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Abstract� In this paper, we focus on an admission
control strategy for streaming and elastic users that
enforces a minimum rate guarantee for each elastic
user through pre-emptive capacity reservation. We
propose approximations to estimate the performance
of this strategy. We apply time-scale decomposition
for the limiting regimes, and for non-limiting regimes
we propose a novel weighted approximation. Simula-
tion results suggest that the performance is almost
insensitive to traf�c parameter distributions, and is
well estimated by our proposed approximations. Our
work is motivated by the integration of services in
3rd generation wireless systems such as UMTS and
CDMA 2000.

I. INTRODUCTION

Future generation broadband networks are ex-
pected to support a large variety of applications,
typically grouped into two broad categories:

Elastic �ows correspond to the transfer of digital
documents (e.g., Web pages, emails, stored audio
/ videos). They are characterized by their size,
i.e., the volume of the document to be transferred.
These �ows are �exible, or �elastic�, towards rate
�uctuations, with the transfer time as a typical
performance measure.

Streaming �ows correspond to the real-time
transfer of various signals (e.g., voice, streaming
audio / video). They are characterized by their du-
ration as well as the transmission rate. For �stream-
ing� applications, stringent transmission rate guar-
antees are necessary to ensure real-time communi-
cation.

Various papers that study the performance of
elastic and streaming traf�c integration have been
published [1], [2], [3], [4], [5], [6], [7]. In terms

of resource sharing policy, the classical approach
is to give absolute priority to streaming �ows
(through head-of-line packet marking) in order to
offer packet delay and loss guarantees [1], [2],
[4]; alternatively, adaptive streaming �ows (that are
TCP-friendly and mimic elastic �ows) are consid-
ered in [3], [5], [6]. In terms of modeling approach,
while Markovian models have been developed for
the exact analysis of the integrated services system,
they can be numerically cumbersome. Hence, a
�uid model is proposed in [2], [3], [4], [5], [6]
to provide closed form results and approximations
for limiting traf�c regimes based on time scale
decomposition.

The above works do not consider the provi-
sion of minimum rate guarantees. However, such
guarantees are important to maintain satisfactory
perceived quality of service, especially for elastic
users. Hence, in this paper, we propose such a strat-
egy to enforce minimum rate guarantees through
pre-emptive capacity reservation. To model a link
that supports such a strategy, we apply both pro-
cessor sharing and Erlang-loss models and develop
approximations for limiting regimes based on time-
scale decomposition. Comparison with numerical
simulations suggests that these approximations are
accurate and form performance bounds. This led
us to propose a novel weighted approximation for
non-limiting regimes.

We describe our model and admission control
strategy in detail in Section II. We present the time-
scale decomposition analysis in Section III and
show representative numerical results in Section IV.
Some concluding remarks and future directions are



outlined in Section V. We illustrate the applicability
of our model for evaluating the downlink perfor-
mance of cellular systems in the Appendix.

II. MODEL

We consider a link whose limited resource (c
Kbps in total) is shared amongst streaming and
elastic requests with �xed and minimum rate re-
quirements of rs (Kbps) and re (Kbps) respectively.
We assume that streaming and elastic requests ar-
rive as independent Poisson processes with rate λs

and λe respectively. The duration of each admitted
streaming request, ds, is generally distributed with
mean 1

µs
(sec). The corresponding size of each

admitted elastic request, se, is generally distributed
with mean fe (bits).

A part of the total resource, cs < c, is reserved
for streaming requests: at any time, cs

rs
streaming

requests will be guaranteed admission; however, if
there are at least cs

rs
ongoing streaming requests,

then a new streaming request will be admitted as
long as the minimum rate re can be guaranteed
for ongoing elastic requests. On the other hand, an
elastic request will be admitted as long as ongoing
requests can maintain their rate requirements and
the number of ongoing elastic requests does not
exceed c−cs

re
. Note that the capacity unused by

streaming requests may be equally shared amongst
elastic requests; however, this surplus is immedi-
ately re-allocated to streaming requests when a new
streaming request arrives.

