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Abstract—Many crowdsourcing scenarios are heterogeneous in the sense that, not only the workers’ types (e.g., abilities or costs) are
different, but the beliefs (probabilistic knowledge) about their respective types are also different. In this paper, we design an incentive
mechanism for such scenarios using an asymmetric all-pay contest (or auction) model. Our design objective is an optimal mechanism,
i.e., one that maximizes the crowdsourcing revenue minus cost. To achieve this, we furnish the contest with a prize tuple which is an
array of reward functions each for a potential winner. We prove and characterize the unique equilibrium of this contest, and solve the
optimal prize tuple.
In addition, this study discovers a counter-intuitive property called strategy autonomy (SA), which means that heterogeneous workers
behave independently of one another as if they were in a homogeneous setting. In game-theoretical terms, it says that an asymmetric
auction admits a symmetric equilibrium. Not only theoretically interesting, but SA also has important practical implications on
mechanism complexity, energy efficiency, crowdsourcing revenue, and system scalability.
By scrutinizing seven mechanisms, our extensive performance evaluation demonstrates the superior performance of our mechanism
as well as offers insights into the SA property.

Index Terms—Crowdsourcing, mobile crowd sensing, participatory sensing, all-pay auction, asymmetric auction, strategy autonomy
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1 INTRODUCTION

C ROWDSOURCING offers a distributed and cost-effective
approach to problem solving and data gathering by

soliciting user contributions from a large group of unde-
fined people. Recently, due to the burgeoning smartphone
industry and the soaring demand for sensing data, a new
mobile computing and sensing paradigm called mobile
crowdsensing [1] emerged, which collects data through
crowdsourcing and has created significant momentum in
both industry and academia. For example, IBM Almaden
Research Center launched a citizen science project Creek
Watch [2] to enable iPhone users to report water-related
information in order to monitor water levels and the vicinity
conditions. NoiseTube [3] deals with another environmental
issue, noise monitoring, via the microphone sensor on each
user’s smartphone. ContriSense:Bus [4], on the other hand,
addresses public transport problems by allowing bus com-
muters to send bus arrival times and crowdedness levels via
smartphones. In the communications domain, WiFi-Scout
[5] measures WiFi signal quality and connection speed by
crowdsourcing to smartphone users’ surfing experience. The
motivation of this study originates from crowdsensing yet
the model and results are applicable to the general context
of crowdsourcing.

Incentives are key to the success of crowdsourcing ap-
plications as it heavily depends on the level of user partic-
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ipation. While some applications are endowed with strong
intrinsic motivation such as self-fulfillment, skill enhance-
ment, and fun, most applications have to rely on extrin-
sic incentives such as financial reward. In this paper, we
design an incentive mechanism with arbitrarily divisible
(e.g., financial) reward using an auction-based framework.
We choose auctions because they are effective, sophisticated
incentive mechanisms that have been well adopted in both
theory [6]–[9] and practice [10], [11].

In particular, we use an all-pay contest [12] model to
design our incentive mechanism. All-pay contests are iso-
morphic to all-pay auctions: given an equilibrium in one
model, one can construct one and only one equilibrium in
the other model (to draw an analogy, bidders tendering
bids in an auction resembles contestants exerting effort in
a contest). All-pay auctions or contests are distinct from
other mainstream auctions such as first- and second-price
auctions and [6], [7], [9], in that all the bidders must pay
for their respective bids regardless of who wins the auction,
while in the mainstream auctions only winners will need to
pay. This seems to be rather peculiar, but when applied to
the context of crowdsourcing, it becomes a natural model
if we let each bid represent each user’s actual contribution
effort (instead of an indication of one’s “willingness to con-
tribute”). In that case, a bid once submitted is irrevocable
since effort has been sunk, exactly mirroring “all-pay”.
In addition, as [13] points out, all-pay auctions have two
important advantages: they (i) simplify the typical two-stage
“bid-contribute” process (e.g. [6], [7], [9]) into a single “bid-
cum-contribute” stage, and (ii) eliminate the risk of task
non-fulfillment.

This paper themes around heterogeneous crowdsourcing,
where not only agent (worker) types (e.g., abilities or costs)
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are different, but the beliefs (probabilistic knowledge) about
their respective types are also different. Here “belief”, which
is in the form of a probability distribution, also implies that
we assume an incomplete-information setting where agents
do not exactly know each other’s types except for their
own, as is usually the case in practice. In the vast liter-
ature on crowdsourcing and auctions, the majority (e.g.,
[8], [14]–[19])1 deals with the homogeneous case where all
the agents are assumed to be ex post or ex ante identical.
That is, their types are either exactly the same (ex post), or
statistically the same (ex ante) (i.e., follow the same, single
belief or probability distribution). This typically leads to a
symmetric equilibrium and can indeed offer some insights
into applications in which players are largely homogeneous.
However, a heterogeneous model could provide a better
understanding of many other real scenarios. For example,
see two crowdsourcing applications illustrated in Fig. 1. In
(a), participants of a citizen science project such as Creek
Watch [2] often form a community with common interest,
and therefore may have some (uncertain) knowledge about
each other’s types via social contacts or community activi-
ties. In (b), a crowdsensing application such as WiFi-Scout
[5] often comes with an associated website to publicize user
performance or contribution rankings [20], via which users
can develop a probabilistic knowledge of other users’ types.
In both cases, users roughly know who are “stronger” and
who are “weaker”, bespeaking a heterogeneous setting. In
addition, the “everyone contributing” behavior, as in many
mobile crowdsourcing applications which directly solicit
contributions from all users, falls under the all-pay model.
Therefore, we employ asymmetric all-pay auctions as our
mathematical framework to tackle our design problem.

