
Enhancing Responsiveness and Scalability for OpenFlow
Networks via Control-Message Quenching

Tie Luo∗, Hwee-Pink Tan∗, Philip C. Quan†, Yee Wei Law‡ and Jiong Jin‡
∗Institute for Infocomm Research, A*STAR, Singapore
†Faculty of Mathematics, University of Cambridge, UK

‡Department of Electrical & Electronic Engineering, University of Melbourne, Australia
E-mail: {luot, hptan}@i2r.a-star.edu.sg, cq214@cam.ac.uk, {ywlaw,jjin}@unimelb.edu.au

Abstract—OpenFlow has been envisioned as a promis-
ing approach to next-generation programmable and easy-
to-manage networks. However, the inherent heavy switch-
controller communications in OpenFlow may throttle
controller responsiveness and, ultimately, network scal-
ability. In this paper, we identify that a key cause of this
problem lies in flow setup, and propose a Control-Message
Quenching (CMQ) scheme to address it. CMQ requires
minimal changes to OpenFlow, imposes no overhead on
the central controller which is often the performance
bottleneck, is lightweight and simple to implement. We
show, via worst-case analysis and numerical results, an
upper bound of performance improvement that CMQ
can achieve, and evaluate the average performance via
experiments using a widely-adopted prototyping sys-
tem. Our experimental results demonstrate considerable
enhancement of controller responsiveness and network
scalability by using CMQ, with reduced flow setup latency
and elevated network throughput.

I. INTRODUCTION

The advent of software-defined networking (SDN)
[1] and OpenFlow [2] is ushering in a new era of net-
working with a clearly-decoupled network architecture:
a programmable data plane and a centralized control
plane. The data plane is tasked to flow-based packet for-
warding and the control plane centralizes all intelligent
control such as routing, traffic engineering and QoS
control. The flow-based packet forwarding is realized
by programmable (i.e., user-customizable) flow tables
via an open interface called OpenFlow, which is the
de facto communication standard protocol between the
control and the data planes. The control plane is usually
embodied by a central controller, providing a global
view of the underlying network to upper applications.
This architecture is depicted in Fig. 1.

The split architecture of SDN, gelled by OpenFlow,
brings substantial benefits such as consistent global
policy enforcement and much simplified network man-
agement. While the standardization process, steered by
Open Networking Foundation consortium [3], is still
ongoing, SDN and OpenFlow have won wide recogni-
tion and support from a large number of industry giants
such as Microsoft, Google, Facebook, HP, Deutsche
Telekom, Verizon, Cisco, IBM and Samsung. It has also

Fig. 1. The architecture of SDN [1].

attracted substantial attention from the academia where
research has recently heated up on a variety of topics
related to OpenFlow.

In this paper, we address OpenFlow scalability by
way of enhancing controller responsiveness. This was
motivated by the imbalance between the flow setup rate
offered by OpenFlow and the demand of real production
networks. The flow setup rate, as measured by Curtis et
al. [4] on a HP ProCurve 5406zl switch, is 275 flows
per second. On the other hand, a data center with 1500
servers, as reported by Kandula et al. [5], has a median
flow arrival rate of 100k flows per second, and an 100-
switch network, according to Benson et al. [6], can have
a spike of 10M flow arrivals per second in the worst
case. This indicates a clear gap.

The inability of OpenFlow to meet the demanding
requirements stems from its inherent design which lead
to frequent switch-controller communications: to keep
the data plane simple, OpenFlow delegates the task
of routing (as required by flow setup) from switches
to the central controller. As a result, switches have to
consult the controller frequently for instructions on how
to handle incoming packets, which taxes the controller’s
processing power and tends to congest switch-controller
connections, thereby imposing a serious bottleneck to
the scalability of OpenFlow.

Prior studies on the scalability issue focus on design-
ing a distributed control plane [7], [8], devolving control

to switches [4], [9], [10] or end-hosts [11], or using
multi-threaded controllers [12], [13]. These approaches
either entail significant changes to OpenFlow (while
a wide range of commercial OpenFlow products and
prototypes have been off the shelf) or are complex to
implement.

