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Abstract—1In this paper, we focus on an admission
control strategy for streaming and elastic users that
enforces a minimum rate guarantee for each elastic
user through pre-emptive capacity reservation. We
propose approximations to estimate the performance
of this strategy. We apply time-scale decomposition
for the limiting regimes, and for non-limiting regimes
we propose a novel weighted approximation. Simula-
tion results suggest that the performance is almost
insensitive to traffic parameter distributions, and is
well estimated by our proposed approximations. Our
work is motivated by the integration of services in
3rd generation wireless systems such as UMTS and
CDMA 2000.

I. INTRODUCTION

Future generation broadband networks are ex-
pected to support a large variety of applications,
typically grouped into two broad categories:

Elastic flows correspond to the transfer of digital
documents (e.g., Web pages, emails, stored audio
/ videos). They are characterized by their size,
i.e., the volume of the document to be transferred.
These flows are flexible, or “elastic”, towards rate
fluctuations, with the transfer time as a typical
performance measure.

Streaming flows correspond to the real-time
transfer of various signals (e.g., voice, streaming
audio / video). They are characterized by their du-
ration as well as the transmission rate. For “stream-
ing” applications, stringent transmission rate guar-
antees are necessary to ensure real-time communi-
cation.

Various papers that study the performance of
elastic and streaming traffic integration have been
published [1], [2], [3], [4], [5], [6], [7]. In terms

of resource sharing policy, the classical approach
is to give absolute priority to streaming flows
(through head-of-line packet marking) in order to
offer packet delay and loss guarantees [1], [2],
[4]; alternatively, adaptive streaming flows (that are
TCP-friendly and mimic elastic flows) are consid-
ered in [3], [5], [6]. In terms of modeling approach,
while Markovian models have been developed for
the exact analysis of the integrated services system,
they can be numerically cumbersome. Hence, a
fluid model is proposed in [2], [3], [4], [S], [6]
to provide closed form results and approximations
for limiting traffic regimes based on time scale
decomposition.

The above works do not consider the provi-
sion of minimum rate guarantees. However, such
guarantees are important to maintain satisfactory
perceived quality of service, especially for elastic
users. Hence, in this paper, we propose such a strat-
egy to enforce minimum rate guarantees through
pre-emptive capacity reservation. To model a link
that supports such a strategy, we apply both pro-
cessor sharing and Erlang-loss models and develop
approximations for limiting regimes based on time-
scale decomposition. Comparison with numerical
simulations suggests that these approximations are
accurate and form performance bounds. This led
us to propose a novel weighted approximation for
non-limiting regimes.

We describe our model and admission control
strategy in detail in Section II. We present the time-
scale decomposition analysis in Section III and
show representative numerical results in Section IV.
Some concluding remarks and future directions are



outlined in Section V. We illustrate the applicability
of our model for evaluating the downlink perfor-
mance of cellular systems in the Appendix.

II. MODEL

We consider a link whose limited resource (c
Kbps in total) is shared amongst streaming and
elastic requests with fixed and minimum rate re-
quirements of 74 (Kbps) and r. (Kbps) respectively.
We assume that streaming and elastic requests ar-
rive as independent Poisson processes with rate A
and A. respectively. The duration of each admitted
streaming request, dg, is generally distributed with
mean ui (sec). The corresponding size of each
admitted elastic request, S, is generally distributed
with mean f. (bits).

A part of the total resource, c; < ¢, is reserved
for streaming requests: at any time, ;’— streaming
requests will be guaranteed admission; however, if
there are at least f— ongoing streaming requests,
then a new streaming request will be admitted as
long as the minimum rate r. can be guaranteed
for ongoing elastic requests. On the other hand, an
elastic request will be admitted as long as ongoing
requests can maintain their rate requirements and
the number of ongoing elastic requests does not
exceed % Note that the capacity unused by
streaming requests may be equally shared amongst
elastic requests; however, this surplus is immedi-
ately re-allocated to streaming requests when a new
streaming request arrives.