However, asymmetric auctions are much less under-
stood and applied because they are generally much more
challenging to analyze than their symmetric siblings. As a
result, the relatively much smaller literature on asymmetric
auctions is often limited to two-player cases [21]–[23] or
complete-information settings [12], [24] in order to trade
for tractability. In fact, many related questions such as
characterizing equilibria remain open even after decades.
In 2003, a significant progress was made by [25] toward un-
derstanding asymmetric first-price auctions with more than
two players and incomplete information, but the solution is
approximate and only applies to weakly asymmetric agents2.
Other studies along the similar line resort to numerical
simulations [26]. In this paper, we deal with an arbitrary
number of agents and incomplete information, yet we ob-
tain precise solutions analytically, which also apply to any
(weak or strong) asymmetry.

In summary, this paper makes the following contribu-
tions:

1) To the best of our knowledge, this is the first work that
addresses heterogeneous crowdsourcing using an all-pay
contest model. Furthermore, the model is rather general

1. Studies [6], [9] follow a different line and do not have the concept
of (Bayesian) “belief”; they are reviewed in Section 2.3. The work [7] is
reviewed in Section 2.2.

2. Weak asymmetry means that the difference between any two
beliefs (distributions) is small, or formally, Fi(v) = F (v) + εHi(v)
where Fi(v) is the belief of type vi, |Hi(v)| ≤ 1 and |ε| � 1.

(a) Creek Watch [2]: Waterway conditions reported by iPhone users.

(b) WiFi-Scout [20]: user ranking based on contribution performance.

Fig. 1. Two mobile crowd sensing applications that illustrate heteroge-
neous crowdsourcing as well as the all-pay behavior.

and realistic in the sense that it accommodates an arbi-
trary number n of agents with incomplete information.

2) We design an incentive mechanism for heterogeneous
crowdsourcing, and achieve optimality in terms of max-
imizing the crowdsourcing profit (or the crowdsourcer’s
utility).

3) Our mechanism reveals a new, counter-intuitive property
called strategy autonomy (SA), which means that a het-
erogeneous crowdsourcing or asymmetric auction model
behaves like a homogeneous or symmetric one. This has
practical implications on mechanism complexity, energy
efficiency, crowdsourcing revenue, and system scalabil-
ity.

4) While most prior work focuses on workers (bidders)
only, this work also gives an example of how to deal
with different types of crowdsourcers (auctioneers) or
the same crowdsourcer with changing types. This is
elaborated in Section 3.

5) The performance of our mechanism in terms of crowd-
sourcing profit and system scalability is demonstrated
to be superior by our extensive evaluation that involves
seven mechanisms. Our evaluation also sheds light on
the SA property, as well as draws intuition from various
rationales.

The rest of this paper is organized as follows. Section 2
reviews the literature and Section 3 presents our contest
model. Section 4 analyzes the model and provides the main
results. Section 5 provides a detailed performance evalua-
tion for seven mechanisms, and Section 6 concludes.
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2 RELATED WORK

A preliminary version of this work appeared in [27].

2.1 Symmetric auctions

The vast majority of prior work on auctions or auction-
based incentive mechanisms adopts symmetric auctions as a
handy framework. As [28] concurs, almost all auction theory
concerns symmetric auctions.

A crowdsourcing site that offers a range of contests was
studied in [14], where each user chooses one contest to
participate based on the skill requirement and the offered
reward. Each contest is modeled as a symmetric all-pay
auction. The work [15], [16] investigates whether a single
or multiple prizes can maximize contest revenue, defined
as the sum of all the bids [15] or that of the highest k bids
[16]. Both studies assume a symmetric setting. Under similar
assumptions, and with a focus on revenue composition,
[17] finds that the highest bid is at least half of the total
bids in the revenue. Also using a symmetric auction model,
[18], [19] compare the revenue in terms of the highest bid
and that of the total bids, as well as investigate the cases
when bidders value the reward according to additive and
multiplicative rules.

Most recently, [8] proposed an all-pay auction based
incentive mechanism for participatory sensing and crowd
sensing. The model is general in the sense that it assumes
risk-averse (subsuming risk-neutral) agents, stochastic (sub-
suming deterministic) population, as well as incomplete
information. The idea was subsequently redeveloped in
[13] with substantial extensions, which in particular points
out two important merits of all-pay auctions—simplicity
and risk-elimination—which we mentioned in Section 1.
However, both works still assume a symmetric model.

2.2 Asymmetric auctions

The regime of asymmetric auctions is relatively much
smaller and less understood due to its analytical complexity.
As a result, most work deals with two-player cases or
complete-information settings. Amann and Leininger [22]
presented their seminal work on a two-player asymmetric
auction, by characterizing the equilibrium bidding strate-
gies. Maskin and Riley [29], [30] extended it by proving the
monotonicity and uniqueness of the equilibrium. In the n-
player case, Fibich and Gavious [25] provided an approx-
imate characterization of equilibria in the weakly asym-
metric case, using a perturbation approach. Another work
[31] examines risk aversion and offers some exploratory yet
inconclusive results.

With complete information, Siegel [12] obtained closed-
form player payoffs. He is also probably the first to coin
the term “all-pay contests”. Under a similar complete-
information model, Xiao [24] studied the problem of al-
locating k < n prizes to n players and proposed an
algorithm to construct the equilibrium. Franke et al. [32]
aimed to maximize revenue through discriminating players
by associating differentiated weights, assuming complete
information about players.

In contrast, our model accommodates an arbitrary num-
ber n of agents with incomplete information (i.e., a Bayesian

game setting), as well as asymmetric types and beliefs.
Furthermore, we furnish the contest with a prize tuple
which is a sequence of reward functions. These set this work
apart from prior art.

Perhaps the closest model to ours is in [7] which also
assumes an asymmetric Bayesian game setting. However,
it falls into the category of second-price auctions while we
take on the all-pay flavor. Secondly, the objective of [7] is
to minimize cost while keeping revenue constant, whereas
our objective is to maximize revenue subtracted by cost, or
profit, which is presumably more flexible. Third, the prize
tuple and SA property are unique to our work only.

2.3 Other incentive mechanisms

Algorithmic mechanism design [33] represents another large
field in parallel with the classic economic mechanism de-
sign arena where this work sits in. Algorithmic mechanism
design stresses computational efficiency and focuses on
polynomial-time implementable mechanisms, and therefore
frequently use methods such as greedy heuristics and ap-
proximations. Work [6], [9] belongs to this category. On
the other hand, economic mechanism design focuses on
outcomes and equilibrium analysis, rather than procedures
that lead to the outcomes (the procedures are often straight-
forward in many cases including ours).

