a two-
player asymmetric case. It was then extended by Maskin and
Riley [24], [25] who proved the monotonicity and uniqueness
of the equilibrium. Unfortunately, till now, there still lacks a
closed-form solution to general n-player cases with incomplete
information. Fibich and Gavious [18] proposed a perturbation
approach to obtain an analytical, but approximate, solution to
equilibria on the premise of weak asymmetry. Improvement in
terms of some other mathematical properties was made later
using a dynamic-system approach [23]. Another work [26] on
asymmetric contests focuses on risk aversion and gives some
exploratory yet inconclusive results.

Other studies assume complete information. Siegel [8] was
probably the first who coined the term “all-pay contests”,
where he analyzed closed-form player payoffs in equilibrium
with complete information. Under a similar model, Xiao [17]
studied the problem of allocating more than one prizes to a
number of winners and proposed an algorithm to construct the
equilibrium. Franke et al. [27] aimed to maximize the revenue
(which is part of the profit we study in this paper) through
discriminating players by associating differentiated weights to
players, assuming complete information is available.

Moreover, all the above studies presume fixed prizes.
In this paper, we allow for more generality by not assuming

the availability of complete information and by accommodat-
ing multiple asymmetric players. Secondly, we empower the
crowdsourcer to provision a tuple of individually different prize
functions, in order to induce the highest possible profit. All these
are clearly different from prior art.
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III. THE MODEL

The overall problem setting is that a principal aims to
crowdsource from n heterogeneous agents for the maximal
profit—total effort (revenue) minus prize (cost). In this paper,
“effort” is a general term that can be interpreted according to
different contexts; for example, it can refer to the quantity of
tasks completed, the quality of solutions submitted [28], or a
quality-modulated quantity of sensing data [29].

We design this crowdsourcing campaign under an all-pay
contest framework, in which all participating agents exert effort
(which is irrevocable and will be sunk, i.e., “all-pay”, regardless
of the outcome) in order to win some prize (i.e., as if in a “con-
test”). An agent i = 1, 2, ..., n is characterized by his type vi
which is private information (e.g., skillfulness or competency):
agent i knows his own type vi but does not know any other
vj ,∀j 6= i. On the other hand, it is common knowledge that
all the agent types vi|ni=1 are independently drawn from [v, v̄]
according to Fi(v)|ni=1, respectively, where Fi(v) are the c.d.f.
of vi and [v, v̄] is a continuous and nonnegative support. This
setting corresponds to an incomplete-information setting and,
essentially, constitutes an asymmetric Bayesian game where the
common prior consists of n generally different distributions.
Without loss of much generality, we assume that each Fi(v) is
differentiable and the corresponding p.d.f. fi(v) is continuous
and positive over (v, v̄).

To provide incentive, the principal will reward the agent who
exerts the highest effort, i.e., the “winner”, a prize. In this
paper, we allow the prize to depend on the winner’s effort
rather than fixing the prize ex ante. Furthermore, in view of
the asymmetric agents, we provision the prize as a prize tuple
Z := 〈Z1(b1), Z2(b2), ..., Zn(bn)〉, where Zi(bi) is a prize
function in agent i’s effort bi and takes effect when i is the
winner. This prize tuple is known to all the agents before the
contest.

The value of a prize to an agent is characterized by a value
function V (v, Z): an agent of type v values a prize Z (the face
value) to be of real worth V (v, Z) to him. That is, agent i values
the prize he competes for to be of real value V (vi, Zi(bi)). An
example of the value function is V (v, Z) = vZ, meaning that an
agent with higher ability can gain more benefit out of a prize; in
fact, V (·) = vZ is a generalization of standard all-pay auctions
where the fixed auctioned good is normalized and V (·) = v.
With out loss of much generality, we assume that V (v, Z) is
differentiable with respect to v.

Exerting effort incurs cost; an agent i who exerts effort bi has
to pay for his cost as per a payment function p(bi, vi). We do
not assume a specific form for p(·) or V (·), thereby covering
a broad class of auctions and contests.4 Now we can formulate
the expected utility of agent i, as

ui := qiV (vi, Zi(bi))− p(bi, vi) (1)

where qi is the probability that agent i wins the contest.
The principal aims to maximize his expected profit π, defined

as the total crowdsourced effort minus his prize payout, or
formally,

π := E
[∑

i

bi − V (λ, Zw(bw))
]

(2)

4For example, letting p(b, v) = b and V (v, Z(b)) = v yields standard all-
pay auctions; letting p(b, v) = 0 and V (v, Z(b)) = v − b yields standard
first-price auctions.

where w ∈ [1...n] is the winner’s index which is a random
variable, and λ > 0 is the principal’s type (valuation of prize)
which is common knowledge. In this profit formulation, the
revenue is defined in terms of total effort, which covers data-
gathering kinds of applications; it can also be defined in terms
of the highest effort, which covers solution-eliciting kinds of
applications, but the corresponding analysis completely parallels
this paper.