The above admission control strategy can be
quantified as follows: let (N, N.) be the number
of on-going streaming and elastic requests respec-
tively. Due to the total resource constraint and
resource reservation for streaming traffic, Nyrg +
N.re < cand N.r. < c-c5. The second inequality
ensures that all active elastic flows can be accom-
modated with their minimum rate by the ensured
capacity c. = ¢ — c;. Consequently, a new elastic
request will be accepted only if Nyrg + (Ne+1)re
< ¢ and (N+1)r. < c-cs. On the other hand, a
new streaming request will be admitted as long as
(Ng+Drgs + Nere < c¢. The model is illustrated in
Fig. 1.

Note that a different integrated admission control
scheme was proposed in [2]. While this scheme
aims to ensure equal blocking probabilities, our
scheme enforces rate requirements for both types
of traffic.

For the convenience Qf the analysis that follows,
we define K (ny) = L%ﬂj and K(n.)
= [ "= |, where K;(n;) is the maximum number
of type-i¢ flows when n; type-j flows are present.
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Fig. 1. Model of single link with capacity reservation and

minimum rate guarantee for integrated services.

In addition, we denote the conditional probability
of event B, given event A, P(B | A) as PZ.

III. ANALYSIS

Since exact analysis of our model is non-
tractable in general and computationally involved
when assuming exponentially distributed holding
times and file sizes (see [1], [5] for similar mod-
els), we develop various approximation techniques
and assess their accuracy through comparison with
simulation.

A. Quasi-stationary Approximation for Elastic
Flows

For the quasi-stationary approximation, to be
denoted A(Q), we assume that the dynamics of
streaming flows take place on a much slower time
scale than those of elastic flows. More specif-
ically, we assume that elastic traffic practically
reaches statistical equilibrium while the number
of active streaming calls remains unchanged. The
corresponding condition is that

s E[Ng] 4+ As << C_?E[NS]

where the expression on the LHS (RHS) corre-
sponds to the average rate at which the number
of streaming (elastic) flows changes. Although the
above condition cannot be easily checked (due to
the dependence on E[Ny]), it is ensured to be
satisfied if ”*i + As << Ac. This assumption is
reasonable when we consider the combination of
voice calls (streaming) and web-browsing or email
(elastic) applications. Under this assumption, the
dynamics of elastic flows can be studied by con-
sidering a fixed number of streaming flows, i.e., N
= n,. We construct an approximation assuming that
the number of active elastic flows instantaneously
reaches a new statistical equilibrium whenever the
number of streaming flows changes. To avoid any
confusion we will mark all quantities (such as

+Ae, (D)



queue lengths and performance measures) resulting
from this approximation approach by adding a
superscript ¢ to the notation.

From the capacity constraint and the reserva-
tion policy, it follows that n.r. < min{c —
ngTs, Cet. In this case, elastic traffic behaves like
an M/G/1/K.(ns) processor-sharing (PS) queue
with K.(ns) service positions, capacity ¢ — nsrs
and average departure rate pe(ns) = e
Hence, from [8],

N@=n. __
Pya_n = P(N% =n, | N? =n,)
- pe(nS)ne(l - pe(nS))
= 4 T et
_ pe(ns) e(ns

where pe(ns) ”C’?;S) = C:\;i‘;s. Notice [8]
that this expression is insensitive to the file size
distribution, other than through its mean. As a
further remark, we observe that whether or not
pe(ns) < 11is of no concern, since N2 is limited
due to the assumption that r. > 0. Often, when ap-
plying a time-scale decomposition, this matter is of
importance, giving rise to an additional assumption
commonly referred to as uniform stability [4].
Next, we consider the dynamics of streaming
flows. When N‘S.ans, streaming flows depart at
a rate ngus. When a new streaming flow arrives,
due to admission control, we have two possible
scenarios: either the newly arrived streaming flow
is accepted or it is blocked. Under our approxima-
tion assumptions, the probability of acceptance is
P(NCr.+(ng+1)rs < ¢ | N®=n,). Notice that the
admission probability of streaming flows equals 1
if (ns + 1)rs < c¢s. Substituting Eq. (2) into this
expression and noting that N, EQ re < Ce, the effective

arrival rate of streaming flows, As(ng), is given as
follows:

A ]PN <IL( e(ns+1)

1 — pe(n
T pe(n <7

As(ng) =

)K e(ns+1)+1
= )\S

Hence, it follows that, for 0< ng < [;=]:

ng—1 .
el A

P(NQ = py) = Hizo A0 pyo )
nelus® s

where  P(NV Q=0) can be computed using

Z,LLS_JO P(N& = n,)=1. Consequently, it follows
that:

