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Abstract—In wireless networks, it is important to determine
the outcome of packet transmissions for networking protocols. In
this paper, we design a transmission outcome classifier for IEEE
802.15.4 wireless networks based on received signal strength in-
dicator and link quality indicator values. Our classifier performs
loss differentiation by analyzing statistical differences between
weak signal and collision losses. We implement our proposed
classifier using the CC2500 RF transceiver and evaluate it
experimentally. The results show that our classifier can accurately
detect packet transmissions as well as distinguish wireless losses
due to weak signals and multiple access collisions, with a maxi-
mum error rate of 15%. We apply the classifier to probabilistic
polling, which is a MAC protocol designed for energy harvesting
wireless sensor networks, and show experimentally that it is able
to achieve close to or even exceed the theoretical throughput due
to packet capture effect.

I. INTRODUCTION

In wireless sensor networks (WSNs), IEEE 802.15.4 is the

most commonly used physical layer protocol with many RF

transceivers (e.g., CC2420, CC2500) based on this standard.

Many contention-based MAC protocols have been proposed to

coordinate access to the medium to achieve the performance

required by the application. It is important to determine the

outcome of packet transmissions, i.e., whether (i) no packet is

received (E1); (ii) a packet is correctly received (E2); (iii)

a packet is lost due to weak received signal (E3); or (iv)

a packet is lost due to multiple access collision (E4) for

the protocol to take appropriate action, e.g., by adapting the

protocol parameters or adjusting transmission power. There

are typically two types of packet collisions: (a) partially

overlapping, arising from MAC protocols such as RI-MAC [1]

and (b) fully overlapping, arising from MAC protocols such

as probabilistic polling [2], as illustrated in Fig. 1.
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Fig. 1. Different types of collisons

There are several prior work that address loss differentiation

in wireless networks. In [3], Received Signal Strength Indica-

tor (RSSI) values and error patterns within a physical-layer

symbol in IEEE 802.11 were proposed to diagnose wireless

losses. However, these techniques are not directly applicable

to IEEE 802.15.4 which uses different modulation schemes

and hardware. In [4], a RTS/CTS and packet fragmentation

mechanism is used in IEEE 802.11 to isolate the physical

packet error rate. However, this requires additional transmis-

sion overheads which our classifier does not incur. In [5], it is

shown that collision can be detected for partially overlapping

collisions if the power levels of two concurrent transmissions

differ significantly. In comparison, our classifier works for

fully overlapping collisions without any restriction on the

power levels of concurrent transmissions. In [6], RSSI values

were used to determine if a collision occurred by observing

changes in these values during packet transmissions; however,

their method only works where the collisions do not fully

overlap (see Fig. 1a). RSSI values and Link Quality Indicator

(LQI) values have also been used to estimate link quality (e.g.,

[7]) but they are not used to differentiate wireless losses.

In this paper, based on extensive empirical measurements,

we exploit both the LQI and RSSI values to design a novel

classifier that can distinguish between different types of packet

transmission outcomes in IEEE 802.15.4 networks. To the best

of our knowledge, there is no prior work that can classify

packet transmission events for fully overlapping collisions.

We experimentally evaluate the efficacy of our proposed

classifier, and further quantify its benefits by incorporating it

into a probabilistic polling scheme [2], which was designed to

achieve good performance in energy harvesting WSNs.

II. DESIGN OF TRANSMISSION OUTCOME CLASSIFIER

In this section, we describe our design of a transmission

outcome classifier that can distinguish between the four types

of events (E1-4) as defined in Section I. We consider the

CC2500 low-cost 2.4 GHz RF transceiver [8] (Fig. 2a) which

is highly suitable for low-power applications such as wireless

sensor networks. The corresponding packet format comprises

the preamble, sync word, data payload length, data payload

and CRC, as illustrated in Fig. 2b.

The sync word plays a key role in our proposed classifier.

Upon detection of the sync word, the measured LQI value,

Lm, [8] gives an estimate of how easily a received signal

can be demodulated by accumulating the magnitude of the

error between ideal constellations and the received signal over

the 64 symbols immediately following the sync word. It is



a metric used to measure the quality of the received signal

and ranges from 0 (high quality link) to 127 (low quality

link), and is sometimes correlated with the RSSI: a strong

signal (i.e., high RSSI value) is less likely to be affected by

noise and therefore indicative of a high quality link (low LQI

value). Since the sync word is typically much smaller than

the whole packet, the likelihood of detecting it remains much

higher under event E3 (weak signal from a single transmitter)

than E4 (multiple access collision). Hence, detection of the

sync word is a necessary condition for event E2 and E3

(single transmitter). Following this, we can infer that event

E2 occurred if the CRC is correct; otherwise, we propose

to distinguish between packet losses due to weak signal and

multiple access collisions by using both the RSSI and LQI

values - this is described in Section II-B.