The above admission control strategy can be
quanti�ed as follows: let (Ns, Ne) be the number
of on-going streaming and elastic requests respec-
tively. Due to the total resource constraint and
resource reservation for streaming traf�c, Nsrs +
Nere ≤ c and Nere ≤ c-cs. The second inequality
ensures that all active elastic �ows can be accom-
modated with their minimum rate by the ensured
capacity ce = c − cs. Consequently, a new elastic
request will be accepted only if Nsrs + (Ne+1)re

≤ c and (Ne+1)re ≤ c-cs. On the other hand, a
new streaming request will be admitted as long as
(Ns+1)rs + Nere ≤ c. The model is illustrated in
Fig. 1.

Note that a different integrated admission control
scheme was proposed in [2]. While this scheme
aims to ensure equal blocking probabilities, our
scheme enforces rate requirements for both types
of traf�c.

For the convenience of the analysis that follows,
we de�ne Ke(ns) = bmin{c−nsrs, ce}

re
c and Ks(ne)

= b c−nere

rs
c, where Ki(nj) is the maximum number

of type-i �ows when nj type-j �ows are present.

Streaming
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Fig. 1. Model of single link with capacity reservation and
minimum rate guarantee for integrated services.

In addition, we denote the conditional probability
of event B, given event A, P (B | A) as PB

A.

III. ANALYSIS

Since exact analysis of our model is non-
tractable in general and computationally involved
when assuming exponentially distributed holding
times and �le sizes (see [1], [5] for similar mod-
els), we develop various approximation techniques
and assess their accuracy through comparison with
simulation.

A. Quasi-stationary Approximation for Elastic
Flows

For the quasi-stationary approximation, to be
denoted A(Q), we assume that the dynamics of
streaming �ows take place on a much slower time
scale than those of elastic �ows. More specif-
ically, we assume that elastic traf�c practically
reaches statistical equilibrium while the number
of active streaming calls remains unchanged. The
corresponding condition is that

µsE[Ns] + λs <<
c− rsE[Ns]

fe
+ λe, (1)

where the expression on the LHS (RHS) corre-
sponds to the average rate at which the number
of streaming (elastic) �ows changes. Although the
above condition cannot be easily checked (due to
the dependence on E[Ns]), it is ensured to be
satis�ed if µs

c
rs

+ λs << λe. This assumption is
reasonable when we consider the combination of
voice calls (streaming) and web-browsing or email
(elastic) applications. Under this assumption, the
dynamics of elastic �ows can be studied by con-
sidering a �xed number of streaming �ows, i.e., Ns

= ns. We construct an approximation assuming that
the number of active elastic �ows instantaneously
reaches a new statistical equilibrium whenever the
number of streaming �ows changes. To avoid any
confusion we will mark all quantities (such as



queue lengths and performance measures) resulting
from this approximation approach by adding a
superscript Q to the notation.

From the capacity constraint and the reserva-
tion policy, it follows that nere ≤ min{c −
nsrs, ce}. In this case, elastic traf�c behaves like
an M/G/1/Ke(ns) processor-sharing (PS) queue
with Ke(ns) service positions, capacity c − nsrs

and average departure rate µe(ns) = c−nsrs

fe
.

Hence, from [8],

PNQ
e =ne

NQ
s =ns

≡ P (NQ
e = ne | NQ

s = ns)

=
ρe(ns)ne(1− ρe(ns))
1− ρe(ns)Ke(ns)+1

, (2)

where ρe(ns) = λe

µe(ns) = λefe

c−nsrs
. Notice [8]

that this expression is insensitive to the �le size
distribution, other than through its mean. As a
further remark, we observe that whether or not
ρe(ns) < 1 is of no concern, since NQ

e is limited
due to the assumption that re > 0. Often, when ap-
plying a time-scale decomposition, this matter is of
importance, giving rise to an additional assumption
commonly referred to as uniform stability [4].

Next, we consider the dynamics of streaming
�ows. When NQ

s =ns, streaming �ows depart at
a rate nsµs. When a new streaming �ow arrives,
due to admission control, we have two possible
scenarios: either the newly arrived streaming �ow
is accepted or it is blocked. Under our approxima-
tion assumptions, the probability of acceptance is
P(NQ

e re+(ns+1)rs ≤ c | NQ
s =ns). Notice that the

admission probability of streaming �ows equals 1
if (ns + 1)rs ≤ cs. Substituting Eq. (2) into this
expression and noting that NQ

e re ≤ ce, the effective
arrival rate of streaming �ows, Λs(ns), is given as
follows:

Λs(ns) = λsP
NQ

e ≤Ke(ns+1)

NQ
s =ns

= λs
1− ρe(ns)Ke(ns+1)+1

1− ρe(ns)Ke(ns)+1
.