In this paper, we take a different and algorithmic
approach, rather than architectural or implementation-
based ones as used by above-mentioned work. We
propose a Control-Message Quenching (CMQ) scheme
to enhance controller responsiveness, in order to reduce
flow setup latency and boost network throughput. By
way of suppressing redundant control messages, it con-
serves more computational and bandwidth resources for
the control plane and mitigates the controller bottleneck
problem, thereby enhancing network scalability. CMQ
is lightweight and easy to implement; it runs locally on
switches without imposing any overhead on the con-
troller. We show, via worst-case analysis and numerical
results, an upper bound of control message reduction
that CMQ can achieve, and evaluate its average per-
formance via experiments using a widely-adopted pro-
totyping system. The experimental results demonstrate
the effectiveness of CMQ via considerably reduced flow
setup latency and elevated network throughput.

The rest of the paper is organized as follows. Sec-
tion II reviews the literature and Section III presents our
proposed solution together with worst-case analysis. We
evaluate the performance of CMQ in Section IV, and
conclude the paper in Section V.

II. RELATED WORK

Notwithstanding various advantages mentioned else-
where, the architecture of a much-simplified data plane
together with a centralized control planes of OpenFlow
creates higher demand on switch-controller communi-
cations, thereby making the controller prone to bot-
tleneck and throttling network scalability. To address
this, Yu et al. proposed DIFANE [9] to push network
intelligence down to the data plane. It partitions pre-
installed flow-matching rules among multiple “autho-
rized switches” and lets each authorized switch oversee
one partition of the network; normal switches only
communicate in the data plane with each other or
authorized switches, while only authorized switches
need to talk to the controller occasionally. However, the
visibility of flow states and statistics is compromised
as being largely hidden from the controller. It also
requires significant changes to OpenFlow. Mahout [11]
attempts to identify significant flows (called “elephant
flows” therein) by end-hosts looking at the TCP buffer
of outgoing flows, and does not invoke the controller
for insignificant flows (called “mice” therein). The
downside is that it requires modifying end-hosts, which
is difficult to achieve because end-hosts are beyond the

control of network operators. DevoFlow [4] (i) devolves
control partly from the controller back to switches,
an idea similar to [9] but incurs smaller changes to
OpenFlow, using a technique called rule cloning, and
(ii) only involves the controller for elephant flows, an
idea similar to [11] but does not require modifying end-
hosts. It also allows switches to make local routing
decisions without consulting the controller, through
multipath support and rapid rerouting. We take a dif-
ferent approach by improving the working procedures
of the OpenFlow protocol and enhancing controller
responsiveness; we only require minimal changes to
switches and our proposed scheme is much simpler than
DeveFlow.

Another line of thought to improve OpenFlow scal-
ability focuses on redesigning the control plane. One
such approach is to design a distributed control plane,
as in Onix [7] and HyperFlow [8]. Another approach
is to implement multi-threaded controllers, as done by
Maestro [12] and NOX-MT [13]. Distributed control in-
curs additional overhead for synchronizing controllers’
network-wide views, and increases complexity. Multi-
threading is orthogonal to, yet compatible with, our
approach, and hence can be applied to CMQ.

III. CONTROL-MESSAGE QUENCHING

Our solution is based on the working procedures
of the OpenFlow protocol, particularly the flow setup
process. We identify that the major traffic occurred in
switch-controller communications is comprised of two
types of control messages: (1) packet-in and (2)
packet-out or flow-mod. A packet-in mes-
sage is sent by a switch to the controller in order to
seek instructions on how to handle a packet upon table-
miss, an event that an incoming packet fails to match
any entry in the switch’s flow table. The controller,
upon receiving packet-in, will compute a route for
the packet based on the packet header information
encapsulated in the packet-in, and then respond to
the requesting switch by sending a packet-out or
flow-mod message: (i) if the requesting switch has
encapsulated the entire original packet in packet-in
(usually because of no queue), the controller will
use packet-out which also encapsulates the entire
packet; (ii) otherwise, if the packet-in only contains
the header of the original packet, flow-mod will be
used instead, which also only includes the packet header
so that the switch can associate with the original packet
(in its local queue). Either way, the switch can be
instructed on how to handle the packet (e.g., which port
to send to), and will record the instruction by installing
a new entry in its flow table to avoid re-consulting the
controller for subsequent packets that should be handled
the same way.

This mechanism works fine when the switch-
controller connection, referred to as OpenFlow channel

[14],1 has ample bandwidth and the controller is hyper-
fast, or the demand of flow setup is low to moderate.
However, chances are good that neither is met. On
one hand, our analysis and measurement show that
the round trip time (RTT)—the interval between the
instance packet-in is sent out and the instance
packet-out or flow-mod is received—can be con-
siderably long: for instance, according to our measure-
ment (Section IV), RTT is 3.67–4.06 ms even in low-
load conditions, which is in line with what others (e.g.,
[4], [15]) reported. But on the other hand, the flow inter-
arrival time (reciprocal of flow setup request rate) can
reach 0.1–10 µs [5], [6], which is several orders shorter
than the RTT. In general cases, and for a more rigorous
understanding, we analyze the problem as below.