L)

PN Z PNQ:::P
ns=0

In particular, the conditional blocking probability
of newly-arrived streaming flows is
P(N%r, + (ns+ )ry > c| N9 = n,)
. Un-conditioning on N¥, and noting that blocking
can occur only for [ =] < ny < [;=], the blocking
probability for streaming flows, p%, is given as
follows:

e
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The corresponding blocking probability for elastic
flows, pg, is given as follows:
p? . ZL%J IP)N >K. (ns)P(N

ngs=0 NQ = nS)'

B. Fluid Approximation for Elastic Flows

For the fluid approximation, denoted by A(F),
we assume that the dynamics of elastic flows are
much slower than those of streaming flows, i.e.,

- — 7, B[N,
CT}H—%% << psE[N+ A, (3)

which is certainly true if = + A\, << A4 This
assumption is valid when we consider the combina-
tion of voice calls (streaming) and large file transfer
(elastic) applications. Under this assumption, the
dynamics of streaming flows can be studied by
considering a fixed number of elastic flows. Similar
to A(Q), we will construct an approximating two-
dimensional process under the assumption that N
immediately reaches steady state, whenever N,
changes. This approximation will be reflected in
the notation by adding a superscript I whenever
not doing so might give rise to confusion.

From the capacity constraint, it follows that
nsts < ¢ — nere. By modeling the streaming
flows as an Erlang-loss queue with finite capacity
Ky (n.), it follows that:

ng

Ps”

Nf:nS o ng!
PNF—n. = SR (o) 2 )
Zi:O al

where ps = i As before, we emphasize that
the above expression depends on the holding time
distribution only through its mean.

Next, we consider the dynamics of elastic flows.
When Nf =n. > 0, elastic flows depart at a rate



te(ne) given as follows:

Ele— NFrg | NF =n,]

,Ufe(ne) =

e
Ks(ne)
o C*nsrs]P)Nf=ns
- Z fe NF=n,"
ns=0

Hence, from the admission control conditions and
Eq. (4), the effective arrival rate of elastic flows,
Ac(ne), is given as follows:
Ao ijpff a(net1)

Ks(ne+1)

= X > i
K.(ne) pi
=0 Z'L:O(n ) %

Using Cohen’s results for his generalized PS model
[8] for general service times with service rate
te(ne) and arrival rate A (n.), it follows that, for
0<n. < L;—:J

Ac(ne) =

Ne—1

— ne) _ H Ae(i)

P(NF —a
(N TGSy

P(N'=0), (5

where P(Nf'=0) can be computed using
Zfﬁiﬁt‘H)P(N F=n.) = 1. Consequently,
P(N SF =ns) is obtained by substituting Eq. (4) and
Eq. (5) into the following expression:
L2 ]
P(N! Z IP’NF’Z’P (NF =n,).
ne=0
On the other hand, the newly-arrived elastic flow
is blocked if ne = | %= | or if NFrg+(ne+1)re > c.
Hence, the blockingE probability for elastic flows,
pL’, is given by:

L52)-1

pro= Y BN P(NE = )
ne=0
+ P(NF= rJ)
T’(i
The corresponding blocking probability for

streaming flows, pf, is given as follows:

P ZL%ZJ H,,Nfzks(ne

Ps = 2.n.=0 NF=n, )P(Nf:ne)-

IV. PERFORMANCE EVALUATION
In this section, we evaluate the performance of
an isolated link with elastic and streaming requests
(Fig. 1) through simulation for the following pa-
rameters: ¢ = 1000 Kbps, c¢s = 500 Kbps, r; = 60
Kbps and r. = 40 Kbps. We consider the following

distributions for (s, ds), given that E[s.]| = f. and
Eldi] = -
Hyper-exponential distribution : A common

distribution used to characterize the behavior of s,
is the hyper-exponential distribution with balanced
means, which is defined as follows (cf. [9] P 359):

Vs > 0,P(se > s) 74.9(1%. The
parameter a. completely characterlzes the behavior
of se and can be interpreted as follows: A fraction
ajil of small elastic requests of mean size 5—2 and
a fraction ﬁ of large elastic requests of mean
size a.f.. Increasing a. increases the variance of
se and the special case of a. = 1 corresponds to
the exponential distribution.

