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Abstract—We use a Bayesian game-theoretic approach to
model transmission control in energy-harvesting wireless sensor
networks. In general, the energy state of an energy-harvesting
sensor varies more dramatically with time as compared to
traditional battery-powered sensors. Therefore, each energy-
harvesting sensor is aware of its instantaneous energy state, which
is modeled as its private information. Each sensor decides its
transmission strategy according to its belief of its opponents’
energy states. There exists a Bayesian Nash equilibrium (BNE)
where a sensor with energy higher than its energy threshold
will decide to transmit at fixed power, and wait otherwise. We
show how each sensor determines its threshold to maximize its
utility function. Moreover, we show via simulations that the
performance of the Bayesian game model is close to that of
a perfect-information game where energy states are common
information to all sensors. In addition, since the proposed
Bayesian game has the advantage of requiring less information
exchange overhead, it seems to be more feasible to implement
than the perfect-information game.

I. INTRODUCTION

Due to the advancements in the technology of electronic
devices, wireless sensor networks (WSNs) have drawn in-
creasing attention recently. There are two types of WSNs
according to how the sensors are powered up: (i) battery-
powered WSNs, where the battery’s energy can only deplete
with time; and (ii) WSNs Powered solely by Ambient Energy
Harvesting (WSN-HEAP), where the sensor makes uses of
renewable energy to replenish its stored energy to maintain
its operation [1]. In both types of WSNs, proper energy
management is essential to maximize each sensor’s utility,
which is a function of transmission reliability and operation
lifetime. As the instantaneous energy level typically fluctuates
more dramatically than that of battery-powered sensors (Fig.
1), it is required in the modeling of energy-harvesting sensors.

In this paper, we use Bayesian game theoretic approach
to build an energy-aware transmission control model for
WSN-HEAP. There are two advantages to such an approach:
firstly, since sensors in WSNs are decentralized devices that
make their decisions autonomously, game theory is a good
mathematical tool to handle interactions among sensors with
selfish behaviors; secondly, we will show that the adoption
of a Bayesian game approach can effectively reduce the
bandwidth overhead in exchanging information among nodes
when compared to a perfect-information game.
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Fig. 1. A comparison of the stored energy in battery-powered WSNs
and WSN-HEAP: While it can only deplete with time in battery-powered
sensors, the stored energy in energy-harvesting sensors can be replenished
by harvesting renewable energy (recharge). Since the energy recharge rate
is typically much lower than the rate of consumption, and storage capacity
is much smaller, the instantaneous energy state varies more dramatically in
energy-harvesting sensors and should be modeled.

II. RELATED WORK

In existing game-theoretic models for battery-powered
WSNs, energy management does not necessarily include
the instantaneous energy state. Sengupta et al. considered a
CDMA-based sensor network where each sensor maximizes
the throughput over power [2]. Yuan and Yu proposed a
distributed power control and source coding game for multihop
WSNs [3], where the objective function of a sensor in the
power control game is given by throughput minus power level.

Game-theoretic models have also been developed for
energy-harvesting WSNs. Menache and Altman considered
a power control game to maximize the sensors’ throughput
minus cost to replenish the battery [4]. Niyato et al. combined
queuing theory and bargaining game to formulate a model for
solar-powered WSNs and derived the optimal operating pa-
rameters [5]. However, these earlier developed game-theoretic
models still lack important considerations in WSN-HEAP. In
both [2] and [3], the instantaneous energy state is not taken
into consideration. In [4], the energy is replenished only if
the battery is depleted, which is not the case in WSN-HEAP.
In [5], the interactions among sensors are not analyzed. In
this paper, we build non-cooperative game models to analyze
WSN-HEAP, and compare the performance between Bayesian
(imperfect-information) and perfect-information games for
transmission control.
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III. SYSTEM MODEL