Throughout, we follow the notation convention of g′x := ∂g
∂x ,

g′′xy := ∂2g
∂x∂y , and g′′′x2y := ∂3g

∂x2∂y , for any differentiable function
g(x, y). We assume that the payment function p(b, v) is twice
continuously differentiable, p(0, v) = 0, p′b(b, v) > 0 which
means higher effort, higher payment (cost); p′v(b, v) ≤ 0 which
means higher type (ability), lower payment; p′′bb(b, v) > 0 which
means striving from higher effort levels is more costly than from
lower effort levels, or conversely, the marginal output by adding
effort is decreasing; finally, p′′′b2v(b, v) ≤ 0 which means lower
types are more vulnerable to the decreasing marginal output.
We note that these assumptions are not restrictive.

In practice, our mechanism modeled in this section can
be realized as follows. The agent type distributions Fi can
be constructed by the crowdsourcer from user contribution
history, or from social acquaintance in the case of a small
local community of users, and then published on a website or
via a mobile app. The prize tuple can be either published or
downloaded, where each user has software (e.g., a mobile app)
to act as his agent. The user effort can be measured (in terms of
time, data volume, sampling rate, etc.) (a) by each agent itself,
or (b) by the principal (e.g., in a cloud) and continually fed
back to each corresponding agent, so that the agent can decide
how much effort to contribute.

IV. ANALYSIS

We first analyze the asymmetric equilibrium strategy for each
agent (Lemma 2), which is a function of any given prize tuple.
Then we determine the optimal prize tuple that induces the
maximum profit for the principal (Theorem 1). Following that
is an exposition of three important properties (Section IV-C).

A. Equilibrium strategy
Definition 1 (Bayesian Nash equilibrium). A pure-strategy
Bayesian Nash equilibrium is a strategy profile b∗ :=
(b∗1, b

∗
2, ..., b

∗
n) that satisfies

ui(b
∗
i , b
∗
−i) ≥ ui(bi, b∗−i),∀bi,∀i.

In words, each agent in a Bayesian Nash equilibrium plays a
strategy that maximizes his expected payoff given his belief
about other agents’ types and that other agents play their
respective equilibrium strategies.

Lemma 1 (Existence, monotonicity, uniqueness, and common
support). Our asymmetric all-pay contest with incomplete in-
formation admits a unique, asymmetric, pure-strategy Bayesian
Nash equilibrium that is strictly monotonic, i.e., the equilibrium
bids are strictly increasing in type. Furthermore, given that the
agent types have a common and nonnegative support, i.e., [v, v̄],
the equilibrium bids also have a common support [0, b̄], where
b̄ is unknown.

We defer the proof to [30] due to space constraint.
Notation convention: Henceforth, we will exclusively deal

with the equilibrium state. Hence for brevity, we slightly deviate
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from the general national convention by dropping the superscript
∗ on equilibrium variables. For example, we write bi instead of
b∗i and vi(·) instead of v∗i (·).

Lemma 1 tells that an agent’s equilibrium strategy bi is a
strictly monotone (increasing) function of vi, which we denote
by βi(·), i.e., bi = βi(vi). Thus, its inverse function exists and is
also increasing, which we denote by vi(·) := β−1

i (·). Moreover,
because of the strict monotonicity, the event bi = bj is of zero
probability and tie-breaking is trivial. Thus,

Pr(bi > bj) = Pr(β−1
j (bi) > vj) = Fj(vj(bi)).

Furthermore, because agent i’s winning probability qi =∏
j 6=i Pr(bi > bj), (1) can be rewritten as

ui = V (vi, Zi(bi))
∏
j 6=i

Fj(vj(bi))− p(bi, vi). (3)

Lemma 2. Given a prize function Zi(·), an agent i’s equilib-
rium strategy bi(vi) is determined by

V (vi, Zi(bi))
∏
j 6=i

Fj(vj(bi))− p(bi, vi)

=

∫ vi

v

[V ′vi(ṽi, Zi(bi))
∏
j 6=i

Fj(vj(bi))− p′vi(bi, ṽi)] dṽi. (4)

Proof: As the equilibrium bid bi is also the solution to the
optimization problem maxbi{ui} (3), we invoke the envelope
theorem [31] on (3) with respect to vi and obtain

∂ui
∂vi

= V ′vi(vi, Zi(bi))
∏
j 6=i

Fj(vj(bi))− p′vi(bi, vi)

⇒ ui(vi) = ui(v)

+

∫ vi

v

[
V ′vi(ṽi, Zi(bi))

∏
j 6=i

Fj(vj(bi))− p′vi(bi, ṽi)
]

dṽi.

(5)

Since an agent with the lowest possible type never wins the
auction, he will bid zero (i.e., exert no effort) in an all-pay
auction (rather than bidding bi = v as in first or second-price
auctions). As a result, he reaps zero utility, i.e., ui(v) = 0.
Then, equating the r.h.s of (5) to that of (3) yields the result.

Recall in (4) that the derivatives in the integrand denote partial
derivatives, and hence no further reduction is allowed.

Remark: Asymmetric auctions, regardless of winner-pay or
all-pay, do not have closed-form expressions for equilibrium
strategies in general (while an approximate solution to the first-
price flavor can be found in [18]). However, we can solve for
the optimal prize tuple using Lemma 2 without obtaining the
closed form of equilibrium strategies, as shown next.