Erlang distribution : A common distribution to
characterize the behavior of dy is the Erlang distri-
bution, which has the following density:

s (kpsd)*
(k—1)!
It reduces to an exponential distribution for k=1;
increasing k reduces the variance for d;.
Once the distribution of (d, s.) is selected, we
characterize each simulation run according to the
following procedure:

Yd >0,k >0, fi(d) = e knsd,

1. Fix the total offered traffic by choosing the
loading factor, T > 0, where u. + us = 7 c,

Ue = Aefe and ug = ’\#“;
2. For each 7, fix the traffic mix, %, by
choosing ue, 0 < ue < 7 ¢
3. For each traffic mix, select (A., As) to fit
one of the following traffic regimes:

a. Quasi-stationary Regime (denoted by
S(Q)), where Eq. (1) is satisfied;

b. Fluid Regime (denoted by S(F)),
where Eq. (3) is satisfied;

¢. Neutral Regime (denoted by S(N)),

where neither Eq. (1) nor (3) is satisfied.

We note that in Step 3 of the above procedure,
fe and ps can be computed once (T, pe, A,
As) are specified. The simulation duration, 7, is
selected such that min{\., As} T > N,., where
N, is chosen (default value = 10000) such that
N, - min{p., ps} is not too small.

From the simulations, we compute the blocking
probability for each type of request. The expected
residence time for each admitted elastic request,
E[R.], can be computed in terms of (E[N.], pe)
using Little’s Law as follows:

E[N.]
>\p(1 7pe).

We define the stretch, Se, by normalizing F[R.]
with f. as follows:

E[Re} =

E[R.]

Se =
fe



A. Performance Insensitivity with Traffic Parameter
Distribution

First, we evaluate the impact of the distribution
of (ds, s.) on the performance of a fully-loaded link
(7 = 1) in different traffic regimes. We consider the
following traffic mix: (i) %= = 0.5 (Balanced traffic
mix) and (i) “‘f = 0.1 (Dommant composition of
streaming trafﬁc)

For each case, we define 3 sets of simulations as
follows: Case I [a., k] = [1, 1], Case II [a., k] =
[100, 1] and Case III [a., k] = [1, 3]. For each set,
we compute the sample mean for (pe, ps, Se) over
all the simulation runs at each traffic mix, and the
results are tabulated in Table I. We observe that the
performance measures are almost insensitive to the
traffic parameter distributions, thus justifying the
insensitive approximations proposed here.

B. A Weighted Approximation for Blocking Proba-
bilities

For each scenario in Case I, we plot (pe, ps)
as a function of the traffic mix, “—;, 0< u, < ¢,
for each approximation technique in Fig. 2 and
Fig. 3 respectively, alongside the corresponding
simulation results. Qualitatively, we note that A(Q)
(A(F)) is accurate in the quasi-stationary (fluid)
regime for each metric. The non-monotonicity of
the blocking probability for elastic flows is due to
the counter-acting effects of reservation and change
of traffic composition. Notice that this does not
affect the blocking probability for streaming flows.

For the neutral traffic regime, Fig. 2-3 suggest
that the blocking probabilities obtained (with sim-
ulation) are typically in between A(Q) and A(F).
Hence, it seems worthwhile to estimate the per-
formance metric x in such a regime by weighing
the corresponding metrics obtained with A(Q) and
A(F) (denoted A(W)) as follows:

zAW) = WQTAQ + (1 — wQ)Tam
where wgq is the weight allocated to A(Q) and x5
is the value of x obtained with approximation A.