While auctions are commonly used as an incentive mech-
anism design framework, there are also non-auction based
incentive work in the literature. For instance, [34] designs a
contract-based incentive mechanism for a distributed com-
puting scenario using contract theory.3 On the other hand,
[35], [36] take a resource-allocation approach to incentivize
user participation by allocating service quota to users based
on their contribution levels and service demands. Moreover,
[37] takes a socio-economic approach to link participants
into a social network overlaid by economic incentives in
order to stimulate trustworthy contributions.

3 OUR ALL-PAY CONTEST MODEL

A principal (crowdsourcer) is conducting an all-pay contest
based crowdsourcing campaign in order to solicit some
“effort” from n agents (workers). Here, “effort” is a gen-
eral term that can be interpreted as, depending on the
application, quantity (total or per unit time [7]), quality of
contributions [38], or a compound measure of both quality
and quantity [39]. By “all-pay contest”, we mean that agents
directly submit their efforts to the principal as their respec-
tive “bids”, and the agent who submits the highest effort
will win a prize, which can only be determined after the
contest (crowdsourcing campaign).

Each agent i is characterized by his type (e.g., abil-
ity or unit cost) vi which is private information, i.e., an
agent does not know any other agent’s type except for

3. Note that the term usage of “asymmetric” in [34] is slightly
different from this paper. In the “data acquisition” scenario of [34], the
term means that the client (crowdsourcer) does not know any user’s
type which is known to each user himself; whereas in the “distributed
computing” scenario of [34], the term means that the knowledge about
each user’s type is individually different. The latter usage is consistent
with the standard usage as in “asymmetric auctions” and also coincides
with our paper.
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Crowdsourcer

type: vi
belief about vi: Fi

effort (strategy): bi

Prize Tuple

Workers
type: vj

belief about vj: Fj
effort (strategy): bj

<Z1(b1),Z2(b2),...,Zn(bn)>

Fig. 2. The asymmetric all-pay contest model for heterogeneous crowd-
sourcing. Both the worker types and the beliefs about their respective
types are different (i.e., vi 6= vj , Fi 6= Fj ). Workers contribute their
efforts to the crowdsourcer directly (without an extra “bidding” process
to select who to contribute) in order to compete for a reward. The reward
is provisioned as a prize tuple, or sequence of reward functions, of which
the workers are pre-informed before the contest (the crowdsourcing
campaign). At the end of the contest, the worker, say i∗, who has
contributed the highest effort bi∗ , will be the only winner to receive a
reward Zi∗ (bi∗ ).

his own. Information is incomplete, i.e., while vi is private
information, each agent has some probabilistic knowledge
(belief) about other agents’ types. Specifically, it is common
knowledge (to both agents and the principal) that each vi
is independently drawn from a nonnegative support [v, v̄]
according to a probability distribution Fi(·). In our setting,
agents are heterogeneous, in the sense that not only their types
vi are different, but the beliefs about their respective types
are also different, i.e., Fi 6= Fj in general for all i 6= j.4

We assume that vi is continuous, Fi(·) is differentiable,
and its corresponding p.d.f. fi(·) is continuous and positive
over the open interval (v, v̄).

The principal is profit seeking, i.e., its objective is to
maximize its revenue subtracted by cost, where the revenue
is the total solicited agent effort and the cost is the prize
it needs to pay out as reward. To achieve this objective of
optimal mechanism design, we furnish the contest with a prize
tuple Z, which is an array of reward functions catering to ev-
ery potential winner, i.e., Z := 〈Z1(b1), Z2(b2), ..., Zn(bn)〉
where bi is agent i’s effort, Zi(·) is a function of bi and,
in general, Zi 6= Zj for all i 6= j. All the agents are
pre-informed of this prize tuple before the crowdsourcing
contest starts.5 Our model is depicted in Fig. 2.

A prize of face value Z is valued by an agent of type v
to be of real worth V (v, Z) where V (·, ·) is a value function.
For example, if V (v, Z) = vZ, then a prize Zi bears a value
of viZi to agent i, which captures the case that an agent
of higher type (e.g. ability) can exploit a reward to a better

4. In practice, belief Fi can be formed via social interactions [2]
or via publicized information (e.g., contribution performance) [20], as
mentioned in Section 1.

5. Agents can be informed, for example, via communication between
a cloud service that represents the principal, and software running on
each agent’s personal device (smartphone, PC, wearable widget, etc.).
The software can also calculate the strategy for the agent.

extent;6 if V (v, Z) = v, it means that the reward is fixed (and
normalized) and an agent values it at v, which is exactly the
case in classic auctions. Therefore, the value function V (·, ·)
can be treated as a generalization of classic auctions. We
assume that V (v, Z) is differentiable with respect to v.

Each agent needs to pay for his cost incurred from partic-
ipating, as per a payment function p(b, v). That is, an agent
i who submits effort bi has to pay a cost of p(bi, vi). For
example, if p(b, v) = b and V (v, Z) = v, we have a standard
all-pay auction; if p(b, v) = 0 and V (v, Z(b)) = v − b, we
have a standard first-price auction. Now, we can formulate
the expected utility of an agent i, as

ui := qiV (vi, Zi(bi))− p(bi, vi) (1)

where qi is the probability that agent i wins the contest.
In this paper, we introduce a new modelling variable

called the principal’s type, λ, in order to characterize different
crowdsourcers or the same crowdsourcer of changing types.
For example, if λ is the principal’s (marginal) valuation of
reward, then a prizeZ will be of value λZ to the principal; in
general, we use the value function V (·, ·) introduced above.
Therefore, we can formulate the utility of the principal, π,
as follows:

π := E
[ n∑
i=1

bi − V (λ, Zw(bw))
]

(2)

which is its expected profit as it is profit seeking. Here, w ∈
[1..n] is the winner’s index (which is a random variable),
and λ > 0 is common knowledge. Our objective is to design
a contest (auction) mechanism such that π is maximized.