A. Analysis
Let us consider a network with s edge switches, each

of which connects to h hosts. The data traffic between
the hosts is specified by the following matrix:

i\j 1 2 ... h h+ 1 ... 2h ... sh

1 0 λ12 ... λ1h λ1,h+1 ... λ1,2h ... λ1,sh
2 λ21 0 ... λ2h λ2,h+1 ... λ2,2h ... λ2,sh
...

...
... . . .

...
sh λsh,1 λsh,2 . . . 0

where λij is the packet arrival rate at host i destined

to host j, and i, j = 1, 2, ..., sh.
Denote by RTTk the average round trip time for

switch k where k = 1, 2, ..., s. Denote by Nk the
average number of packet-in that switch k sends
during RTTk, i.e., Nk/RTTk is flow setup request
rate. Consider the worst case, where either no flow-
table entries have been set up or all the entries have
expired (OpenFlow supports both idle-entry timeouts
and hard timeouts); in other words, switch k’s flow table
is empty. In this case, each packet arrival will trigger a
packet-in to be sent and Nk achieves the maximum:

Nmax
k = RTTk

kh∑
i=(k−1)h+1

((k−1)h∑
j=1

λij +

sh∑
j=kh+1

λij
)
(1)

where it is assumed that switch k is configured to be
aware of the set of h hosts attached to it and will
only consult the controller when the destination host
is not attached to it. Otherwise, the switch will consult
the controller for every destination host and Eqn. (1)
becomes

Nmax
k = RTTk

kh∑
i=(k−1)h+1

sh∑
j=1

λij (2)

which does not alter the problem in principle. Hence-
forth, we focus on Eqn. (1).

1An OpenFlow channel can be provisioned either in band or out
of band, which is out of the scope of OpenFlow.

B. Numerical Results

To obtain concrete values, let us consider a three-
level Clos network [16] that consists of s = 80 edge
switches with 8 uplinks each, 80 aggregation switches,
and 8 core switches, depicted in Fig. 2. Each edge
switch is attached to h = 20 servers.

Fig. 2. A Clos network with 168 switches and 1600 servers.

In a typical data-center setting, each server transfers
128MB to every other server per second with 1500-
byte packets, each link is of capacity 1 Gbps, OpenFlow
channels are provisioned out of band with bandwidth 1
Gbps, whereby the controller can accomplish 275 flow
setups per second [4]. This setting translates to a packet
arrival rate of λij ≈ 85.3k packet/sec or inter-arrival
time of 11.7µs, as well as RTTk = 1/(275/80) ≈ 291
ms. It then follows from Eqn. (1) that

Nmax
k ≈ 7.84× 108, k = 1, 2, ..., 80, (3)

or 2.7 Giga packet-in messages per second, which
far exceeds OpenFlow channel bandwidth (1Gbps) and
will likely cause congestion.

C. Algorithm

We propose a Control-Message Quenching (CMQ)
scheme to address this problem. In CMQ, a switch will
send, during each RTT, only one packet-in message
for each source-destination pair upon (multiple) table-
misses. The rationale is that packets associated with
each such pair will be treated as in the same flow
and the corresponding packet-out or flow-mod
messages will carry redundant information and thus are
unnecessary.

To achieve this, each switch maintains a dynam-
ically updated list, L, of source-destination address2

pairs 〈s, d〉. For each incoming packet that fails to
match any flow-table entry, i.e., a table-miss occurs,
the switch checks the packet against L and only sends
a packet-in if the packet’s 〈s, d〉 /∈ L. Otherwise, it
simply inserts the 〈s, d〉 in L and queues the packet. Af-
ter receiving the controller response, i.e., packet-out
or flow-mod, those backlogged packets that match the
address information encapsulated in the response will
be processed accordingly, as per the original OpenFlow.

2Depending on the type of the switch, the address could be an
IP address, Ethernet address, MPLS label, or MAC address.

A new flow entry will also be installed in the flow
table for the sake of subsequent packets. This process
is formally described in Algorithm 1.