We consider a WSN-HEAP comprising n sensors that
communicate directly with a sink. As different sensors may
harvest and consume energy at different rates, their stored
energy may be different. We denote the stored energy of sensor
i by ei. The transmission from sensor i to the sink is successful
only if its Signal-to-Interference Ratio (SIR) γi exceeds the
SIR threshold γth

i , namely,

γi(p) =
gipi∑
j �=i gjpj

> γth
i

where p = (p1, . . . , pn), pi denotes sensor i’s transmission
power, and gi denotes the channel gain from sensor i to the
sink. The objective (valuation) function v i of sensor i is the
expected duration of successful transmission given by

vi(p, ei) =(1−Oi(p))
ei

Pc(pi)
(1)

where Pc(·) is the power dissipation function for a given p i,
ei/Pc(pi) is the discharge time1 of sensor i, and Oi is the
outage probability of sensor i, which is given by

Oi(p) = Prob(γi(p) ≤ γth
i )

We introduce a result on outage probability derived in [6].
Given the channel gain to the sink gi = hr

i ∗hi, where hi is the
Rayleigh fading component and hr

i is the path loss from sensor
i to the sink, the effects of Rayleigh fading will be removed
completely when evaluating the average outage probability:

Oi(p) = 1−
∏

j∈N\{i}

1

1 + γth
i hjpj/hipi

(2)

Note that the definition is valid even if pj = 0 for some j.
To prevent the sensors from always obtaining positive

valuation and transmitting, we assign a cost βi for each sensor
i. The setting of cost will be further discussed in Section VI.
We will also refer to (γth

i , βi, hi) as well as Pc(·) as the
system parameters of sensor i.

IV. GAME-THEORETIC ANALYSIS

Since sensors in the WSN-HEAP make decisions au-
tonomously, we can define the following game model:

• A set of sensors N = {1, . . . , n}
• A set of actions (transmission power) for each sensor i:

Pi ⊂ [0, pmax]
• A set of types (energy state) for each sensor i: e i ∈ E =

[0, emax]
• A pure strategy for sensor i is a map pi : E → Pi, which

describes an action for each possible type of sensor i.
• A utility function for each sensor i:

ui(p, ei) =

{
(1 −Oi(p))

ei
Pc(pi)

− βi, if pi > 0

0, if pi = 0
(3)

1In our definition of the discharge time, we have implicitly assumed that
the ambient energy harvesting rate is much lower than the rate of energy
dissipation in wireless sensors.

where p = (p1, . . . , pn) denotes the strategy profile.

Since each sensor’s energy state (type) is private informa-
tion, the above game is a Bayesian game, where the exact
strategy chosen by sensor i remains unknown even though the
strategy profile p is known by all sensors.

A. Bayesian Game and Solution Concept

To solve the Bayesian game, we adopt the Bayesian Nash
equilibrium (BNE) solution concept. The sensors have prior
beliefs about others’ types and maximize their own expected
utility given the belief. As [7] suggests, the BNE could provide
a good approximation to the globally optimal solution, which
we will also show via simulations in Section V.

Definition 1. (Bayesian Nash Equilibrium) A strategy profile
p∗(·) = (p∗1(·), . . . , p∗n(·)) is a BNE if for all i ∈ N and for
all ei ∈ E , we have

p∗i (ei) ∈ arg max
pi∈Pi

Ee−i [ui((pi,p
∗
−i(e−i)), ei)|ei]

where Ee−i [ui(p, ei)|ei] is the expected utility of sensor i.

Here we denote the strategy profile p = (pi,p−i), where
p−i = (p1, . . . , pi−1, pi+1, . . . , pn) is the strategy profile
except for sensor i. Similarly, the vector of energy states
except for sensor i is denoted by e−i. The prior belief (i.e.,
the probability density function) of sensor i about the energy
state of sensor j is denoted by fi,ej (x) for all j �= i. To gain
insight into the model, we consider a homogeneous system
where the beliefs are independent and identically distributed
(i.i.d.). Namely, we have f1,ej (x) = . . . = fn,ej (x) := fej (x)
and then fe1(x) = . . . = fen(x) := fe(x), where e is a
random variable representing the energy state of any other
sensor with the probability density function fe(x). We now
rewrite the expected utility if pi > 0 as follows:

Ee−i [ui(p, ei)|ei]