Hence, it follows that, for 0≤ ns ≤ b c
rs
c:

P (NQ
s = ns) =

∏ns−1
i=0 Λs(i)
ns!µns

s
P (NQ

s = 0),

where P(NQ
s =0) can be computed using∑b c

rs
c

ns=0 P (NQ
s = ns)=1. Consequently, it follows

that:

P (NQ
e = ne) =

b c
rs
c∑

ns=0

PNQ
e =ne

NQ
s =ns

P (NQ
s = ns).

In particular, the conditional blocking probability
of newly-arrived streaming �ows is

P (NQ
e re + (ns + 1)rs > c | NQ

s = ns)

. Un-conditioning on NQ
s , and noting that blocking

can occur only for b cs

rs
c ≤ ns ≤ b c

rs
c, the blocking

probability for streaming �ows, pQ
s , is given as

follows:

pQ
s =

b c
rs
c∑

ns=b cs
rs
c
PNQ

e >Ke(ns+1)

NQ
s =ns

P (NQ
s = ns)

= 1− 1
λs

b c
rs
c∑

ns=b cs
rs
c
Λs(ns)P (NQ

s = ns).

The corresponding blocking probability for elastic
�ows, pQ

e , is given as follows:

pQ
e =

∑b c
rs
c

ns=0 P
NQ

e ≥Ke(ns)

NQ
s =ns

P (NQ
s = ns).

B. Fluid Approximation for Elastic Flows
For the �uid approximation, denoted by A(F),

we assume that the dynamics of elastic �ows are
much slower than those of streaming �ows, i.e.,

c− rsE[Ns]
fe

+ λe << µsE[Ns] + λs, (3)

which is certainly true if c
fe

+ λe << λs. This
assumption is valid when we consider the combina-
tion of voice calls (streaming) and large �le transfer
(elastic) applications. Under this assumption, the
dynamics of streaming �ows can be studied by
considering a �xed number of elastic �ows. Similar
to A(Q), we will construct an approximating two-
dimensional process under the assumption that Ns

immediately reaches steady state, whenever Ne

changes. This approximation will be re�ected in
the notation by adding a superscript F whenever
not doing so might give rise to confusion.

From the capacity constraint, it follows that
nsrs ≤ c − nere. By modeling the streaming
�ows as an Erlang-loss queue with �nite capacity
Ks(ne), it follows that:

PNF
s =ns

NF
e =ne

=
ρns

s

ns!∑Ks(ne)
i=0

ρi
s

i!

, (4)

where ρs = λs

µs
. As before, we emphasize that

the above expression depends on the holding time
distribution only through its mean.

Next, we consider the dynamics of elastic �ows.
When NF

e =ne > 0, elastic �ows depart at a rate



µe(ne) given as follows:

µe(ne) =
E[c−NF

s rs | NF
e = ne]

fe

=
Ks(ne)∑
ns=0

c− nsrs

fe
PNF

s =ns

NF
e =ne

.

Hence, from the admission control conditions and
Eq. (4), the effective arrival rate of elastic �ows,
Λe(ne), is given as follows:

Λe(ne) = λe · PNF
s ≤Ks(ne+1)

NF
e =ne

= λe

Ks(ne+1)∑

l=0

ρl
s

l!∑Ks(ne)
i=0

ρi
s

i!

.

Using Cohen's results for his generalized PS model
[8] for general service times with service rate
µe(ne) and arrival rate Λe(ne), it follows that, for
0≤ ne ≤ b ce

re
c:

P (NF
e = ne) =

ne−1∏

i=0

Λe(i)
µe(i + 1)

P (NF
e = 0), (5)

where P(NF
e =0) can be computed using∑Ks(ne+1)

ne=0 P(NF
e =ne) = 1. Consequently,

P(NF
s =ns) is obtained by substituting Eq. (4) and

Eq. (5) into the following expression:

P (NF
s = ns) =

b ce
re
c∑

ne=0

PNF
s =ns

NF
e =ne

P (NF
e = ne).