B. Optimal prize tuple
Solving for the optimal, i.e., profit-maximizing, prize tuple Z

requires an explicit form of the value function V (·), for which
we consider V (v, Z) := h(v)Z where h(·) satisfies h(0) = 0
and h′(v) > 0. This form further generalizes the form V = vZ
which, as mentioned in Section III, is already a generalization
of the standard all-pay auctions.

First note that the utility maximization problem of each agent,
max
bi
{ui} (3), can be reformulated as arg maxbi{ui} without

change in principle, i.e.,

arg max
bi

h(vi)Zi(bi)
∏
j 6=i

Fj(vj(bi))− p(bi, vi).

It is equivalent to

arg max
bi

Zi(bi)
∏
j 6=i

Fj(vj(bi))− p̂(bi, vi) (6)

where p̂(b, v) = p(b, v)/h(v) for v > 0.

Theorem 1. The optimal prize tuple that maximizes the princi-
pal’s profit is given by Z = 〈Z1(b1), Z2(b2), ..., Zn(bn)〉 where

Zi(bi) =
p̂(bi, vi(bi))−

∫ bi
0
p̂′vi(b̃i, vi(b̃i)) dvi(b̃i)∏

j 6=i Fj(vj(bi))
(7)

in which the optimal effort bi(vi) is implicitly given by

p̂′bi(bi, vi) =
1

h(λ)
+ p̂′′bi,vi(bi, vi)

1− Fi
fi

(8)

where vi(bi) is the inverse function of bi(vi). The maximum
profit achieved is given by

π=
∑
i

∫ v̄

v

[
bi(vi)− h(λ)p̂(bi, vi) + h(λ)p̂′vi(bi(vi), vi)

1− Fi
fi

]
dFi.

(9)

Proof: First, we expand the principal’s expected profit (2)
by calculating the expected cost, i.e., prize. Noticing that an
agent i’s winning probability is qi =

∏
j 6=i Fj(vj(bi)), we use

the law of total expectation to have

Ew[Zw(bw)] =
∑
i

∫ v̄

v

Zi(bi(vi))
∏
j 6=i

Fj(vj(bi)) dFi(vi).

Then, by expanding the revenue portion,

π =
[∑

i

∫ v̄

v

bi(vi) dFi(vi)
]
− h(λ)Ew[Zw(bw)]

=
∑
i

∫ v̄

v

[
bi(vi)− h(λ)Zi(bi(vi))

∏
j 6=i

Fj(vj(bi))
]

dFi(vi).

(10)

With Lemma 2, we substitute Zi(bi) for V (vi, Zi(bi)) in (4)
and p̂(bi, vi) for p(bi, vi), and obtain

Zi(bi)
∏
j 6=i

Fj(vj(bi))− p̂(bi, vi) = −
∫ vi

v

p̂′vi(bi(ṽi), ṽi) dṽi,

(11)

where note that Zi′vi(bi) = 0 due to the envelope theorem.
Substituting (11) into (10) yields

π=
∑
i

∫ v̄

v

[
bi(vi)− h(λ)p̂(bi, vi) + h(λ)

∫ vi

v

p̂′vi(bi(ṽi), ṽi) dṽi

]
dFi.

By integrating the last term by parts,∫ v̄

v

∫ vi

v

p̂′vi(bi(ṽi), ṽi) dṽi dFi

=

∫ v̄

v

p̂′v(bi(vi), vi) dvi −
∫ v̄

v

Fi(vi)p̂
′
vi(bi(vi), vi) dvi

=

∫ v̄

v

p̂′vi(bi(vi), vi)
1− Fi
fi

dFi.

Substituting this back proves the principal’s profit (9).
The principal originally faces the problem of maxZ{π}, yet

it is equivalent to maxb{π} because, essentially, the prize tuple
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is used to induce the optimal effort vector b. Furthermore, in
(9) we have decoupled each agent i from other agents j 6= i.
Therefore, maximizing π can be achieved by maximizing each
individual integrand Ii over bi, where

Ii := bi(vi)− h(λ)p̂(bi, vi) + h(λ)p̂′vi(bi, vi)
1− Fi
fi

.

Simply applying the first order condition to Ii with respect to
bi proves the optimal effort bi (8) for each agent i.

To verify that the above effort bi is the unique maximizer,
we examine the second derivative

Ii
′′
b2i

= −h(λ)p̂′′b2i
(bi, vi) + h(λ)p̂′′′b2i vi

(bi, vi)
1− Fi
fi

.

Since p̂ = p/h(v), and v > 0 is treated as a fixed value due
to the envelope theorem, our assumptions on p(·) also hold for
p̂(·), i.e., p̂′′

b2i
> 0 and p̂′′′

b2i vi
≤ 0. Since h(λ) > 0 for λ > 0,

therefore I ′′i < 0. Thus Ii is strictly concave, which validates
the existence and uniqueness of bi given by (8).

The optimal prize function (7) is then obtained, by rearrang-
ing (11) and changing variables from vi to bi. Note that the
lower limit of integral, 0, is due to bi(v) = 0 as the lowest-type
agent will bid zero (cf. proof of Lemma 2).

C. Qualitative properties

This section states three properties pertaining to our mech-
anism, denoted by OPT since it is equipped with an optimal
prize tuple.