Algorithm 1 Control-Message Quenching (CMQ)
1: L := ∅
2: for each incoming event e do
3: if e =“an incoming packet” then
4: look up flow table to match the packet
5: if matched then
6: handle the packet as per the matched entry
7: else
8: look up L for the packet’s source-

destination address pair 〈s, d〉
9: if found then

10: enqueue packet //suppresses packet-in
11: else
12: send packet-in to controller
13: enlist 〈s, d〉 → L
14: end if
15: end if
16: else if e =“incoming packet-out or

flow-mod” then
17: dequeue and process matched packets as per

instruction
18: install a new entry in flow table
19: de-list corresponding 〈s, d〉 from L
20: end if
21: end for

At line 12, as per OpenFlow, the associated packet
will be queued at the ingress port in ternary content ad-
dressable memory (TCAM) if the switch has; otherwise,
the packet-in will encapsulate the entire packet. At
lines 10 and 17, the queue is the same TCAM queue
as above if the switch has; otherwise, the switch shall
allocate such a queue in its OS user or kernel space.3

D. Analysis Revisited

Let us reconsider the network described in Sec-
tion III-A but with CMQ now. Let RTT ′k denote the
round trip time for switch k when using CMQ, and N ′k
the average number of packet-in sent by switch k
during RTT ′k. Still considering the worst case, we have

N ′max
k =

kh∑
i=(k−1)h+1

((k−1)h∑
j=1

min{1, λij ×RTT ′k}+

sh∑
j=kh+1

min{1, λij ×RTT ′k}
)
.

(4)

3Although OS memory is generally slower than TCAM, it does
not present a problem because the enqueueing process happens
during RTT which is essentially an idle period; in the case of
dequeueing, one can dedicate a thread for non-blocking processing.

Each summation term is capped by 1 because at
most one packet-in will be sent for each source-
destination pair of hosts in one RTT.

Revisiting the example Clos network given in Sec-
tion III-B, we first note that λij ×RTTk ≈ 24.8k � 1.
Hence, it is plausible to assume that λij × RTT ′k > 1
because RTT ′k is unlikely to be more than 4 orders
smaller than RTTk (which was later verified by our
experiments, too). It then follows from Eqn. (4) that

N ′max
k = 31.6× 103, k = 1, 2, ..., 80. (5)

Compared to Eqn. (3), it indicates a remarkable reduc-
tion of control messages. For a comparison on the same
time scale using per second, i.e., Nmax

k /RTTk versus
N ′max

k /RTT ′k, it becomes 25632×RTT ′k/RTTk folds
reduction of flow setup requests per second, which is
still substantial since RTT ′k is unlikely to be more than
4 orders smaller than RTTk as mentioned above.

Our worst-case analysis gives an upper bound to
the (average) performance improvement, in terms of
reduction of flow setup requests that CMQ can achieve.4

This shows significant potential; to evaluate the average
performance, we conduct experiments described next.

IV. PERFORMANCE EVALUATION

To quantify the performance gain with CMQ, we
conduct experiments using Mininet [17], which is a
prototyping system widely adopted by institutions in-
cluding Stanford, Princeton, Berkeley, Purdue, ICSI,
UMass, NEC, NASA, and Deutsche Telekom Labs.
One important feature of Mininet is that users can
deploy exactly the same code and test scripts in a real
production network.

We use probably the most popular OpenFlow con-
troller, NOX [18], and a popular OpenFlow switch
model, Open vSwitch [19]. We also use Wireshark [20],
a network protocol analyzer, to verify the protocol
workflow.

A. Experiment Setup

Our experiments use three topologies: Linear, Tree-8
and Tree-16,5 as shown in Fig. 3. We employ two traffic
modes, latency mode and throughput mode, as used by
cbench [21]. In latency mode, a switch initiates only one
outstanding flow setup request, waiting for a response
from the controller before soliciting the next request. In
throughput mode, each switch sends packets using its
maximum rate, attempting to saturate the network.

4It is not obvious, though, that Nmax
k /N ′max

k gives an upper
bound to average performance, while replacing N ′max

k with N ′
k

would be more intuitive. In fact, because capped by 1 as in Eqn. (4),
the difference between N ′max

k and N ′
k is by far smaller than that

between Nmax
k and Nk. Hence, what we derive is a de facto upper

bound.
5Both tree and Clos topologies are typical in data center networks;

we did not use Clos because Mininet does not allow loops to appear
in its topology.

(a) Linear: 2 switches. (b) Tree-8: depth=3 and fanout=2. (c) Tree-16: depth=2 and fanout=4.