On the other hand, if the sync word cannot be detected, then

the measured RSSI value, Rm, which indicates the strength of

the received signal, can be used to distinguish between E1 (no

transmission) and E4 (multiple transmissions). Assuming Rb

to be the background noise, then it is reasonable to expect that

Rm ≤ Rb for E1 and Rm > Rb for E4.

(a) CC2500 RF Transceiver
with a battery pack

Preamble Sync word Data CRCLen

4 bytes 4 bytes 2 bytes1 byte sd bytes

(b) Packet format

Fig. 2. CC2500 transceiver and packet format

A. LQI vs. RSSI for Weak Signals and Multiple Access Colli-

sions

We begin by conducting experiments to obtain the RSSI-

LQI characteristics under the conditions of (i) weak signal

losses and (ii) multiple access collisions. Our experimental

setup comprises one receiver and ns transmitters as shown

in Fig. 3. A control node is placed close to the transmitters

to synchronize the nodes while the receiver is placed at a

distance of dtr from the transmitters. The control node will

broadcast control packets at fixed intervals to the receiver

and transmitters. After receiving the broadcast packet, every

transmitter will send out a data packet of size sd while the

receiver will start detection of data packets.

ns transmitters

control nodereceiver

dtr

Fig. 3. Experiment setup to classify collision and weak signal losses

1) Weak signals (ns = 1): In the first experiment, we have

a single transmitter (i.e., all packet losses will be due to weak

signal) and vary dtr from 0m to 30m in steps of 5m. For each

transmitter-receiver distance, the control node will send out

control packets until 1,000 control packets are received by the

receiver. The size of the control and data packet is 23 and

51 bytes respectively which are inclusive of the physical layer

overheads. We carry out our experiments at a corridor (indoor)

and a pavement (outdoor) as shown in Fig. 4. We collect all

the incorrect packets as indicated by a wrong CRC value with

a total of 1,012 and 1,182 packets for the indoor and outdoor

environment respectively. The corresponding RSSI and LQI

values are plotted in Figs. 5a and 5c.
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Fig. 4. Experimental setups in indoor and outdoor environments

2) Multiple access collisions (ns >1): In the next exper-

iment, we have multiple transmitters where ns ∈ (2, 3, 4, 5),
therefore all packet losses will be due to multiple access

collisions. We vary both ns and dtr. A total of 28,000 control

packets (7,000 for each ns value with 1,000 for each dtr value)

are collected by the receiver. We collect all the incorrect pack-

ets with a total of 5377 and 3685 packets for the indoor and

outdoor environment respectively. The corresponding RSSI

and LQI values are shown in Figs. 5b and 5d.
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(a) Weak signal losses (Indoor)
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(b) Collision losses (Indoor)
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(c) Weak signal losses (Outdoor)
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Fig. 5. RSSI versus LQI values for weak signal and collision losses in
different environments

From Fig. 5, we observe that at a given RSSI value, the

LQI value for collision losses are higher than that for weak

signal losses, and use this as a basis to devise an algorithm to

differentiate between these wireless losses.



B. Joint RSSI-LQI based packet loss classifier

For a given environment and known packet loss type y,

where y ∈ {w, c} corresponds to weak signal (E3) and

collision (E4) losses respectively, we first try to fit the data

given in Fig. 5. Although various types of data fitting functions

can be applied to (Rm,Lm), we adopted a linear fit, L̂0 =

aR0 + b, as it is simple and only marginally less accurate

than an exponential fit (e.g., the summed square of residuals,

a goodness-of-fit statistic, are 57,121 and 55,336 respectively

for the dataset in Fig. 5a). Accordingly, we compute the 95%

prediction interval [9], (Lyl,Lyu) that reflects the range of LQI

values possible for a future RSSI reading as follows:

Lyl = L̂y0 − t0.025s

√

1 +
1

nr

+
(R0 − R̄)2

∑nr

i=1(Ri − R̄)2

Lyu = L̂y0 + t0.025s

√

1 +
1

nr

+
(R0 − R̄)2

∑nr

i=1(Ri − R̄)2
, (1)

where R̄ is the average RSSI reading, L̂y0 is the predicted LQI

value for loss type y, nr is the number of readings, t0.025 is

a value of the t-distribution with nr degrees of freedom, and

s is an unbiased estimate of the variance.