1) Strategy Autonomy (SA): This is perhaps the most salient
property of OPT, particularly in the presence of asymmetry.
SA is of practical significance and none of prior work on
asymmetric mechanisms possesses this property.

Definition 2 (Strategy Autonomy). A mechanism satisfies strat-
egy autonomy if, given that the common prior Fi(vi)|ni=1 are
individually different, the equilibrium strategy bi(vi|F−i) =
bi(vi),∀i.

In words, in an asymmetric incomplete-information setting
where agents are ex ante heterogeneous, each agent adopts in
equilibrium a strategy that is independent of (the prior about) the
other agents. In other words, despite an asymmetric environment
(belief), agents behave autonomously as if they were in a
symmetric one.

Proposition 1. The OPT mechanism satisfies strategy autonomy.

Proof: Immediately follows from Theorem 1, where the
equilibrium strategy bi (8) is independent of any j 6= i.

This is a rather counter-intuitive, and somewhat surprising
result. This is because Lemma 2 shows that the equilibrium
strategy bi does depend on Fj |j 6=i, or the strategy is not
autonomous, which also conforms to our intuition as the en-
vironment is asymmetric. Indeed, SA is in direct opposition to
all prior work on asymmetric auctions, regardless of winner-pay
or all-pay, with complete or incomplete information; see, e.g.,
[15], [17], [18] and a comprehensive survey [32]. So the key
question is: why do agents behave autonomously in the OPT
mechanism?

The fundamental reason is that the asymmetric belief about
agent types is endogenized (i.e., “absorbed”) by the optimal
prize functions (7), or in other words, any bidder i’s reasoning
about other bidders’ bids is implicitly captured by the function

Zi(·). The rationale of this, i.e., isolating asymmetry from
agents, is to counteract an effort reservation effect arising from
asymmetric belief, which is explained below.

SA has three important practical implications:
• Reduces complexity and saves energy: SA remarkably

reduces the computational complexity and storage requirement,
from O(n) to O(1), for each agent. The O(n) can be understood
from (4) where each agent’s strategy involves reasoning about
all the j 6= i, which is also the case in, e.g., [18], [23], [27]. This
advantage enables each agent, which is embodied in practice
typically by software that resides on distribute portable devices
(e.g., mobile phones), to shed substantial computational and
storage burden and, as a result, save considerable energy.
• Counteracts effort reservation: SA overcomes an effort

reservation effect that exists in standard (fixed-prize) asymmet-
ric auctions [33]: when the prize is fixed, any agent only needs to
win the other agents by an infinitesimal winning margin; there-
fore, using a two-player scenario to illustrate, if the stronger
agent believes that the other agent is statistically weaker, he
has the incentive to reserve effort in order to reduce his winning
margin since a larger margin does not make the winner better
off at all. This effect outweighs the strategy adjustment of the
weaker agent and results in a reduced total revenue compared
to symmetric auctions [33], which will also be demonstrated
in Section V. However, SA insulates such negative inter-agent
influence, allowing agent not to be concerned with other agents
and to concentrate on exerting higher effort to increase the
winning margin which is now qualified for the (variable) prize.
• Neutralizes the law of DMR: The prevailing law of di-

minishing marginal returns (DMR) governs many phenomena
in (network) economics. It states that, as the number of new
employees increases, the marginal product of an additional
employee will at some point be less than the marginal product
of the previous employee [34]. Mathematically, DMR leads to
a concave growth of profit or revenue as employees are being
added, which is also demonstrated by our evaluation of a stan-
dard (fixed-prize) auction in Section V (Fig. 4). However, the
independence connoted by SA neutralizes this submodularity-
resembling law of DMR, and indeed, we will show in Section V
that the principal’s profit increases linearly as the number of
agents increases. This translates to a dramatically enhanced
system scalability.

2) Individual Rationality (IR):

Definition 3 (Individual Rationality). A mechanism satisfies
individual rationality if, in equilibrium, all participating agents
expect (weakly) higher surplus than from not participating. That
is, ui(bi, b−i) ≥ ui(0, b−i) for all i in equilibrium.

In other words, a mechanism satisfying IR ensures that any
agent has incentive to participate.

Proposition 2. The OPT mechanism satisfies individual ratio-
nality. In particular, an agent reaps strictly positive utility if he
exerts positive effort.

Proof: Combining (11) and (6) yields

ui
h(vi)

= −
∫ vi

v

p̂′vi(bi(ṽi), ṽi) dṽi

⇒ ui = −h(vi)

∫ vi

v

p′vi(bi, ṽi)h(ṽi)− p(bi, ṽi)h′(ṽi)
h2(ṽi)

dṽi.
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Based on the monotonicity of equilibrium (Lemma 1), the
assumptions on the payment function p (cf. Section III) imply
that p(b, v) > 0 for any b > 0 = b(v). Furthermore, as
h′(v) > 0, p′v(b, v) ≤ 0 and h(v) ≥ 0, we conclude that ui ≥ 0,
which proves IR, and that the equality holds iff vi = v (which
subsumes the case of vi = 0 since v ≥ 0). However, an agent
of vi = v will choose not to participate (bi = 0) as explained in
the proof of Lemma 2. Therefore, any agent who exerts nonzero
effort reaps a strictly positive payoff.