On the other hand, the newly-arrived elastic �ow
is blocked if ne = b ce

re
c or if NF

s rs+(ne+1)re > c.
Hence, the blocking probability for elastic �ows,
pF

e , is given by:

pF
e =

b ce
re
c−1∑

ne=0

PNF
s >Ks(ne+1)

NF
e =ne

P (NF
e = ne)

+ P (NF
e =

⌊
ce

re

⌋
).

The corresponding blocking probability for
streaming �ows, pF

s , is given as follows:

pF
s =

∑b ce
re
c

ne=0 P
NF

s ≥Ks(ne)

NF
e =ne

P (NF
e = ne).

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of
an isolated link with elastic and streaming requests
(Fig. 1) through simulation for the following pa-
rameters: c = 1000 Kbps, cs = 500 Kbps, rs = 60
Kbps and re = 40 Kbps. We consider the following
distributions for (se, ds), given that E[se] = fe and
E[ds] = 1

µs
:

Hyper-exponential distribution : A common

distribution used to characterize the behavior of se

is the hyper-exponential distribution with balanced
means, which is de�ned as follows (cf.[9], p. 359):
∀s ≥ 0, P (se > s) = aee

−aes
fe +e

−s
aefe

ae+1 . The
parameter ae completely characterizes the behavior
of se and can be interpreted as follows: A fraction

ae

ae+1 of small elastic requests of mean size fe

ae
and

a fraction 1
ae+1 of large elastic requests of mean

size aefe. Increasing ae increases the variance of
se and the special case of ae = 1 corresponds to
the exponential distribution.
Erlang distribution : A common distribution to
characterize the behavior of ds is the Erlang distri-
bution, which has the following density:

∀d ≥ 0, k > 0, fs(d) =
kµs(kµsd)k−1

(k − 1)!
e−kµsd.

It reduces to an exponential distribution for k=1;
increasing k reduces the variance for ds.

Once the distribution of (ds, se) is selected, we
characterize each simulation run according to the
following procedure:
1. Fix the total offered traf�c by choosing the
loading factor, τ > 0, where ue + us = τ c,

ue = λefe and us = λsrs

µs
;

2. For each τ , �x the traf�c mix, ue

τc , by
choosing ue, 0 ≤ ue ≤ τ c;
3. For each traf�c mix, select (λe, λs) to �t
one of the following traf�c regimes:

a. Quasi-stationary Regime (denoted by
S(Q)), where Eq. (1) is satis�ed;

b. Fluid Regime (denoted by S(F)),
where Eq. (3) is satis�ed;

c. Neutral Regime (denoted by S(N)),
where neither Eq. (1) nor (3) is satis�ed.
We note that in Step 3 of the above procedure,
fe and µs can be computed once (τ , ρe, λe,
λs) are speci�ed. The simulation duration, T, is
selected such that min{λe, λs} · T ≥ Nc, where
Nc is chosen (default value = 10000) such that
Nc ·min{pe, ps} is not too small.

From the simulations, we compute the blocking
probability for each type of request. The expected
residence time for each admitted elastic request,
E[Re], can be computed in terms of (E[Ne], pe)
using Little's Law as follows:

E[Re] =
E[Ne]

λe(1− pe)
.

We de�ne the stretch, Se, by normalizing E[Re]
with fe as follows:

Se =
E[Re]

fe
.



A. Performance Insensitivity with Traf�c Parameter
Distribution

First, we evaluate the impact of the distribution
of (ds, se) on the performance of a fully-loaded link
(τ = 1) in different traf�c regimes. We consider the
following traf�c mix: (i) ue

c = 0.5 (Balanced traf�c
mix) and (ii) ue

c = 0.1 (Dominant composition of
streaming traf�c).