For mathematical convenience, we make the following
assumptions on the payment function p(b, v). It is twice
continuously differentiable and p(0, v) = 0; p′b(b, v) > 0, i.e.,
the higher effort, the higher payment (cost); p′v(b, v) ≤ 0, i.e.,
the higher type (ability), the lower payment; p′′bb(b, v) > 0,
i.e., striving from higher effort levels is more costly than
from lower effort levels, or conversely, the marginal output
by adding more effort is decreasing; p′′′b2v(b, v) ≤ 0, i.e.,
lower types are more vulnerable to the effect of decreasing
marginal output.7

4 OPTIMAL MECHANISM DESIGN

We first analyze the asymmetric equilibrium strategy for
each agent (Section 4.1; Lemma 2), as a function of any given
(arbitrary) prize tuple, and then determine the optimal prize
tuple that induces the maximum profit for the principal
(Section 4.2; Theorem 1). Following that, Section 4.3 remarks
on three important properties including SA.

6. More concretely, imagine that the reward is a R&D fund or a
contract budget, an agent with better ability may be able to produce
more R&D outputs or make more profit from the same contract. For
another example, the reward may be money, vouchers, or coupons,
which can lead to different utilities when used by different agents. It
(V ) could also simply be the psychological value one perceives from
the reward (e.g., a trophy).

7. We follow the notation convention that, for a function g(x, y),
g′x := ∂g

∂x
, g′′xy := ∂2g

∂x∂y
, and g′′′

x2y
:= ∂3g

∂x2∂y
. As a technical pointer,

our assumptions on the function p(·, ·) are used later in the proof of
Theorem 1 and the proof of Proposition 1.
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4.1 Asymmetric equilibrium
As our model constitutes a Bayesian game setting, we need
the following solution concept which is an extension of
Nash equilibrium.

Definition 1 (Bayes-Nash equilibrium). A pure-strategy
Bayes-Nash equilibrium is a strategy profile b∗ := (b∗1, b

∗
2, ..., b

∗
n)

in which
ui(b

∗
i , b
∗
−i) ≥ ui(bi, b∗−i), ∀bi,∀i.

In words, each agent in a Bayes-Nash equilibrium plays a
strategy that maximizes his expected payoff given his belief
about other agents’ types and that other agents play their
respective equilibrium strategies.

Lemma 1 (Existence, uniqueness, monotonicity, and com-
mon support). Our asymmetric all-pay contest admits a unique
pure-strategy Bayes-Nash equilibrium. The (asymmetric) equilib-
rium strategies are strictly increasing in type, and share a common
support [0, b̄] where b̄ is unknown.

Proofs: Most of the proofs for this paper
are contained in the Appendix available in
the IEEE Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TMC.2015.2485978.

Notation convention: Henceforth, we will exclusively
deal with the equilibrium state. Hence for brevity, we
slightly deviate from the general notational convention by
dropping the superscript ∗ from equilibrium variables. For
example, we write bi instead of b∗i and vi(·) instead of v∗i (·).

Lemma 1 tells that an agent’s equilibrium strategy bi is
a strictly monotone (increasing) function of vi, which we
denote by βi(·), i.e., bi = βi(vi). Hence, its inverse function
exists and is also increasing, which we denote by vi(·) :=
β−1
i (·). Thus, noticing that bj = βj(vj), we have

Pr(bi > bj) = Pr(β−1
j (bi) > vj) = Fj(vj(bi)).

Furthermore, because of the strict monotonicity and the
type continuity, event bi = bj is of zero probability and
tie-breaking is trivial. So, agent i’s winning probability
qi =

∏
j 6=i Pr(bi > bj), and thus (1) is rewritten as

ui = V (vi, Zi(bi))
∏
j 6=i

Fj(vj(bi))− p(bi, vi). (3)

Lemma 2. Given a prize function Zi(bi), agent i’s equilibrium
strategy bi(vi) is determined by

V (vi, Zi(bi))
∏
j 6=i

Fj(vj(bi))− p(bi, vi) =∫ vi

v
[V ′vi(ṽi, Zi(bi))

∏
j 6=i

Fj(vj(bi))− p′vi(bi, ṽi)] dṽi. (4)

No further reduction can be made to (4) because the
derivatives in the above integrand denote partial deriva-
tives.

Remark: Asymmetric auctions, regardless of winner-
pay or all-pay, do not have closed-form expressions for
equilibrium strategies in general (an approximate solution
to first-price auctions can be found in [25]). However, even
without the closed form of equilibrium strategies, we are
able to solve for the optimal prize tuple using Lemma 2, as
shown next.

4.2 Optimal prize tuple
Solving for the optimal prize tuple Z requires the value
function V (·) to be specified, for which we consider a gen-
eral form of V (v, Z) = h(v)Z where h(·) satisfies h(0) = 0
and h′(v) > 0. This form further generalizes the form
V = vZ which, as mentioned in Section 3, is already a
generalization of the standard all-pay auctions.

Corollary 1. If the value function takes the form V (v, Z) =
h(v)Z , agent i’s equilibrium strategy bi(vi) is determined by

Zi(bi)
∏
j 6=i

Fj(vj(bi))− p̂(bi, vi) = −
∫ vi

v
p̂′vi(bi, ṽi) dṽi. (5)

where
p̂(b, v) :=

p(b, v)

h(v)
.

Corollary 1 follows from Lemma 2. Now we state our
main result.