3) Incentive Compatibility (IC): We say a (direct revelation)
mechanism satisfies IC if agents will report their types truthfully.
In our mechanism, prize allocation is based on agents’ observ-
able efforts and the common prior about all the agents’ types,
instead of on reported (if any), unobservable types. Therefore,
the issue of truthful type-reporting is technically irrelevant to
our mechanism.

V. CASE STUDY

In order to derive an intuitive understanding and draw further
insights, we provide a numerical case study that involves six
mechanisms: OPT, FIX, SYM-1, SYM-2, OPT-n, and FIX-n.

OPT is instantiated with two agents of types v1, v2 ∈ [0, 1]
which are independently drawn from F1(v) = v (uniform
distribution) and F2(v) = v+1

2 , respectively. Hence, f2(v) =
1
2δ(v) + 1

2 where δ(·) is the Dirac delta function.5 That is,
agent 2 is of type zero with probability 0.5, and draws his
type uniformly from (0,1] with probability of the other half; so,
agent 1 is statistically stronger than agent 2. The value function
V (v, Z) = vZ and the payment function is p(b, v) = b2. Hence,
h(v) = v and p̂(b, v) = b2/v.

We compare OPT with all counterpart mechanisms which are
three canonical auctions:
• FIX: Fixed-prize asymmetric all-pay auctions.
• SYM: Fixed-prize symmetric all-pay auctions, including

– SYM-1: both types follow F1(v);
– SYM-2: both types follow F2(v).

In order to investigate how SA neutralizes the law of DMR
and enhances scalability, which requires a larger-scale simula-
tion, we compare OPT-n and FIX-n, which are OPT and FIX
both with n symmetric agents (choosing agent 1 for illustration).

A. Theoretical underpinnings

To carry out the comparison, we need the following analytical
results for FIX and SYM. The proofs are available in [30].

Proposition 3 (Equilibrium strategy in FIX). In a two-player
asymmetric all-pay contest with incomplete information, if the
common prior is F1(v), F2(v), v ∈ [v, v̄], and the payment
function p(b) satisfies p(0) = 0 and p′(b) > 0, there exists a
unique Bayesian Nash equilibrium b = (b1, b2) which is given
by

b1(v1) = p−1
(∫ v1

k−1(v)

k(v)F ′1(v) dv
)
, (12)

b2(v2) = b1(k−1(v2)), (13)

5Neither our model nor analysis assumes continuity of the p.d.f. at the
boundary of the support, and hence our results still apply. We also chose a
power-law distribution F2(v) = vα, α > 0, in the comparison and obtained
similar results; however, the actual expressions are too long (due to the inverse
effort function v2(b2)) to suit a neat presentation and hence omitted.

where b1(v) = 0 iff v1 = k−1(v), and k(v) is determined by

k′(v) =
k(v)F ′1(v)

vF ′2(k(v))

with boundary condition k(v̄) = v̄.

Proposition 4 (Equilibrium strategy in SYM). In a n-player
symmetric all-pay auction with incomplete information, if the
common prior is F (v), v ∈ [v, v̄], and the payment function
p(b) satisfies p(0) = 0 and p′(b) > 0, there exists a unique
Bayesian Nash (symmetric) equilibrium which is given by

b(v) = p−1
(
vFn−1(v)−

∫ v

v

Fn−1(t) dt
)
. (14)

B. Agent strategy, Contest prize, and Principal’s profit
1) Agent strategy:

OPT: Using Theorem 1, we apply (8) with p̂(bi, vi) = b2i /vi
and F1 = v1 to obtain

2b1
v1

=
1

λ
− 2b1

v2
1

(1− v1),

which gives the optimal equilibrium strategy for agent 1:

b1(v1) =
v2

1

2λ
, v1(b1) =

√
2λb1. (15)

Similarly, applying (8) with F2 = v2+1
2 yields for agent 2:

b2(v2) =
v2

2

2λ
, v2(b2) =

√
2λb2 (16)

which is the same (i.e., symmetric) as agent 1. This is because
the two type distributions happen to have identical hazard rate
[12], f(v)

1−F (v) , which is used (inversely) in (8). Clearly, this
should not be generalized to all c.d.f.’s; indeed, we shall see
later that the optimal prizes for the two agents (21)(22) as well
as their individual contributions to the principal’s profit (23)(24)
are different.

FIX: Instantiating Proposition 3 with F1(v) = v and F2(v) =
v+1

2 yields

k′(v) =
2k(v)

v
⇒ k(v) = v2, k−1(v) =

√
v.

Therefore bfix1 (v1) =
(∫ v1

0

v2 dv
) 1

2

=
v

3/2
1√

3
, (17)

bfix2 (v2) =
v

3/4
2√

3
. (18)

SYM: For SYM-1, applying Proposition 4 with F (v) = v
gives

bsym1 (v) =
v√
2
. (19)

For SYM-2, applying Proposition 4 with F (v) = v+1
2 gives

bsym2 (v) =
v

2
. (20)

2) Optimal prize tuple in OPT:
Theorem 1 gives the optimal prize for agent 1 via (7):

Z1(b1) =

v31
4λ2 +

∫ v1
0

ṽ21
4λ2 dṽ1

v1+1
2

∣∣∣
v1=
√

2λb1
=

2(
√

2λb1)3

3λ2(
√

2λb1 + 1)
.