If (Rm,Lm) is the measured RSSI and LQI value of the

data packet for which a sync word is received and the CRC is

incorrect, our proposed packet loss classifier works as follows:

(i) if Lm ∈ (Lcl, Lcu) and Lm /∈ (Lwl, Lwu), then the packet

loss is due to collision; (ii) if Lm ∈ (Lwl, Lwu) and Lm /∈
(Lcl, Lcu), then the packet loss is due to weak signal; (iii)

else, the event is classified as yp = arg min
y={w,c}

|Lm − L̂y0|.

Our proposed algorithm to distinguish between the events E1

to E4 is illustrated in Fig. 6.
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Fig. 6. Transmission Outcome Classifier

To reduce computation overheads, the prediction intervals

(Lyl,Lyu) are computed and preprogrammed into the nodes

for different environments using a lookup table. The lookup

table is small as the measured RSSI values are integers and

range from -100 to -10.

III. EXPERIMENTAL EVALUATION OF TRANSMISSION

OUTCOME CLASSIFIER

We let pr and pw be the probabilities of right and wrong

event classification respectively. We let nt be the total number

of packet events to be classified, and n1 to n4 be the number

of events classified under events 1 to 4 (E1-4) respectively.

Therefore, we have pr = nr/nt and pw = nw/nt. Table

I shows the values of nr and nw for different number of

transmitters. Note that it is possible to receive correct data

packets even if there are multiple transmitters due to the packet

capture effect when the signal strength of one transmission is

significantly higher than other transmissions.

TABLE I
CALCULATION OF nr AND nw

Number of transmitters (ns) nr nw

0 n1 n3 + n4

1 n2 + n3 n1 + n4

> 1 n2 + n4 n1 + n3

The 95% confidence intervals for the background noise

are (-105.63,-96.13) and (-105.71,-96.2) for the indoor and

outdoor environment respectively for 5,000 samples, therefore

Rb is set to -96 for both environments. Two different datasets

are used in the evaluation: the first dataset is the training

dataset that is used to obtain the linear fit (i.e., values of a and

b); the second dataset comprises readings from a new location

(e.g., a different corridor or pavement) to verify that the

classifier works at different locations. The prediction accuracy

for the indoor environment is shown in Fig. 7 for different

ns values. The maximum error rate is 15.1%. As the number

of transmitters increases, the quality of the packet received is

decreased (i.e., higher LQI values), and hence it is easier to

identify collision losses, leading to improved accuracy. For the

single transmitter scenario, most misclassifications are a result

of a loss of the sync word, therefore the classifier wrongly

classifies packet losses as collision losses instead of weak

signal losses. However, the misclassification probability is low.

The prediction accuracy for the outdoor environment is

shown in Fig. 8. The maximum error rate is 12.6% which

is slightly lower than that for the indoor environment. For

both environments, we observe that the accuracy obtained with

the non-training dataset is comparable to that for the training

dataset, therefore this validates that our proposed classifier

works well for different locations.

IV. APPLICATION OF TRANSMISSION OUTCOME

CLASSIFIER TO PROBABILISTIC POLLING

In this section, we apply the transmission outcome classifier

to probabilistic polling and evaluate its efficacy for the scenario

illustrated in Fig. 9a with one sink and ns sensor nodes.

A. Probabilistic Polling

In probabilistic polling, the sink sets a contention proba-

bility, pc in the polling packet to indicate the probability that

a node should transmit its data packet. Upon receiving this

packet, a node would generate a random number x ∈ [0, 1],
and transmit its data packet if x < pc. Ideally, only one out of

all the nodes that receive the polling packet should transmit

a data packet. Collisions that may occur otherwise are fully

overlapping, which reduces the time needed to recover from
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(b) 1 transmitter (ns=1)
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(c) 2 transmitters (ns=2)
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(d) 3 transmitters (ns=3)
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(e) 4 transmitters (ns=4)
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(f) 5 transmitters (ns=5)

Fig. 7. Classification accuracy for different number of transmitters (indoor)

them. The value of pc is reduced when there are collisions

and increased when no transmissions are detected, as shown in

Algorithm 1. We apply our proposed classifier to probabilistic

polling to allow the sink to distinguish between different

packet outcomes in order to achieve high throughput.

Algorithm 1 Probabilistic Polling

1: Send a polling packet with contention probability pc.

2: if no node responds to the polling packet (E1) then

3: increase pc

4: else if a data packet is successfully received from one of

the nodes (E2) then

5: maintain pc at current value

6: else if there is a packet loss due to a weak signal received

from a single node (E3) then

7: maintain pc at current value

8: else if there is a collision between two or more nodes as

indicated by a corrupted data packet (E4) then

9: decrease pc

10: end if

11: Repeat step 1.