Theorem 1. The optimal prize tuple that maximizes the
crowdsourcing profit (or principal’s utility) is given by Z =
〈Z1(b1), Z2(b2), ..., Zn(bn)〉 in which

Zi(bi) =
p̂(bi, vi(bi))−

∫ bi
0 p̂′vi(b̃i, vi(b̃i)) dvi(b̃i)∏

j 6=i Fj(vj(bi))
, (6)

i = 1, 2, ..., n,

where vi(bi) is the inverse function of bi(vi) which is the corre-
sponding equilibrium effort, determined by

p̂′bi(bi, vi) =
1

h(λ)
+ p̂′′bi,vi(bi, vi)

1− Fi
fi

. (7)

The resultant maximum crowdsourcing profit is given by

π =
∑
i

∫ v̄

v

[
bi(vi)− h(λ)p̂(bi, vi)

+ h(λ)p̂′vi(bi, vi)
1− Fi
fi

]
dFi. (8)

Theorem 1 specifies our mechanism which we refer to
as OPT in the sequel. Note that our mechanism is not spec-
ified by a (procedure-oriented) algorithm like algorithmic
mechanism design works [6], [9], [33] but falls under the
classic economic mechanism design genre, as mentioned in
Section 2.3.

4.3 Properties: SA, IR, IC
Based on the analytical results above, this section examines
three important properties pertaining to OPT.

4.3.1 Strategy Autonomy (SA)
This is the most salient property of OPT, particularly in
the presence of asymmetry. None of the prior work on
asymmetric mechanisms possesses this property and it has
practical significance.

Definition 2 (Strategy Autonomy). A mechanism is strategy-
autonomous if, given the asymmetric common prior (i.e., the
different beliefs Fi(·)|ni=1 about the n agents) under incomplete
information, the mechanism induces an equilibrium in which each
agent adopts an strategy independent of his knowledge (beliefs)
about other agents, i.e., bi(vi|{Fj |nj=1}) = bi(vi|Fi),∀i.
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Essentially, SA says that an asymmetric mechanism (auc-
tion or contest) admits a symmetric equilibrium.

Corollary 2. OPT satisfies strategy autonomy.

Proof. Immediately follows from Theorem 1, where the equi-
librium strategy bi (7) is independent of any j 6= i.

SA is rather counter-intuitive, and somewhat surprising.
This is because in a game theoretical setting, a rational
agent will reason about how other agents would act so
as to react on it (as a best-response), which naturally de-
pends on his belief about other (heterogeneous) agents.
Indeed, Lemma 2 does show that the equilibrium strategy
bi depends on Fj |j 6=i. In fact, prior work on asymmetric
auctions, regardless of winner-pay or all-pay, with complete
or incomplete information, all exclusively admit asymmetric
equilibria or even no equilibria; see, e.g., [22], [24], [25] and a
comprehensive survey [40]. So the puzzling question is: why
do agents behave autonomously in the OPT mechanism?

The fundamental reason is that the asymmetric belief
about agent types is endogenized by the optimal prize tuple
(6) where each prize Zi(bi) contains the winning probabil-
ity
∏
j 6=i Fj(vj(bi)) which absorbs all the heterogeneity or

asymmetry. In a sense, each agent’s concern about other
agents is now taken care of by the principal who stipulates
the prizes.

Not just theoretically interesting, SA also has three im-
portant practical implications:
• Reduces mechanism complexity and energy consumption:

SA remarkably reduces the computational complexity and
storage requirement, from O(n) to O(1), for each agent.
The O(n) can be understood from (4) where each agent’s
strategy involves n − 1 beliefs about other j 6= i, as is
also the case in, e.g., [25], [28], [32]. Such considerable
reduction of computational and storage requirements will
lead to lower energy consumption as well. Thus in practice,
as agent strategies would typically be computed by software
residing on each agent’s mobile device (e.g., smartphone,
smart watch), this merit is an important enabler for those
miniature devices to support heterogeneous crowdsourcing
applications.
• Increases crowdsourcing revenue: SA overcomes an effort

reservation effect that exists in standard (fixed-prize) asym-
metric auctions [41]: when the prize is fixed, any agent only
needs to beat the other agents by an infinitesimal winning
margin; therefore, by illustrating with a two-agent scenario,
if the stronger agent believes that the other agent is statisti-
cally weaker, he has the incentive to reserve effort in order
to reduce his winning margin since a larger margin does
not make the winner better off at all. This effect outweighs
the strategy adjustment of the weaker agent and results in
a reduced total revenue compared to symmetric auctions
[41], as will also be demonstrated in Section 5. However,
SA insulates agents from such negative mutual influence,
allowing an agent to not be concerned with minimizing
winning margin but to focus on exerting more effort toward
the “self-adjusting” reward. This is supposed to be beneficial
to revenue, and will be verified in Section 5.
• Enhances system scalability: The prevailing law of dimin-

ishing marginal returns (DMR) governs many phenomena
in (network) economics. It states that, as new employees

(or more generally, resources) are being added, the marginal
product of an additional employee will at some point be less
than that of the previous employee [42]. Mathematically,
DMR corresponds to concave nonlinear growth of revenue
when resources are being added linearly. However, this
submodularity-resembling law of DMR is neutralized by SA
and we will see in Section 5 that the principal’s profit grows
linearly as the number of agents increases. This conveys
a dramatic enhancement to system scalability, and will be
demonstrated later too.

4.3.2 Individual Rationality (IR)
Definition 3 (Individual Rationality). A mechanism is individ-
ually rational if any participating agent will expect a surplus no
lower than not participating. That is, in equilibrium, the expected
utility ui(bi, b−i) ≥ ui(0, b−i) for all i.

Proposition 1. OPT satisfies individual rationality. Further-
more, an agent i reaps strictly positive utility if bi > 0.

4.3.3 Incentive Compatibility (IC)
A mechanism is incentive-compatible or strategy-proof if
each agent’s dominant strategy is to reveal his true type
(in an equivalent direct-revelation mechanism). In our all-pay
contest mechanism, prize allocation is based on each agent’s
observable actual effort which is a function of his (true)
type and cannot be lied about. Therefore, IC is inherently
satisfied.

5 PERFORMANCE EVALUATION

To derive a quantitative and intuitive understanding of the
analytical results, we evaluate the performance of OPT in
comparison to other six mechanisms in this section.