For each case, we de�ne 3 sets of simulations as
follows: Case I [ae, k] = [1, 1], Case II [ae, k] =
[100, 1] and Case III [ae, k] = [1, 3]. For each set,
we compute the sample mean for (pe, ps, Se) over
all the simulation runs at each traf�c mix, and the
results are tabulated in Table I. We observe that the
performance measures are almost insensitive to the
traf�c parameter distributions, thus justifying the
insensitive approximations proposed here.
B. A Weighted Approximation for Blocking Proba-
bilities

For each scenario in Case I, we plot (pe, ps)
as a function of the traf�c mix, ue

c , 0≤ ue ≤ c,
for each approximation technique in Fig. 2 and
Fig. 3 respectively, alongside the corresponding
simulation results. Qualitatively, we note that A(Q)
(A(F)) is accurate in the quasi-stationary (�uid)
regime for each metric. The non-monotonicity of
the blocking probability for elastic �ows is due to
the counter-acting effects of reservation and change
of traf�c composition. Notice that this does not
affect the blocking probability for streaming �ows.

For the neutral traf�c regime, Fig. 2-3 suggest
that the blocking probabilities obtained (with sim-
ulation) are typically in between A(Q) and A(F).
Hence, it seems worthwhile to estimate the per-
formance metric x in such a regime by weighing
the corresponding metrics obtained with A(Q) and
A(F) (denoted A(W)) as follows:

xA(W) = wQxA(Q) + (1− wQ)xA(F),
where wQ is the weight allocated to A(Q) and xA
is the value of x obtained with approximation A.

According to Eq. (1) and Eq. (3), the criteria used
to de�ne the traf�c regime is the relative dynamics
of streaming and elastic �ows, given by µsE[Ns]+
λs and c−rsE[Ns]

fe
+λe respectively. Hence, a natural

approach to de�ne wQ is as follows:

wQ =
c−rsE[Ns]

fe
+ λe

c−rsE[Ns]
fe

+ λe + µsE[Ns] + λs

. (6)

In this way, when the dynamics of elastic �ows
occur at a faster rate than that of streaming �ows
(towards quasi-stationary regime), wQ > 0.5 and
vice versa. Accordingly, E[Ns] = wQE[Ns]A(Q) +
(1-wQ)E[Ns]A(F), and together with Eq. (6), wQ

can be computed by solving the following quadratic
equation:

Aw2
Q + BwQ = C,

where

A = (E[Ns]A(Q) − E[Ns]A(F))(µsfe − rs)
B = c + (λe + λs)fe + E[Ns]A(F)(µsfe − rs)

− rs(E[Ns]A(F) − E[Ns]A(Q))
C = c + λefe − rsE[Ns]A(F)

We demonstrate the accuracy of A(W) for the
case of a balanced traf�c mix. We consider wQ ∈
{0.1, 0.2, · · · , 0.9}, and for each wQ, we generate
simulation runs by selecting 9 sets of traf�c param-
eters. We plot the blocking probabilities obtained
alongside the corresponding estimates with A(Q),
A(F) and A(W) in Fig. 4. We observe that the
blocking probabilities for both types of requests are
well-estimated by A(W).

V. CONCLUSIONS AND FUTURE WORK

In this study, we evaluate the performance of
an admission control strategy that ensures min-
imum and �xed rates for elastic and streaming
requests respectively in an isolated link. We de-
velop approximations to estimate the performance
in limiting traf�c regimes where the dynamics of
both types of requests take place at signi�cantly
different time scales. Based on the former, we
propose a weighted approximation for non-limiting
traf�c regimes. Simulation results suggest that the
performance is almost insensitive to traf�c param-
eter distributions, and is accurately estimated by
the proposed approximations. Our model can, see
e.g. [3], be used to assess the performance of
downlink communication in 3rd generation cellular
systems when the difference in distances to the
base station within the cell can be neglected. We
are currently investigating extensions to include
signal attenuation due to path loss. We also plan
to investigate more enhanced weighing schemes of
the proposed approximations.

APPENDIX

Let us consider downlink transmissions in
UMTS (with W-CDMA in FDD mode) to elastic
and streaming users, where the base station can
transmit to all active users (denoted by A) simul-
taneously. Let P be the total power available at
the base station, and Pu be the power transmitted
to user u, where Pu ≤ P . The power received
by a user u is P r

u = PuΓu, where Γu denotes
the attenuation due to path-loss. As a measure of
the quality of service for user u, we consider the



ue/c

S

Case I II III I II III I II III I II III I II III I II III

pe 0,086 0,086 0,085 0,057 0,055 0,058 0,069 0,069 0,071 0,122 0,119 0,120 0,075 0,072 0,072 0,103 0,101 0,110

ps 0,097 0,100 0,097 0,057 0,055 0,056 0,070 0,071 0,074 0,164 0,164 0,162 0,152 0,153 0,152 0,157 0,157 0,162