=Ee−i [
∏

j∈N\{i}

(
1 + γth

i

hjpj(ej)

hipi(ei)

)−1
ei

Pc(pi(ei))
− βi|ei]

=
∏

j∈N\{i}

(
Ee[(1 + γth

i

hjpj(e)

hipi(ei)
)−1|ei]

)
ei

Pc(pi(ei))
− βi

(4)

We can exchange the product and expectation operators
because the beliefs are i.i.d. The expected value with respect
to e−i is now transformed to the one with respect to e. On
the other hand, the expected utility is always zero if p i = 0.
Therefore, if the expected utility in (4) is greater than zero,
then sensor i chooses pi > 0. Otherwise, it chooses pi = 0.

B. BNE Strategy in Threshold Form

In WSNs, adaptive duty cycling is commonly adopted for
efficient energy management, where sensors in “good condi-
tions” turn on and transmit, while others turn off. Analogously,
in our energy-aware model, sensors with energy state greater
than a threshold should transmit, while others wait. In this
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Fig. 2. The threshold-form BNE strategy is a function of transmission power
pi with respect to the energy state ei.

subsection, we prove that such a threshold-form strategy
constitutes a BNE.

Generally speaking, given a energy threshold e th,i, sensor i
can transmit with any power pi > 0 if its energy state exceeds
the threshold (i.e., ei > eth,i). However, we consider the case
where sensors either transmit with a fixed power pon < pmax,
or wait with pi = 0 (Fig. 2). We then prove that it is a BNE.

Theorem 1. If the strategy space Pi = {0, pon} for all i, then
there exists a BNE strategy profile (p∗1(·), . . . , p∗n(·)) where

p∗i (ei) =
{

pon, if ei > eth,i
0, otherwise

(5)

for all i ∈ N , where eth,i is a unique energy threshold of
sensor i defined as follows:

eth,i = min{ei : ei ∈ [0, emax],

Ee−i [ui((p
on,p∗

−i(e−i)), ei)|ei] ≥ 0} (6)

In other words, eth,i is the minimum energy state such
that the expected utility if pi = pon remains positive. If
Ee−i [ui((p

on,p∗
−i(e−i)), ei)|ei] < 0 for all ei ∈ [0, emax],

we let eth,i = emax to stop the sensor from transmitting.
Proof: Using the result derived in (4), we can show that

∂Ee−i [ui((p
on,p∗

−i(e−i)), ei)|ei]
∂ei

=

∏
j∈N\{i}

(
Ee[(1 + γth

i
hjp

∗
j (e)

hipon )−1]
)

Pc(pon)
> 0 (7)

This means that the expected utility if pi = pon is strictly in-
creasing with ei. We also have Ee−i [ui((p

on,p∗
−i(e−i)), 0)] =

−βi < 0. These enable us to obtain the value eth,i defined
in (6) such that Ee−i [ui((p

on,p∗
−i(e−i)), ei)|ei] ≥ 0 for all

ei ≥ eth,i and Ee−i [ui((p
on,p∗

−i(e−i)), ei)|ei] < 0 for all
ei < eth,i. Note that the threshold eth,i must be unique for
each sensor i because the expected utility is strictly increasing.
This existence of this threshold ensures that the strategy
defined in (5) maximizes the expected utility.

The theorem shows that there exists an energy threshold
eth,i of each sensor i. Such a threshold-form strategy con-
stitutes a BNE, and the expected utility if pi = pon can be
rewritten as:

Ee−i [ui((p
on,p∗

−i(e−i)), ei)|ei]

=
∏

j∈N\{i}

(
1 + γth

i
hj

hi
Fe(eth,j)

1 + γth
i

hj

hi

)
ei

Pc(pon)
− βi (8)

where Fe(x) is the cumulative density function of the random
variable e (i.e., the belief). Notice that this expected utility
increases with eth,j for any j �= i, because if eth,j is high, it
is less likely for sensor j to transmit and cause interference
to sensor i. Hence the expected utility of sensor i is high.