(21)

The optimal prize for agent 2 is similarly obtained to be

Z2(b2) =
2

3λ
b2. (22)
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3) Principal’s profit:
OPT: The principal’s maximized profit can again be calculated
using Theorem 1. Particularly in (9), we calculate each agent’s
contribution corresponding to each summation term of π = π1+
π2, as follows:

π1 =

∫ 1

0

[ v2

2λ
− v3

4λ
− v2

4λ
(1− v)

]
dv =

1

12λ
, (23)

π2 =

∫ 1

0+

[ v2

2λ
− v3

4λ
− v2

4λ
(1− v)

]dv
2

=
1

24λ
. (24)

∴ π = π1 + π2 =
1

8λ
. (25)

In the above when calculating π2, although there is a probability
atom of 0.5 at v = 0, the effort and payment are both zero, and
hence it does not contribute to the profit and we can take the
integral from 0+ onward.

FIX: The profit in this case is πfix = πfix1 +πfix2 −λ where

πfix1 =

∫ 1

0

bfix1 (v1) dF1(v1) =
2

5
√

3
,

πfix2 =

∫ 1

0+

bfix2 (v2) dF2(v2) =
2

7
√

3
.

∴ πfix =
24

35
√

3
− λ. (26)

Like in OPT, bfix2 (0) = 0 nullifies the atom at f2(0).
SYM: The profits of SYM-1 and SYM-2 are, respectively,

πsym1 = 2

∫ 1

0

bsym1 (v1) dF1(v1)− λ =
1√
2
− λ, (27)

πsym2 = 2

∫ 1

0

bsym2 (v2) dF2(v2)− λ =
1

4
− λ. (28)

C. Results
In line with the organizer’s ultimate objective, we first com-

pare the profit of the above four mechanisms in Fig. 1, based
on formulae (25)–(28). The plot clearly shows that OPT garners
the highest profit compared to all the other mechanisms over
all possible λ. In particular, even though SYM-1 is privileged
to benefit from two strong agents, it is still outperformed by
OPT, apart from being tangent to OPT at only one point
(λ =

√
2/4). Specifically, eight profit values are also marked in

Fig. 1 at λ = 0.1 and 0.3, where we see that OPT significantly
outperforms the other three mechanisms, by about 105%, 315%
and 730%, respectively (at λ = 0.1). If λ is sufficiently high,
FIX, SYM-1, and SYM-2 even run into deficit (negative profit),
at λ > 0.396, λ > 0.707, and λ > 0.25, respectively. On the
other hand, as λ becomes smaller (i.e., the principal values the
prize less), OPT reaps exponential profit growth whereas the
other mechanisms only have linear profit increase.

1) Profit ranking and rationale: According to Fig. 1, the
profit of the four mechanisms can be ranked as SYM-2 ≺ FIX ≺
SYM-1 ≺ OPT, where ≺ denotes “is inferior to”. To understand
the rationale behind this ranking result, we examine the agent
strategies, by plotting formulae (15)–(20) in Fig. 2.

In general, the ranking SYM-2 ≺ FIX ≺ SYM-1 can be
understood by the composition of the three contests: SYM-1
and SYM-2 are composed of two strong and two weak agents,
respectively, and FIX is a mixture. However, it is worth noting
that FIX is much lower than the average of SYM-1 and SYM-2;
in fact, it is even lower than half of SYM-1 alone. This is due to
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Figure 1: Profit comparison of different mechanisms.

the effort reservation effect existing in asymmetric auctions, as
mentioned in Section IV-C, where a stronger agent shades his
bid when facing a weaker agent. Indeed, Fig. 2 shows that agent
1 in FIX bids significantly lower than in SYM-1, although agent
2 exerts higher effort than in SYM-2.6 The reason why the effort
reduction of the stronger agent outweighs the effort increase
of the weaker agent is that, mathematically, the p.d.f. of the
stronger type concentrates on the higher region of the common
support [v, v̄] and thus has a larger impact on the revenue
(calculated by an integral). Intuitively, this tells that “stronger
agents matter more”, and offers us the following insight: it is
more productive for a mechanism to focus on incentivizing
stronger agents who constitute the main contributors to the
revenue. This hints toward a discriminatory contest design, and
indeed, this discriminatory design principle is used by both this
work (the agent-specific prize functions) and some prior work
such as [35].

To understand why SYM-1 ≺ OPT, first we see in Fig. 2
that OPT incentivizes agents to exert significantly higher effort
than all the other mechanisms, particularly at higher types,
which concurs the productivity of incentivizing stronger agents
mentioned above.

