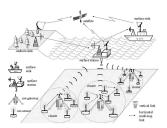
Impact of MAC on Localization in Large-scale Seabed Sensor Networks

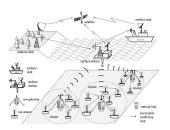
Jong-Pil Kim¹ Hwee-Pink Tan² Ho-Shin Cho¹

¹School of Electrical Engineering and Computer Science, Kyungpook National University, Daegu, (Korea)

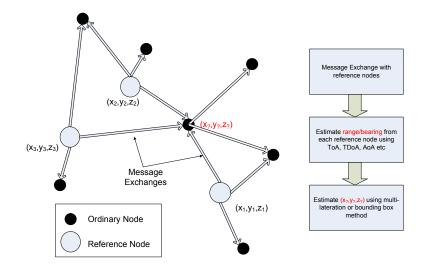
²Networking Protocols Department, Institute for Infocomm Research (Singapore)

Outline




Motivation

- Large-scale Underwater Seabed Sensor Networks for offshore engineering, e.g., deepwater mooring systems
 - Measurement of foundation strength and mooring tensions and dissemination via *acoustic communications*
 - *Long-duration* deployments preferred due to high costs


Motivation

- Large-scale Underwater Seabed Sensor Networks for offshore engineering, e.g., deepwater mooring systems
 - Measurement of foundation strength and mooring tensions and dissemination via *acoustic communications*
 - *Long-duration* deployments preferred due to high costs

- Location of sensors needed for meaningful interpretation of sensed data
 - Use of GPS infeasible for seabed (2D) nodes
 - At least 3 pre-positioned nodes as reference nodes
 - Exchange of messages underwater needed to localize *ordinary* (non-reference) nodes

Fundamentals - Range-Based Localization

Single vs Multi-Stage

Range-based localization can be classified according to the characteristics of ordinary nodes:

Single vs Multi-Stage

Range-based localization can be classified according to the characteristics of ordinary nodes:

Single-stage

- Each ordinary node only exchange messages *directly* with the reference nodes;

- Once localized, it does not contribute towards localizing other ordinary nodes.

Single vs Multi-Stage

Range-based localization can be classified according to the characteristics of ordinary nodes:

Single-stage

- Each ordinary node only exchange messages *directly* with the reference nodes;

- Once localized, it does not contribute towards localizing other ordinary nodes.

Multi-stage

- Each ordinary node exchange messages with all nodes;

- Once localized, it becomes a reference node and helps to localize other ordinary nodes.

Requirements and Challenges for Underwater Localization

Requirements:

- Accurate
- Fast
- Low communications costs
- Wide coverage

Requirements and Challenges for Underwater Localization

Requirements:

- Accurate
- Fast
- Low communications costs
- Wide coverage

Challenges:

- Nodes drift due to underwater currents
- Harsh Underwater Acoustic Channel
- Sparse deployment due to high costs
- Battery-powered nodes

Requirements and Challenges for Underwater Localization

Requirements:

- Accurate
- Fast
- Low communications costs
- Wide coverage

Challenges:

- Nodes drift due to underwater currents
- Harsh Underwater Acoustic Channel
- Sparse deployment due to high costs
- Battery-powered nodes
- → short-range, multi-stage schemes preferred over long-range, single-stage schemes!

Multi-stage Underwater Positioning

Challenges of multi-stage schemes

- Error propagation
- Node mobility
 - integrate 3D Euclidean distance estimation with recursive location estimation
 - mobility prediction

Multi-stage Underwater Positioning

Challenges of multi-stage schemes

- Error propagation
- Node mobility
 - integrate 3D Euclidean distance estimation with recursive location estimation
 - mobility prediction
- Coordination of high volume of message exchanges \rightarrow Not addressed!

Multi-stage Underwater Positioning

Challenges of multi-stage schemes

- Error propagation
- Node mobility
 - integrate 3D Euclidean distance estimation with recursive location estimation
 - mobility prediction
- Coordination of high volume of message exchanges \rightarrow Not addressed!

Our contributions

- Identify suitable MAC schemes for multi-stage underwater localization
- Evaluate localization performance in terms of coverage, speed and communications costs

Recursive Position Estimation

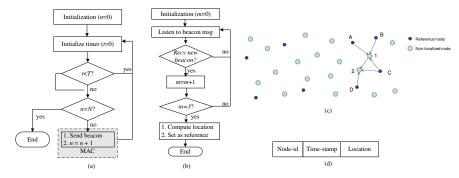
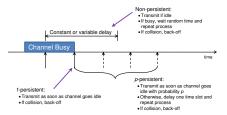


Figure: Localization procedure for (a) reference and (b) ordinary node, (c) illustration and (d) beacon structure

Medium Access Control

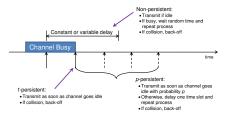
Most proposed underwater MAC schemes not suitable for localization

- Ordered CSMA: Difficult to determine transmission order for large scale networks
- FAMA and MACA-MN: reference node does not know number of CTS packets needed

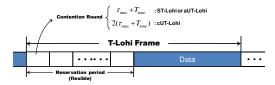

Medium Access Control

Most proposed underwater MAC schemes not suitable for localization

- Ordered CSMA: Difficult to determine transmission order for large scale networks
- FAMA and MACA-MN: reference node does not know number of CTS packets needed
- We consider two representative schemes
 - CSMA series (no node coordination)
 - T-Lohi (light coordination)