If the minimum in (6) does not exist, eth,i = emax;
otherwise, the threshold eth,i can be expressed as follows:

eth,i =
βiPc(p

on)∏
j∈N\{i}

(
1+γth

i

hj
hi

Fe(eth,j)

1+γth
i

hj
hi

) (9)

C. The Perfect-Information Game

In this subsection, we consider the more commonly used
non-cooperative game model where energy states of the sen-
sors become the common knowledge. We would like to ex-
amine to what extent the performance is affected with the use
of private information in the Bayesian (imperfect-information)
game model as compared to this perfect-information game.

In the earlier proposed Bayesian game, sensors predict
the transmission power according to the belief about the
others’ energy state. However, in perfect-information game,
each sensor i knows the exact transmission power pj(ej) of
any other sensor j �= i, because the energy states are common
knowledge. As there is no private information, we shall adopt
the commonly used Nash equilibrium (NE) concept.

Definition 2. (Nash Equilibrium) A strategy profile p∗ =
(p∗1(e1), . . . , p∗n(en)) is a NE if for all i ∈ N , we have

p∗i (ei) ∈ arg max
pi∈Pi

ui((pi,p
∗
−i(e−i)), ei)

where ui is the utility function defined in (3).

Note that in this game, we still consider the same strategy
space Pi = {0, pon} of each sensor i as the one in the
Bayesian game. Due to the discontinuity of P i, we are unable
to use fixed point theorems to prove the existence of NE.
Instead, we adopt the best-response dynamic in [8], and show
via simulations that the dynamic always converges to the NE.

The prediction by the perfect-information game model
might differ from the one by the Bayesian game model.
Typically, the former prediction has information gain over
the latter, because the sensors face less uncertainty when the
energy states become common knowledge. We will quantify
this in the next section.

V. NUMERICAL RESULTS

In this section, we compare the equilibria of four models.
The first model is the Bayesian game (Section IV-B). Since
the energy states are private information and sensors make
decisions in a distributed way, we call it the imperfect-
information and distributed (IID) model. The second model is
the perfect-information model (Section IV-C). Since the energy
states are common knowledge and sensors also make decision
in a distributed way, we call it the perfect-information and
distributed (PID) model. The third model is a centralized sys-
tem, where a central controller gathers all the information and
provides the optimal solution. However, the computation time
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Fig. 3. The comparison between the IID and PID models with identical parameter settings. The nodes are sorted in ascending order by their distance to
the sink. The first and second row are results of the PID and IID models respectively. The first column shows the deterministic utility of each sensor in
equilibrium. The second column shows the energy state of both models. In the IID model, sensors with the same distance have the same threshold. The third
column shows the transmission power of each sensor in the equilibrium. In the PID model, each sensor makes the transmission decision directly, while it is
determined by the threshold in the IID model. (Notice that sensor 12 obtains negative utility although its expected utility is positive, which implies that the
private information still misleads some sensors and degrades the system performance.)

Perpertually-powered sink

WSN-HEAP node

x

Fig. 4. Illustration of the two-dimensional grid WSN-HEAP deployment
comprising 15 sensors and a sink used in our simulations, where x is the
maximum distance from the sink to any sensor.

grows exponentially with the number of sensors. The fourth
model is a random-transmission model where the transmission
power of sensors are randomly assigned to either 0 or p on.

Sensors are deployed in the grid topology (Fig. 4). We
consider the free-space path loss model where h i = Kd−α

i , K
is the propagation factor, di is the distance of sensor i to the
sink, and α is the path-loss exponent [9]. The other parameter
values used in the simulations are shown in Table. I.

Fig. 3 shows the comparison between the equilibria of
the IID and PID game models. In the IID model, sensors
select the BNE strategy to maximize their expected utility.
However, the utility of the IID game model shown in Fig. 3
is not the expected utility in the BNE, but the deterministic
utility given that all sensors choose the equilibrium strategy.
The deterministic utility represents the prediction outcome by
the model. On the other hand, in the PID model, sensors
can directly calculate their deterministic utility based on the

TABLE I
PARAMETER SETTING

parameter value
emax 2e-6 (Joule)
x 100 (m)

pon 1 (mW)
Pc(pon) 81.8 (mW)

e UNI[0, emax]
βi 5e-6, ∀i
γth
i 0.1, ∀i

(K,α) (3.1623e-6, 2)
Fig. 3 n 48

Fig. 5(a) n 8
Fig. 5(b) n 8

The system parameter values are obtained
for the CC2420 radio [9].

observation of other sensors’ transmission power. We then
compare the prediction outcomes by both models.