Se 10,159 10,163 10,065 10,088 10,018 10,018 10,114 10,228 10,384 7,916 7,892 7,903 5,996 5,927 6,610 7,606 7,509 7,765

0,5 0,1

S(Q) S(F) S(N) S(Q) S(F) S(N)

TABLE I
IMPACT OF DISTRIBUTION OF TRAFFIC PARAMETERS (se , ds) ON (pe , ps , Se) FOR ue

c
= 0.5 AND 0.1.
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Fig. 2. Blocking probability for elastic requests vs normalized offered elastic load obtained for the 5 cases in quasi-stationary
and �uid regimes (left) and neutral regime (right).
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Fig. 3. Blocking probability for streaming requests vs normalized offered elastic load obtained for the 5 cases in quasi-stationary
and �uid regimes (left) and neutral regime (right).

energy-per-bit to noise-density ratio,
(

Eb

N0

)
u

, given
by (

Eb

N0

)

u

=
W

Ru

P r
u

η + Ia
u + Ir

u

,

where W is the chip rate, Ru is the instantaneous
data rate of user u, η is the background noise
(assumed to be constant throughout the cell) and
(Ia

u , Ir
u) is the intra / inter-cell interference at user

u respectively. The intra-cell interference arises due

to simultaneous transmissions to the other users
in the same cell as user u, and is given by Ia

r =
α

∑
j∈A,j 6=u PjΓu ≤ α(P −Pu)Γu, where α is the

code non-orthogonality factor. On the other hand,
the inter-cell interference is due to the base stations'
transmissions in neighboring cells.

To achieve a given target error probability (as-
sumed to be zero here), it is necessary that for
each active user u,

(
Eb

N0

)
u
≥ ε, for some threshold



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

Relative Proximity to Quasi−stationary Regime, w
Q

B
lo

ck
in

g 
pr

ob
ab

ili
ty

 fo
r 

el
as

tic
 fl

ow
s,

 p
e

A(Q)
A(F)
A(W)
S(N)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.05

0.06

0.07

0.08

0.09

0.1

0.11

Relative Proximity to Quasi−stationary Regime, w
Q

B
lo

ck
in

g 
pr

ob
ab

ili
ty

 fo
r 

st
re

am
in

g 
flo

w
s,

 p
s

A(Q)
A(F)
A(W)
S(N)

Fig. 4. Blocking probability for elastic (left) and streaming (right) requests for neutral traf�c regime, assuming balanced traf�c
mix, fully loaded cell and exponentially distributed (ds, se).

ε, which is assumed to be the same for all users.
Hence, for each active user u, we have the follow-
ing:

Ru ≤ WPu

ε(α(P − Pu) + η+Ir
u

Γu
)
. (7)

which can be re-written as follows:
Ru

W + αεRu
≤ Pu

ε(η+Ir
max

Γmin
+ αP )

. (8)

Since the function Ru

W+αεRu
is an increasing func-

tion of Ru, the following should hold for every
elastic request u:

re

W + αεre
≤ Pu

ε(η+Ir
max

Γmin
+ αP )

.

Next, let's assume that a �xed portion of P, Ps, is
reserved for streaming traf�c. Then, we have that∑

u∈E Pu ≤ P − Ps = Pe.
By summing over the set of Ne active elastic

users, we obtain the following:
Nere

W + αεre
≤ Pe

ε(η+Ir
max

Γmin
+ αP )

. (9)

Finally, summing Eq. (8) over A, and noting that
Ru = rs for streaming users, we have:

Nere + Nsrs ≤ P (W + αεr)

ε(η+Ir
max

Γmin
+ αP )

,

where r = max(re, rs).
Hence, our model can be applied to the downlink

transmission scenario in UMTS by de�ning c =
P (W+αεr)

ε(
η+Ir

max
Γmin

+αP )
and choosing cs = Ps

P . We note that
the resulting cell capacity c is conservative, since
the admission control criteria is de�ned based on
users at the edge of the cell (where Ir

u = Ir
max and

Γu = Γmin).
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