Fig. 3. Topologies used in experiments. Rectangles represent switches and ellipses represent hosts.

The traffic pattern is designated as follows. In latency
mode, the first host sends packets to the last host and
the others do not generate traffic. That is, H1→H4 in
Linear (Fig. 3a), H1→H8 in Tree-8 (Fig. 3b), H1→H16
in Tree-16 (Fig. 3c). In throughput mode, in Linear,
H1→H3 and H2→H4; in Tree-8, Hi sends packets to
H(i+4) mod 8, i.e, H1→H5, ..., H4→H8 (treating H8 as
H0), H5→H1, ..., H8→H4 (8 flows); in Tree-16, Hi

sends packets to H(i+4) mod 16 (16 flows). Therefore,
the hop count of each route in Tree-8 or Tree-16, is
equal (6 and 4, respectively).

The metrics we evaluate are (1) RTT: flow setup
latency as defined in Section III, which we measure on
all switches and then take the average, and (2) end-
to-end throughput, aggregated over all flows, which
we measure using iperf. Note that RTT is essentially
a control-plane metric and throughput a data-plane
metric; using these two metrics allows us to see how
the two planes quantitatively interact.

In all networks, link capacity is 1 Gbps, and Open-
Flow channels are provisioned out of band with band-
width also 1 Gbps. Flow-table entry timeout is 60
seconds by default. All the results are averaged over
10 equal-setting runs. In each run, the first 5 seconds
are treated as warm-up and excluded from statistics.

B. Experimental Results

As a baseline, we first measure RTT for Open-
Flow without CMQ and report the data in Table I.
In throughput mode, RTT significantly increases by
about 13, 143, 175 folds compared to latency mode
on the three topologies, respectively. This clearly indi-
cates congested OpenFlow channels and necessitates a
remedy.

TABLE I
RTT IN OPENFLOW (UNIT: MS)

Linear Tree-8 Tree-16
Latency mode 3.67 4.06 3.83

Throughput mode 48.7 580.2 672.2

Next, we measure RTT for OpenFlow with CMQ in
throughput mode (it should be understood that there
will be no difference between OpenFlow with and
without CMQ in latency mode) and present the results

in Fig. 4a, where the RTT of original OpenFlow is
reproduced from Table I. We can see that, CMQ reduces
RTT by 14.6%, 20.7% and 21.2% in Linear, Tree-8 and
Tree-16, respectively. This is considerable and, more
desirably, the improvement increases when the network
gets larger, which indicates an aggregating effect and is
meaningful to network scalability.

To see how RTT affects throughput, we measure
throughput in the same (throughput) mode, and show
the results in Fig. 4b. We see that, with CMQ, network
throughput is increased by 7.8%, 12.0% and 14.8%
for Linear, Tree-8 and Tree-16, respectively. On one
hand, this improvement is not as large as in the case of
RTT, because what CMQ directly acts on is reducing
RTT which only takes effect during flow setup and
not during the lifetime of a flow. On the other hand,
the improvement will become larger if the controller
is configured in band, because the quenched control
traffic will additionally alleviate traffic burden of the
data plane as well.

Finally, we zoom in onto single-flow case by measur-
ing the throughput for each network containing only one
flow: H1→H4, H1→H8, H1→H16 in Linear, Tree-8
and Tree-16, respectively (as in the latency mode). The
results are shown in Fig. 4c. In addition to observing
the similar improvement to the multi-flow case as
in Fig. 4b, we make two other observations from a
cross-comparison with Fig. 4b: (1) For each topology,
single-flow throughput is slightly higher than multi-flow
throughput. This is because, in the multi-flow case,
each topology effectively has at least one shared or
bottleneck switch on all the routes, i.e, S5 and S6
in Linear, S9 in Tree-8, and S17 in Tree-16, which
essentially prevents concurrency. (2) Tree-16 has lower
multi-flow throughput but higher single-flow throughput
than Tree-8. This is because in the single-flow case,
H1→H16 in Tree-16 actually takes shorter path than
H1→H8 in Tree-8 (4 hops versus 6 hops).

Remark: Our experiments demonstrate that CMQ
considerably enhances controller responsiveness, evi-
denced by reduced RTT or shorter flow setup latency.
As a direct result, this improvement in the control plane
leads to increased throughput in the data plane. More
importantly, it substantially benefits network scalability

(a) RTT (ms) in throughput mode. (b) Throughput (Mbps) in throughput mode. (c) Single-flow throughput (Mbps).