According to Eq. (1) and Eq. (3), the criteria used
to define the traffic regime is the relative dynamics
of streaming and elastic flows, given by us E[N,|+
As and %E[N]Jr/\ respectively. Hence, a natural
approach to define wq is as follows:

cfrsjf[Ns] T

eoraPIN) 4 Ne + o B[N + Ay

wq = (6)
In this way, when the dynamics of elastic flows
occur at a faster rate than that of streaming flows
(towards quasi-stationary regime), wg > 0.5 and
vice versa. Accordingly, E[N,] = woE[Ns|aw) +
(1-w@)E[Ns]a@m). and together with Eq. (6), wg

can be computed by solving the following quadratic
equation:
Awé + BwQ =0,

where

A = (E[Nsla@ — E[Nslam) (psfe —1s)

B = CJF(/\e+>‘S)fe+E[Ns}A(F)(Hsfe —7“5)
—  1s(E[Ns|am — E[Ns]aw)

Cc = C+)\ fe Ts [NS]A(F)

We demonstrate the accuracy of A(W) for the
case of a balanced traffic mix. We consider wg €
{0.1, 0.2, ---, 0.9}, and for each wq, we generate
simulation runs by selecting 9 sets of traffic param-
eters. We plot the blocking probabilities obtained
alongside the corresponding estimates with A(Q),
A(F) and A(W) in Fig. 4. We observe that the
blocking probabilities for both types of requests are
well-estimated by A(W).

V. CONCLUSIONS AND FUTURE WORK

In this study, we evaluate the performance of
an admission control strategy that ensures min-
imum and fixed rates for elastic and streaming
requests respectively in an isolated link. We de-
velop approximations to estimate the performance
in limiting traffic regimes where the dynamics of
both types of requests take place at significantly
different time scales. Based on the former, we
propose a weighted approximation for non-limiting
traffic regimes. Simulation results suggest that the
performance is almost insensitive to traffic param-
eter distributions, and is accurately estimated by
the proposed approximations. Our model can, see
e.g. [3], be used to assess the performance of
downlink communication in 3"¢ generation cellular
systems when the difference in distances to the
base station within the cell can be neglected. We
are currently investigating extensions to include
signal attenuation due to path loss. We also plan
to investigate more enhanced weighing schemes of
the proposed approximations.

APPENDIX

Let us consider downlink transmissions in
UMTS (with W-CDMA in FDD mode) to elastic
and streaming users, where the base station can
transmit to all active users (denoted by A) simul-
taneously. Let P be the total power available at
the base station, and P, be the power transmitted
to user u, where P, < P. The power received
by a user v is P = P,I',, where I';, denotes
the attenuation due to path-loss. As a measure of
the quality of service for user u, we consider the



u,/c 0,5 0,1
S s(Q) S(F) S(N) s(Q) S(F) S(N)
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energy-per-bit to noise-density ratio,(%) , given
u
by
Ey

(%),

where W is the chip rate, R, is the instantaneous
data rate of user w, 1 is the background noise
(assumed to be constant throughout the cell) and
(I3, 1) is the intra / inter-cell interference at user
u respectively. The intra-cell interference arises due

_w Py
 RymAIe 177

to simultaneous transmissions to the other users
in the same cell as user u, and is given by I
«a ZjeAJ#u P,T, < a(P—-P,)T,, where « is the
code non-orthogonality factor. On the other hand,
the inter-cell interference is due to the base stations’
transmissions in neighboring cells.

To achieve a given target error probability (as-

sumed to be zero here), it is necessary that for
Ey

each active user u, ( Vo) > ¢, for some threshold
u
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mix, fully loaded cell and exponentially distributed (ds, se).

€, which is assumed to be the same for all users.
Hence, for each active user u, we have the follow-

ing:

WP,
T e(a(P - P,) + ) 7
which can be re-written as follows:
i ®
W + aeR, (,’]FW:::T + aP)

Since the function ﬁ is an increasing func-
tion of R,, the following should hold for every
elastic request u:

Te Py
<
Wt aere = ¢(1 nae 4 o p)’

Next, let’s assume that a fixed portion of P, P, is
reserved for streaming traffic. Then, we have that
ZuE]E P < P — P P
By summing over the set of N, active elastic
users, we obtain the following:
Nere P,
W + aere, — (TH-I"LM + aP)
Finally, summing Eq. (8) over A, and noting that
R, = rs for streaming users, we have:
P(W + aer)
€<7]+Imat + CYP)

Fmin

€))

Nere + Norg <

where r = max(re, 7).
Hence, our model can be applied to the downlink
transmission scenario in UMTS by defining ¢ =

% and choosing ¢, = Z5. We note that

the resultmg cell capacity c is conservative, since
the admission control criteria is defined based on
users at the edge of the cell (where I, = I, .. and

1—‘u = szn)
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