To draw deeper insights into how this is achieved, we examine
the optimal prize tuple of OPT, by plotting formulae (21)(22)
in Fig. 3. We see that OPT gives slightly higher reward to
agent 2 if he exerts the same amount of effort as agent 1. The
rationale is to motivate the weaker agent insofar as he becomes
a competitive rival to the stronger agent, thereby “threatening”
the stronger agent not to reserve effort. In principle, the prize
tuple endogenizes agent asymmetry and enables the contest
to recuperate from the fierceness of competition existing in
symmetric contests. Moreover, the increasing monotonicity of

6The reason why agent 2 works harder in FIX than in SYM-2 is because he
can deduce that the stronger agent will reserve effort and hence he (agent 2)
sees a better chance to win by striving above his (usual) effort level as in the
symmetric case (SYM-2).
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Figure 2: Equilibrium strategy (agent effort). The same line-spec is used for both agents in OPT as they adopt the same strategy.
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Figure 3: Optimal prizes as functions of winner efforts in OPT. The range of X axis is determined by the maximum effort.

the prize functions also motivates agents to work harder as the
reward grows with their effort. These incentives render OPT
superior to SYM-1 and the other mechanisms.

Lastly, as a side note, Fig. 2 also indicates that the agent
strategy in all the mechanisms is monotone increasing in agent
type, which conforms to Lemma 1.

2) Neutralizing DMR: In this subsection, we investigate how
SA neutralizes the law of DMR, by comparing OPT-n and FIX-
n. In OPT-n, since the n agents are now homogeneous (same
as agent 1, for illustration), the prize tuple collapses into a
single prize function. Using Theorem 1, this single, optimal
prize function can be calculated as

Zopt-n(b) =
(2λb)2−n

2

3λ2
.

In addition, the equilibrium agent strategy becomes

b =
v2

2λ
, (29)

and the resultant profit is πopt-n =
n

12λ
. (30)

For FIX-n, the equilibrium agent strategy is calculated using
Proposition 4, as

bfix-n(v) =

√
n− 1

n
v

n
2 , (31)

and the resultant profit is

πfix-n = n

∫ 1

0

bfix-n(v) dF1(v)− λ =
2
√
n(n− 1)

n+ 2
− λ (32)

We plot πopt-n and πfix-n in Fig. 4 with respect to n for
different λ values. As we can see, as a standard auction, FIX-n
is indeed governed by the law of DMR, and exhibits concave
profit growth as n increases. Eventually, it saturates at the upper
bound of limn→∞ πfix-n = 2− λ, which is indicated in Fig. 4
as well.

On the contrary, OPT-n is not confined by the law of DMR
and its profit grows linearly as n increases. To understand why,
we note that in the symmetric case, SA is reinterpreted as that
the agent strategy is independent of the number of agents. This
is also evidenced by (29), whereas the strategy in FIX-n (31)
does depend on n. Therefore the revenue—the sum of all the
agents’ bids—is a linear function of n (in detail, revenue is
n
∫ 1

0
v2

2λ dF (v) = n
6λ ). The cost is also linear in n: λE[Z] =

λ
∫ 1

0
v4−n

3λ2 dvn = n
12λ . Therefore, the profit is a linear function

of n, verified by n
6λ −

n
12λ = n

12λ which coincides with (30).
Moreover, when n is not too small, as in most real scenarios,

Fig. 4 shows that OPT-n garners much larger profit which
is even superior to the upper bound of FIX-n by far. These
observations manifest a very healthy scalability for OPT-based
crowdsourcing systems.
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Figure 4: Strategy autonomy neutralizes the law of diminishing marginal returns.

VI. CONCLUSION

This paper frames the problem of incentive mechanism design
for crowdsourcing into an all-pay contest model. To the best
of our knowledge, our model represents the first contest or
auction model that (a) accommodates multiple heterogeneous
users with incomplete information, and (b) is instrumented with
a prize function tuple as opposed to the conventional, single,
fixed prize. Not only does it more closely characterizes realistic
crowdsourcing campaigns, but it also induces the highest pos-
sible total effort from self-interested agents, which is of utmost
importance to most crowdsourcing campaigns.

The strategy autonomy (SA) property, which is discovered
during the course of investigating this new model, captures a
counter-intuitive and surprising phenomenon: agents in a het-
erogeneous environment behave independently of one another
as if they were in a homogeneous one. SA bears practical
significances pertaining to system complexity, profitability, and
scalability. It could also be an enrichment to the theory of
mechanism design.

REFERENCES

[1] D. Estrin, “Participatory sensing: Applications and architecture,” in ACM
MobiSys, 2010, pp. 3–4.

[2] D. M. Kreps, “Intrinsic motivation and extrinsic incentives,” American
Economic Review, vol. 87, no. 2, pp. 359–364, 1997.

[3] V. Krishna, Auction theory, 2nd ed. Academic Press, 2009.
[4] J.-S. Lee and B. Hoh, “Sell your experiences: A market mechanism based

incentive for participatory sensing,” in IEEE PerCom, 2010.
[5] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smartphones:

Incentive mechanism design for mobile phone sensing,” in ACM Mobi-
Com, 2012.

[6] I. Koutsopoulos, “Optimal incentive-driven design of participatory sensing
systems,” in IEEE INFOCOM, 2013.

[7] T. Luo, H.-P. Tan, and L. Xia, “Profit-maximizing incentive for participa-
tory sensing,” in IEEE INFOCOM, 2014, pp. 127–135.

[8] R. Siegel, “All-pay contests,” Econometrica, vol. 77, no. 1, pp. 71–92,
2009.

[9] S. Chawla, J. D. Hartline, and B. Sivan, “Optimal crowdsourcing contests,”
in ACM-SIAM Symposium on Discrete Algorithms, 2012.