B. Numerical Evaluation

Since maximizing the success probability of a poll (ps)

will also maximize throughput, it is used as the performance
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(a) 0 transmitter (ns=0)
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(b) 1 transmitter (ns=1)
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(c) 2 transmitters (ns=2)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transmitter-receiver distance (m)

P
ro

b
ab

il
it

y

Success, p
r
 (Training dataset)

Failure, p
w

 (Training dataset)

Success, p
r
 (New dataset)

Failure, p
w

 (New dataset)

(d) 3 transmitters (ns=3)
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(e) 4 transmitters (ns=4)
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(f) 5 transmitters (ns=5)

Fig. 8. Classification accuracy for different number of transmitters (outdoor)

metric. The sink will send out 2,000 polling packets in

each scenario and the experiment is repeated at five different

locations for a total of 10,000 polling packets. After each

polling packet is sent, the contention probability is adjusted

based on the packet type that it received. In [2], we showed that

the throughput of probabilistic polling is maximized by setting

the contention probability pc to 1/ns. However, since the sink

has no advanced knowledge of the number of transmitters, it

has to adjust pc based on the event type after it sends out

a polling packet. Although probabilistic polling is designed

for energy harvesting WSNs, the nodes in our experiments

are powered using batteries to remove the uncertainty in the

energy harvesting process.

sink

sensor

nodedtr

(a) One sink with ns

sensor nodes

sink sensor node
6m

30m

(b) Linear topology with five sensor
nodes

Fig. 9. Experiment setup for probabilistic polling

We let the estimated value of ns by the sink be nest (pc =
1/nest) with an initial value of 1. The value of nest will be

adjusted at the sink based on the event type after a polling

packet is sent: (i) If it detects no transmission (E1), nest is



decreased by 1 subject to a minimum value of 1; (ii) if it

receives a correct data packet (E2) or detects a weak signal

packet loss (E3), nest remains unchanged for the next polling

packet; (iii) finally, if it detects a collision packet loss (E4),

nest is increased by 1. The average value of nest will be

close to ns if our classifier is highly accurate. A poll will be

successful when the sink receives a correct data packet from

one of the nodes, and this occurs with probability

ps =

(

ns

1

)

pc(1 − pc)
(ns−1) = (1 −

1

ns

)(ns−1),

since the optimal contention probability is 1/ns.

The experimental success probabilities with 95% confidence

intervals obtained for indoor and outdoor scenarios are com-

pared with the theoretical analysis in Fig. 10 with 1, 3 and

5 sensor nodes. With a single sensor node, ps decreases

with increasing transmitter-receiver distance even when the

accuracy of our classifier is high due to wireless losses. For

multiple nodes, the experimental ps may be higher than the

theoretical ps due to the packet capture effect (not modeled

in our theoretical analysis) which allows the sink to receive

a correct packet from one node even when there are multiple

nodes sending data packets concurrently.
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(a) 1 sensor node (indoor)
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(b) 3 sensor nodes (indoor)
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(c) 5 sensor nodes (indoor)
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(d) 1 sensor node (outdoor)
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(e) 3 sensor nodes (outdoor)
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(f) 5 sensor nodes (outdoor)

Fig. 10. Success probabilities for indoor and outdoor environments

Next, we vary the transmitter-receiver distances using a

linear topology with five sensor nodes as illustrated in Fig. 9b

(pavement setup shown in Fig. 4b). The results are illustrated

in Fig. 11 with varying number of transmitters which are

randomly selected from the set of five sensor nodes. Unlike

the previous case when all the nodes are equidistant from the

sink, they are placed at different distances to the sink, giving

rise to a more significant packet capture effect. This results

in higher experimental success probability than the theoretical

success probability in some scenarios.
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Fig. 11. Success probabilities with different ns for a linear topology

V. CONCLUSION

This paper presents a design for a transmission outcome

classifier that is able to accurately distinguish among packet

transmissions and losses in IEEE 802.15.4 networks. The

classifier uses RSSI and LQI (link quality indicator) values

to distinguish between collisions and weak signal losses.

Unlike other approaches, our classifier works well for fully

overlapping collisions and do not require modifications to the

hardware. By incorporating the classifier into a probabilistic

polling MAC protocol, we are able to achieve close to, or

even exceed the theoretical throughput due to packet capture

effect. Since our results are validated by actual experiments in

both indoor and outdoor scenarios, the insights from our study

would be valuable in the design of networking protocols such

as MAC, transmit power adaptation and routing protocols.
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