We consider three scenarios. In the first scenario, there
are two agents of types v1, v2 ∈ [0, 1] independently drawn
from F1(v) = v (uniform distribution) and F2(v) = v+1

2 ,
respectively. Hence, f2(v) = 1

2δ(v) + 1
2 where δ(·) is the

Dirac delta function.8 In other words, agent 2 is equally
probable to be of type zero or of a type uniformly drawn
from (0,1]. Therefore, agent 1 is statistically stronger than
agent 2. The value function is V (v, Z) = vZ and the
payment function is p(b, v) = b2. Hence, h(v) = v and
p̂(b, v) = b2/v.

In this first scenario, we compare OPT with the follow-
ing three canonical all-pay auctions:
• FIX: Fixed-prize asymmetric all-pay auctions.
• SYM: Fixed-prize symmetric all-pay auctions, particu-

larly,
– SYM-1: both types follow F1(v);
– SYM-2: both types follow F2(v).

In the second scenario, there are n agents which allows
us to investigate system scalability, namely whether and
how SA neutralizes the law of DMR. We compare OPT-n

8. Neither our model nor analysis assumes continuity of the p.d.f.
at the boundary of the support. Also, our analysis can apply to
other differentiable c.d.f.’s as well. For example, using the power-law
distribution F2(v) = vα, α > 0 will obtain similar results, but the
expressions are lengthy (due to the inverse effort function v2(b2)) and
hence not reported. The function choice in this section allows for a
neater presentation.



1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2015.2485978, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, 2016. DOI: 10.1109/TMC.2015.2485978 7

to FIX-n, which are OPT and FIX each with n symmetric
agents (choosing agent 1 for illustration), respectively.

In the third and last scenario, we consider a realistic envi-
ronmental sensing application and another incentive mech-
anism, both introduced by [7]. We evaluate the performance
of that mechanism (which we refer to as INFOCOM13) in
parallel with OPT.

In summary, this section evaluates the following seven
mechanisms: OPT, FIX, SYM-1, SYM-2, OPT-n, FIX-n, and
INFOCOM13.

5.1 Theoretical underpinnings
With the introduction of FIX and SYM (SYM-1 and SYM-
2), we first need to characterize their respective bidding
strategies.

Proposition 2 (Equilibrium strategy in FIX). In an asymmet-
ric all-pay contest with incomplete information, two agents, and
a fixed prize Z, if the common prior is F1(v), F2(v), v ∈ [v, v̄],
the value function V (v, Z) = vZ, and the payment function
p(b) satisfies p(0) = 0 and p′(b) > 0, then there exists a unique
Bayes-Nash equilibrium b = (b1, b2) given by

b1(v1) = p−1
(
Z

∫ v1

k−1(v)
k(v)F ′1(v) dv

)
, (9)

b2(v2) = b1(k−1(v2)), (10)

where b1(v) = 0 iff v1 = k−1(v), and k(v) is determined by

k′(v) =
k(v)F ′1(v)

vF ′2(k(v))

with boundary condition k(v̄) = v̄.

Proposition 3 (Equilibrium strategy in SYM). In a symmetric
all-pay contest with incomplete information, n agents, and a fixed
prize Z , if the common prior is F (v), v ∈ [v, v̄], the value
function is V (v, Z) = vZ, and the payment function p(b)
satisfies p(0) = 0 and p′(b) > 0, then there exists a unique
Bayesian Nash (symmetric) equilibrium given by

b(v) = p−1
(
vZFn−1(v)− Z

∫ v

v
Fn−1(t) dt

)
. (11)

5.2 Computing strategy, prize, and profit
5.2.1 Bidding strategy (Agent effort b)
OPT: Using Theorem 1, we apply (7) with p̂(bi, vi) = b2i /vi
and F1 = v1 to obtain

2b1
v1

=
1

λ
− 2b1

v2
1

(1− v1),

which gives the optimal equilibrium strategy for agent 1:

b1(v1) =
v2

1

2λ
, v1(b1) =

√
2λb1. (12)

Similarly, applying (7) with F2 = v2+1
2 yields for agent

2:

b2(v2) =
v2

2

2λ
, v2(b2) =

√
2λb2 (13)

which is the same (i.e., symmetric) as agent 1. This is because
the two type distributions happen to have identical hazard
rate [43], f(v)

1−F (v) , which is used (inversely) in (7). Of course,

this should not be generalized to all distributions; indeed,
we shall see later that the optimal prizes for the two agents
(18)(19) as well as their individual contributions to the
principal’s profit (20)(21) are different.

FIX: Instantiating Proposition 2 with F1(v) = v and
F2(v) = v+1

2 yields

k′(v) =
2k(v)

v
⇒ k(v) = v2, k−1(v) =

√
v.

Therefore bfix1 (v1) =
(
Z

∫ v1

0
v2 dv

) 1
2

=
v

3/2
1√

3

√
Z, (14)

bfix2 (v2) =
v

3/4
2√

3

√
Z. (15)

SYM: For SYM-1, applying Proposition 3 with F (v) = v
gives

bsym1 (v) =
v√
2

√
Z. (16)

For SYM-2, applying Proposition 3 with F (v) = v+1
2 gives

bsym2 (v) =
v

2

√
Z. (17)

5.2.2 Prize

The optimal prize tuple in OPT can be computed using
Theorem 1, particularly (6). The prize for agent 1 is

Z1(b1) =
v31
4λ2 +

∫ v1
0

ṽ21
4λ2 dṽ1

v1+1
2

∣∣∣
v1=
√

2λb1
=

2(
√

2λb1)3

3λ2(
√

2λb1 + 1)
,

(18)

and similarly for agent 2 is

Z2(b2) =
2

3λ
b2. (19)

The prizes in FIX and SYM are normalized as 1 as used
by all the standard auctions. However, in Section 5.4, we go
one step further by optimizing them and then comparing
with OPT again.

5.2.3 Principal’s profit

OPT: Using Theorem 1, particularly (8), we calculate each
agent’s individual contribution π1 and π2:

π1 =

∫ 1

0

[ v2

2λ
− v3

4λ
− v2

4λ
(1− v)

]
dv =

1

12λ
, (20)

π2 =

∫ 1

0+

[ v2

2λ
− v3

4λ
− v2

4λ
(1− v)

]dv
2

=
1

24λ
, (21)

∴ π = π1 + π2 =
1

8λ
. (22)

When calculating π2, we can integrate from 0+ onward
because, although there is a probability atom of 0.5 at v2 = 0,
the corresponding effort and payment are both zero, and
hence it does not contribute to the profit.
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Fig. 3. Profit comparison of four mechanisms.