[10] D. DiPalantino and M. Vojnovic, “Crowdsourcing and all-pay auctions,”
in ACM EC, 2009, pp. 119–128.

[11] N. Archak and A. Sundararajan, “Optimal design of crowdsourcing
contests,” in 30th International Conference on Information Systems, 2009.

[12] R. Myerson, “Optimal auction design,” Mathematics of Operations Re-
search, vol. 6, no. 1, pp. 58–73, 1981.

[13] J. Riley and W. Samuelson, “Optimal auctions,” American Economic
Review, vol. 71, no. 3, pp. 381–392, 1981.

[14] E. S. Maskin and J. G. Riley, “Asymmetric auctions,” Review of Economic
Studies, vol. 67, no. 3, pp. 413–438, 2000.

[15] E. Amann and W. Leininger, “Asymmetric all-pay auctions with incom-
plete information: The two-player case,” Games and Economic Behavior,
vol. 14, no. 1, pp. 1–18, May 1996.

[16] N. Szech, “Asymmetric all-pay auctions with two types,” Working Paper,
University of Bonn, January 2011.

[17] J. Xiao, “Asymmetric all-pay contests with heterogeneous prizes,” Work-
ing Paper, University of Melbourne, September 2013.

[18] G. Fibich and A. Gavious, “Asymmetric first-price auctions - a perturba-
tion approach,” Math. Oper. Res., vol. 28, no. 4, pp. 836–852, 2003.

[19] G. Fibich and N. Gavish, “Numerical simulations of asymmetric first-price
auctions,” Games and Economic Behavior, vol. 73, pp. 479–495, 2011.

[20] B. Moldovanu and A. Sela, “The optimal allocation of prizes in contests,”
American Economic Review, vol. 91, no. 3, pp. 542–558, 2001.

[21] C. Cohen, T. Kaplan, and A. Sela, “Optimal rewards in contests,” The
RAND Journal of Economics, vol. 39, no. 2, pp. 434–451, 2008.

[22] T. Kaplan, I. Luski, A. Sela, and D. Wettstein, “All-pay auctions with
variable rewards,” Journal of Industrial Economics, vol. 50, no. 4, pp.
417–430, 2002.

[23] G. Fibich and N. Gavish, “Asymmetric first-price auctions - a dynamical-
systems approach,” Mathematics of Operations Research, vol. 37, no. 2,
pp. 219–243, 2012.

[24] E. S. Maskin and J. G. Riley, “Equilibrium in sealed high bid auctions,”
Review of Economic Studies, vol. 67, no. 3, pp. 439–454, 2000.

[25] ——, “Uniqueness of equilibrium in sealed high-bid auctions,” Games
and Economic Behavior, vol. 45, no. 2, pp. 395–409, 2003.

[26] S. O. Parreiras and A. Rubinchik, “Contests with three or more hetero-
geneous agents,” Games and Economic Behavior, vol. 68, pp. 703–715,
2010.

[27] J. Franke, C. Kanzow, W. Leininger, and A. Schwartz, “Effort maxi-
mization in asymmetric contest games with heterogeneous contestants,”
Economic Theory, vol. 52, no. 2, pp. 589–630, 2013.

[28] T. Luo, S. S. Kanhere, and H.-P. Tan, “SEW-ing a simple endorsement
web to incentivize trustworthy participatory sensing,” in IEEE SECON,
2014.

[29] C.-K. Tham and T. Luo, “Quality of contributed service and market
equilibrium for participatory sensing,” in IEEE DCOSS, 2013, pp. 133–
140.

[30] Appendix. [Online]. Available: http://www1.i2r.a-star.edu.sg/∼luot/pub/
mass14app.pdf

[31] P. Milgrom and I. Segal, “Envelope theorems for arbitrary choice sets,”
Econometrica, vol. 70, no. 2, pp. 583–601, 2002.

[32] K. A. Konrad, Strategy and Dynamics in Contests. Oxford University
Press, 2009.

[33] E. Cantillon, “The effect of bidders asymmetries on expected revenue in
auctions,” Games and Economic Behavior, vol. 62, pp. 1–25, 2008.

[34] P. A. Samuelson and W. D. Nordhaus, Microeconomics, 17th ed.
McGraw-Hill, 2001.

[35] F. Naegelen and M. Mougeot, “Discriminatory public procurement policy
and cost reduction incentives,” Journal of Public Economics, vol. 67, no. 3,
pp. 349–367, 1998.

http://www1.i2r.a-star.edu.sg/~luot/pub/mass14app.pdf
http://www1.i2r.a-star.edu.sg/~luot/pub/mass14app.pdf

	Introduction
	Related Work
	Incentive mechanisms and Symmetric auctions
	Asymmetric auctions

	The Model
	Analysis
	Equilibrium strategy
	Optimal prize tuple
	Qualitative properties
	Strategy Autonomy (SA)
	Individual Rationality (IR)
	Incentive Compatibility (IC)


	Case Study
	Theoretical underpinnings
	Agent strategy, Contest prize, and Principal's profit
	Agent strategy
	Optimal prize tuple in OPT
	Principal's profit

	Results
	Profit ranking and rationale
	Neutralizing DMR


	Conclusion
	References