Fig. 4. Performance evaluation for RTT and throughput under different modes.

as the (central) controller is now much less involved
in flow setup (most flow setup requests are suppressed
by CMQ running on switches) and OpenFlow channels
become more congestion-proof. This implies that more
computational resource and bandwidth are conserved
and network capacity is effectively expanded and can
accommodate higher traffic demand.

V. CONCLUSION AND FUTURE WORK

In this paper, we address OpenFlow scalability by
enhancing controller responsiveness via a Control-
Message Quenching (CMQ) scheme. Compared to prior
studies that address the same issue, our solution requires
minimal changes to OpenFlow switches, imposes zero
overhead on the controller (which is bottleneck-prone),
is lightweight and simple to implement. These features
are important considerations in industry adoption.

Using analysis and experiments based on a widely-
adopted prototyping system, we demonstrate that CMQ
is effective in improving controller responsiveness
which, ultimately, leads to more scalable OpenFlow
networks.

This study also bolsters resource-constrained yet
large-scale OpenFlow networks. For instance, it could
be used by Sensor OpenFlow [22], the first work that
synergizes OpenFlow and wireless sensor networks.

In future work, we plan to experiment with larger
networks and more extensive settings including traffic
patterns and parameters such as flow entry expiry time,
and investigate the effect of in band channel provision.

REFERENCES

[1] Open Networking Foundation, “Software-defined networking:
The new norm for networks,” white paper, April 2012.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Open-
Flow: enabling innovation in campus networks,” SIGCOMM
Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, 2008.

[3] Open Networking Foundation,
https://www.opennetworking.org.

[4] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee, “DevoFlow: Scaling flow man-
agement for high-performance networks,” in ACM SIGCOMM,
2011.

[5] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and
R. Chaiken, “The nature of data center traffic: Measurements
and analysis,” in ACM Internet Measurement Conference
(IMC), 2009.

[6] T. Benson, A. Akella, and D. A. Maltz, “Network traffic
characteristics of data centers in the wild,” in ACM Internet
Measurement Conference (IMC), 2010.

[7] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker, “Onix: a distributed control platform for large-
scale production networks,” in The 9th USENIX conference on
Operating systems design and implementation (OSDI), 2010,
pp. 1–6.

[8] A. Tootoonchian and Y. Ganjali, “HyperFlow: a distributed
control plane for openflow,” in INM/WREN. USENIX Asso-
ciation, 2010.

[9] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable
flow-based networking with DIFANE,” in ACM SIGCOMM,
2010.

[10] A. S.-W. Tam, K. Xi, and H. J. Chao, “Use of devolved
controllers in data center networks,” in IEEE INFOCOM
Workshop on Cloud Computing, 2011.

[11] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-
overhead datacenter traffic management using end-host-based
elephant detection,” in IEEE INFOCOM, 2011.

[12] Z. Cai, A. L. Cox, and T. S. E. Ng, “Maestro: A system for
scalable openflow control,” Rice University, Tech. Rep. TR10-
08, 2010.

[13] A. Tootoonchian, S. Gorbunov, Y. Ganjali, and M. Casado,
“On controller performance in software-defined networks,” in
USENIX Workshop on Hot Topics in Management of Internet,
Cloud, and Enterprise Networks and Services (Hot-ICE),
2012.

[14] Open Networking Foundation, “OpenFlow switch
specification,” April 16, 2012, version 1.3.0. [On-
line]. Available: https://www.opennetworking.org/images/
stories/downloads/specification/openflow-spec-v1.3.0.pdf

[15] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar, “Can the production network
be the testbed?” in the 9th USENIX conference on Operating
systems design and implementation (OSDI), 2010, pp. 1–6.

[16] C. Clos, “A study of non-blocking switching networks,” Bell
System Technical Journal, vol. 32, no. 2, 1953.

[17] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
Rapid prototyping for software-defined networks,” in ACM
HotNets, 2010.

[18] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McK-
eown, and S. Shenker, “NOX: Towards an operating system
for networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 3, pp. 105–110, 2008.

[19] Open vSwitch, http://www.openvswitch.org.
[20] Wireshark, http://www.wireshark.org.
[21] R. Sherwood and K.-K. Yap, “Cbench: an openflow controller

benchmarker,” http://www.openflow.org/wk/index.php/oflops.
[22] T. Luo, H.-P. Tan, and T. Q. S. Quek, “Sensor OpenFlow:

Enabling software-defined wireless sensor networks,” IEEE
Communications Letters, 2012, to appear.