FIX: The profit in this case is πfix = rfix1 + rfix2 − λZ
where rfix1 and rfix2 are the revenue contributed by agent 1
and 2, respectively, and

rfix1 =

∫ 1

0
bfix1 (v1) dF1(v1) =

2
√
Z

5
√

3
,

rfix2 =

∫ 1

0+

bfix2 (v2) dF2(v2) =
2
√
Z

7
√

3
.

∴ πfix =
24
√
Z

35
√

3
− λZ. (23)

Similar to OPT above, the probability atom at v2 = 0 is
nullified by bfix2 (0) = 0.

SYM: The profits of SYM-1 and SYM-2 are, respectively,

πsym1 = 2

∫ 1

0
bsym1 (v1) dF1(v1)− λZ =

√
Z√
2
− λZ, (24)

πsym2 = 2

∫ 1

0
bsym2 (v2) dF2(v2)− λZ =

√
Z

4
− λZ. (25)

5.3 Result Set 1-A: Profit ranking
In view of the ultimate objective of a principal, we first
compare the profit of the above four mechanisms in Fig. 3,
based on formulae (22)–(25), where the prize Z in standard
auctions is normalized. The plot clearly shows the profit
ranking as SYM-2≺ FIX≺ SYM-1≺OPT, where≺ denotes
“is inferior to”. In particular, OPT garners the highest profit
compared to all the other mechanisms over all possible λ:
from eight specific profit values marked in Fig. 3 at λ = 0.1
and 0.3, we see that OPT significantly outperforms the
other three mechanisms by about 105%, 315% and 730%,
respectively (at λ = 0.1). Furthermore, if λ is sufficiently
high, FIX, SYM-1, and SYM-2 even run into deficit (negative
profit), at λ > 0.396, λ > 0.707, and λ > 0.25, respectively.
Reversely, as λ becomes smaller (i.e., the principal values the

prize less), OPT reaps exponential profit growth whereas the
other mechanisms only have linear profit increase.

5.3.1 Rationale behind SYM-2 ≺ FIX ≺ SYM-1

The ranking of these three mechanisms is fairly intuitive
if we notice their population compositions: SYM-1 and
SYM-2 are composed of two strong and two weak agents,
respectively, and FIX is a mixture. However, taking a closer
look at Fig. 3, one would notice that FIX is even lower
than half of SYM-1, which is not intuitive and there is no
straightforward answer.

This is explained by the effort reservation effect in asym-
metric auctions, where a stronger agent shades his bid when
facing a weaker agent, as described earlier in Section 4.3.
To verify this, we plot formulae (12)–(17) in Fig. 4, where
we indeed see that agent 1 in FIX bids significantly lower
than in SYM-1. Although agent 2, on the other hand, exerts
higher effort than in SYM-2,9 such small effort increase is
outweighed by the effort reduction of agent 1. This is be-
cause, mathematically, the p.d.f. of the stronger type (agent
1) concentrates on the higher region of the common support
[v, v̄] and thus has a larger impact on the revenue (as a result
of integration). Intuitively, this tells that “stronger agents
matter more”, and allows us to draw the insight that, when
designing an incentive mechanism, it is more productive to
focus on incentivizing stronger agents as they will constitute
the main contributors to the revenue. This rule of thumb is
also concurred by discriminatory auction design [44].

5.3.2 Rationale behind SYM-1 ≺ OPT

Unlike the other three mechanisms, the ranking of SYM-1
≺ OPT is rather perplexing, because SYM-1 is composed
of two strong agents while OPT contains a weak agent. To
understand why, first we examine agent strategies by look
at Fig. 4. It shows that agents in OPT exert significantly
higher effort than SYM-1 (and other mechanisms as well)
especially at higher types (recall that stronger agents matter
more), which seems to explain the ranking. But, how is this
achieved? To find the answer, we plot formulae (18)(19) in
Fig. 5 to examine the optimal prize tuple of OPT. We see that
OPT gives slightly higher reward to agent 2 if he exerts the
same amount of effort as agent 1. This motivates the weaker
agent to strive harder insofar as he becomes a competitive
rival to the stronger agent, which in turn “threatens” the
stronger agent not to reserve effort. Essentially, the asym-
metric contest recuperates from the fierceness of competi-
tion level of symmetric contests by virtue of the prize tuple
which endogenizes the agent asymmetry. Moreover, Fig. 5
also shows that the prize for any agent is increasing with
respect to effort, which also motivates agents to exert higher
effort. Consequently, SYM-1 ≺ OPT.

As a side note, Fig. 4 also indicates that agent strategies
in all the mechanisms are monotone increasing, which con-
forms to Lemma 1.

9. The reason why agent 2 works harder in FIX than in SYM-2 is
because he can deduce that the stronger agent will reserve effort and
hence he (agent 2) sees a better chance to win by striving above his
(usual) effort level as in the symmetric case (SYM-2).
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Fig. 4. Equilibrium strategy (agent effort). For OPT, the same line-spec is used for both agents as they adopt the same strategy.
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Fig. 5. Optimal prize tuple of OPT, as functions of winner efforts. The range of X axis is determined by the maximum effort. Also
note that the ranges of Y axes in the three plots are considerably different.

5.4 Result Set 1-B: Profit ranking with optimized stan-
dard auctions
In Section 5.3, the prize Z is normalized as per standard
auctions. In this section, we go one step further by optimiz-
ing the prizes in standard auctions, and then compare their
profits with our mechanism OPT.

FIX: To solve maxZ π
fix, we apply the first order condi-

tion (FOC) to (23) to obtain
√
Z∗ =

12

35
√

3λ
and πfix

∗
= (

24

35
√

3
)2
/

(4λ) =
48

1225λ
.