Firstly, we find that the prediction by the IID model is
similar to the one by the PID model, but not exactly the same.
Namely, most of sensors are not misled by the private informa-
tion. Only some sensors choose different actions between the
PID and IID models. Secondly, in the IID model, the decision
of transmission power depends mainly on the distance to the
sink. However, the energy state still plays an important role.
For example, sensor 4 has the same distance as sensor 3, but
it transmits because of its high energy state. Thirdly, those
sensors with eth,i = emax have no chance to transmit even
if their energy approaches the maximum. But we can enable
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Fig. 5. The comparison between the PID model, the IID model, the
centralized model, and the random-transmission model in view of the sum of
utility and Jain’s fairness index. Notice that the sum of utility also represents
the overall throughput of the system.

them to transmit by lowering the cost. We will discuss this
further in Section VI.

In Fig. 5(a) and Fig. 5(b), we examine the efficiency of the
IID model in the form of a box plot. The data is obtained from
100 independent experiments with randomly selected energy
levels, while other parameters are fixed as in Table. I. We adopt
two performance metrics to evaluate the system performance:
1) sum of utility, and 2) Jain’s fairness index [10] given by

Jain’s Fairness Index =
(
∑

i∈N ui)
2

n
∑

i∈N u2
i

In Fig. 5(a) and Fig. 5(b), both IID and PID models
have similar performance because the notches overlap and
are significantly better than the random-transmission model.
Although information gain exists, it is not significant.

VI. DISCUSSIONS

A. Feasibility and Implementation Issues

Although game theory provides an excellent analytic tool,
the excessive overhead due to information exchange still
makes implementation difficult. However, in this paper, the
adoption of Bayesian game avoids such a problem. Consider
a system where sensors play the game many times. If it is
the perfect-information game, the information about energy
states needs to be updated every time. However, if it is the
Bayesian game, the BNE strategy profile need not be updated
unless the system parameters or the beliefs change. Therefore,
sensors can still behave as in the perfect-information model,
but need not update the information frequently.

B. Choice of System Parameters

In the simulations, we choose γ th
i = 0.1 for all i because

we need to enable more than one sensor to access the sink
to show the difference. Such a choice can be justified by
considering a CDMA-based WSN where sensors transmit via

spread spectrum. However, this is not necessarily the case,
and the models can be adapted to other kinds of WSNs by
choosing the appropriate parameters.

We implicitly assume that the distribution of energy state
is known by the sensors. However, in reality, the belief of
sensors may not match the real distribution. In this case, the
information gain may become larger due to the wrong belief.

Finally, the cost βi is determined by some external factors
but not controlled by sensor i itself. For example, the cost can
be set lower if the transmission has high priority, if the sensor
has not been transmitting for a long time, or if the energy-
harvesting rate is so low that the energy states are generally
low. If so, then the threshold becomes lower and the sensor
has more chance to transmit. The way to set the cost depends
on the application of WSNs. In the simulations, we set the
same cost because we consider a homogeneous WSN.

VII. CONCLUSION

We present a Bayesian game-theoretic model for transmis-
sion control in WSN-HEAP. Because the energy states are
private information, sensors determine the transmission power
according to their prior belief of others’ energy states. We
prove that the Bayesian Nash equilibrium exists and the BNE
strategy of each sensor can be expressed in the threshold
form: if the energy state exceeds the energy threshold, then
the sensor transmits with a fixed power; otherwise, the sensor
waits. The Bayesian game model has similar performance to
the perfect-information game model, but the overhead is signif-
icantly reduced, making it more feasible for implementation.
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