CSMA vs T-Lohi

Channel Access with CSMA



CSMA vs T-Lohi

Channel Access with CSMA

Frame structure of T-Lohi

Scenario and Performance Metrics

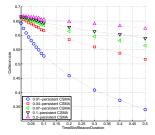
Scenario:

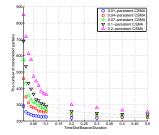
Table: Simulation parameters

Parameter	Value
Deployment area	$5 \text{ km} \times 5 \text{ km}$
Number of nodes (K)	100
Beacon packet size	32 Bytes
Tone detection time (T _{tone})	4 ms
Data rate	10 kbps
Transmission range	1 km
Maximum back-off time	1 s
Localization period (T)	1 s
Transmission limit (N)	20
Transmission probability (p)	[0.01, 0.04, 0.07, 0.1, 0.2]
Bit Error Rate	$10^{-5} \sim 10^{-2}$

Scenario and Performance Metrics

Scenario:


Table: Simulation parameters


Parameter	Value
Deployment area	$5 \text{ km} \times 5 \text{ km}$
Number of nodes (K)	100
Beacon packet size	32 Bytes
Tone detection time (T _{tone})	4 ms
Data rate	10 kbps
Transmission range	1 km
Maximum back-off time	1 s
Localization period (T)	1 s
Transmission limit (N)	20
Transmission probability (p)	[0.01, 0.04, 0.07, 0.1, 0.2]
Bit Error Rate	$10^{-5} \sim 10^{-2}$

Metrics:

- Coverage
- Speed
- Collision Rate
- Communication Costs

Results - Characterization of *p*-persistent CSMA

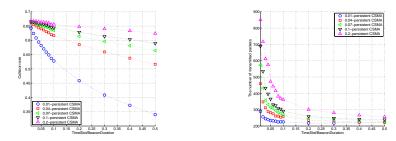


Figure: Collision Rate

Figure: Cost

Results - Characterization of p-persistent CSMA

Figure: Collision Rate

Figure: Cost

- Collision (and costs) \downarrow as t_{slot} \uparrow ; Perfect carrier sensing for $t_{slot} \ge 2\tau_{max}!$
- Collision \uparrow as $p \uparrow$

Results - Characterization of *p*-persistent CSMA

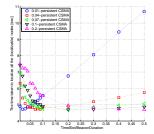


Figure: Speed

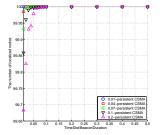
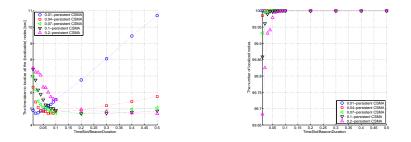
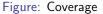
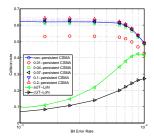




Figure: Coverage

Results - Characterization of p-persistent CSMA



- Turning point, $t^*(p)$, for $p \le 0.1$
 - Improvement in speed due to reduced collisions > degradation due to time wastage for t_{slot} ≤ t^{*}(p)

• Coverage \uparrow as t_{slot} \uparrow ; Full coverage with $\frac{t_{slot}}{t_{beacon}} \ge 0.1!$

Results - CSMA vs T-Lohi

Figure: Collision Rate

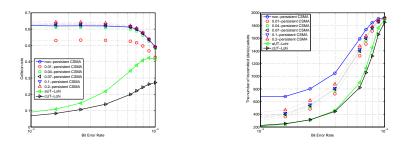



Figure: Cost

Results - CSMA vs T-Lohi

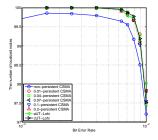


Figure: Collision Rate

Figure: Cost

- T-Lohi incurs lower collisions (costs) than CSMA due to channel reservation
- Collision ↓ as BER ↑ for CSMA due to higher packet transmission errors (higher costs)

Results - CSMA vs T-Lohi

Figure: Coverage

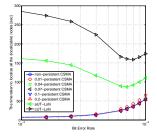
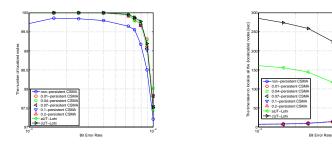



Figure: Speed

Results - CSMA vs T-Lohi

Figure: Coverage

Figure: Speed

- Overage ↓ as channel degrades
- Speed \downarrow as channel degrades for CSMA due to higher packet errors
- Speed \uparrow as channel degrades for T-Lohi due to shorter frame length

Conclusions and Future Work

- Investigated impact of MAC in multi-stage localization in large-scale seabed (underwater) sensor network
 - MAC should require little or no node coordination to achieve good localization performance efficiently
 - We consider CSMA (no node coordination) and T-Lohi (light coordination)

Conclusions and Future Work

- Investigated impact of MAC in multi-stage localization in large-scale seabed (underwater) sensor network
 - MAC should require little or no node coordination to achieve good localization performance efficiently
 - We consider CSMA (no node coordination) and T-Lohi (light coordination)
- *p*-persistent CSMA achieves better localization performance at the expense of higher communications costs

Conclusions and Future Work

- Investigated impact of MAC in multi-stage localization in large-scale seabed (underwater) sensor network
 - MAC should require little or no node coordination to achieve good localization performance efficiently
 - We consider CSMA (no node coordination) and T-Lohi (light coordination)
- *p*-persistent CSMA achieves better localization performance at the expense of higher communications costs
- Future work
 - Evaluation of localization performance for a broader class of underwater MAC protocols
 - Accounting for beacon aging effect due to node mobility
 - Evaluation using more realistic underwater acoustic channel model