SYM: The profit is maximized again by using FOC:√
Z∗1 =

1

2
√

2λ
and πsym

∗

1 =
1

8λ
,√

Z∗2 =
1

8λ
and πsym

∗

2 =
1

64λ
.

Now, we plot the above optimized profits,
πfix

∗
, πsym

∗

1 , πsym
∗

2 , against π of OPT (22) in Fig. 7.
First, we observe that OPT is still a clear winner over FIX
and SYM-2 after optimization. Second, the optimized SYM-
1 parallels OPT, but note that this is still a remarkable result
because SYM-1 has the strongest population composition
(two strong agents) while OPT has a weak agent. Finally,
all the mechanisms (especially FIX, SYM-1 and SYM-2) are
now deficit free over the entire range of λ, thanks to the
prize optimization.
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Fig. 7. Profit comparison with optimized canonical auctions.

5.5 Result Set 2-A: SA neutralizing DMR

In the second scenario, we investigate how SA neutralizes
the law of DMR, by comparing OPT-n and FIX-n. In OPT-
n, since the n agents are homogeneous, the prize tuple
collapses into a single prize function, which can be derived
still from Theorem 1 as

Zopt-n(b) =
(2λb)2−n

2

3λ2
.
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Fig. 6. Strategy autonomy (SA) enhances scalability by neutralizing the law of diminishing marginal returns (DMR).

Accordingly, the equilibrium agent strategy changes to

b =
v2

2λ
, (26)

and the resultant profit becomes

πopt-n =
n

12λ
. (27)

In FIX-n, the equilibrium agent strategy is calculated
using Proposition 3, as

bfix-n(v) =

√
n− 1

n
v

n
2

√
Z, (28)

and the resultant profit is

πfix-n = n

∫ 1

0
bfix-n(v) dF1 − λZ =

2
√
n(n− 1)Z

n+ 2
− λZ

(29)

We plot πopt-n and πfix-n in Fig. 6 with respect to n
for different λ values, where FIX-n adopts a normalized
prize. As we can see, FIX-n as a standard auction is indeed
governed by the law of DMR, exhibiting concave profit
growth as n increases. Moreover, it saturates at the upper
bound limn→∞ πfix-n = 2 − λ, which is depicted in Fig. 6
as well.

In contrast, OPT-n is not confined by the DMR law
and its profit grows linearly as n increases. It even exceeds
the upper bound of FIX-n, when n is not too small as is
common in reality, and continuously generates constantly
larger profit as n increases. This manifests a very healthy
scalability of OPT-based crowdsourcing systems.

To understand why, note that SA in symmetric cases
(as of OPT-n and FIX-n) translates to the property that
agent strategy in equilibrium is independent of the number
of agents. This is evidenced by (26) where b does not
depend on n, whereas the equilibrium strategy in FIX-n
(28) does. Therefore the revenue—the sum of all the bids—
of OPT-n is a linear function of n; specifically, revenue
r = n

∫ 1
0
v2

2λ dF (v) = n
6λ . The cost (prize) of OPT-n is also

linear: λE[Z] = λ
∫ 1
0
v4−n

3λ2 dvn = n
12λ . As a result, the profit

is a linear function of n, as n
6λ −

n
12λ = n

12λ which coincides
with (27).

5.6 Result Set 2-B: SA neutralizing DMR with optimized
FIX-n

Applying FOC to (29) yields the optimized prize and profit
for FIX-n:√

Z∗n =

√
n(n− 1)

(n+ 2)λ
and πfix-n∗

=
n(n− 1)

(n+ 2)2λ
.

The results are plotted in Fig. 8, with a larger range of
n up to 30 in order to match with the new upper bound of
FIX-n. We see that FIX-n can now approach a higher upper
bound as compared to Fig. 6, as a result of optimization.
Specifically, limn→∞ πfix-n∗

= 1/λ, which values to 10, 3.3
and 2 for different λ. Also by comparing to Fig. 6, we see
that FIX-n and OPT-n generate profits much closer to each
other when n is small. However, the prominent observation
is that OPT-n still outperforms FIX-n (as long as n is not too
small) even though it is optimized, and in contrast to FIX-n,
is not restricted by DMR when it scales up.

5.7 Result Set 3: Environmental sensing

An environmental sensing application outlined in [7] (Sec.
IV) exploits smartphone microphone sensors or wear-
able/handheld sensors from the crowd to monitor air pol-
lution or EMF radiation in a certain area. There are n agents
whose unit costs (types) ci follow heterogeneous belief F infi

(F infi 6= F infj if i 6= j).10 Let δi(ci) = ci +
F inf

i (ci)

finf
i (ci)

, the
optimal participation level (sampling rate) x∗ according to
[7] is the solution to

arg min
x

∑
i

xiδi(ci) subject to
∑
i

xi/σ
2
i = 1/ε, (30)

where σ2
i is the variance of user i’s measurements and

indicates his data quality, ε is the mean square error (MSE)
and is the system-targeted QoS. When δi(ci) is linear in
ci, the problem (30) is a linear programming one and the
solution can be obtained as xi∗ = σ2

i /ε and xj = 0 for all
j 6= i∗, where i∗ = arg mini δiσ

2
i .

Consider two agents with their unit costs ci drawn from
[0, 1] as per F inf1 (c1) = c1 and F inf2 (c2) = c22, respectively.

10. We retain the same notation in [7] so that readers can do easy
cross-reference; whenever there is a notation clash, e.g. F (), we add a
superscript ‘inf’ for differentiation.
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Fig. 8. SA neutralizes DMR: OPT-n versus optimized FIX-n. Note that both the upper bounds and the Y-axes are rather different from Fig. 6.

Hence we have δ1 = 2c1 and δ2 = 3c2/2 which are linear.
Suppose σ2

1 = σ2
2 = 2.5, c1 = 0.5 and c2 = 0.75 (the

costs will be truthfully reported because the mechanism is
incentive-compatible). Then we have i∗ = arg mini δiσ

2
i =

1, x1 = σ2
1/ε and x2 = 0. User 1 will receive remuneration

of, according to [7], pinf1 =
σ2
1

ε
σ2
2c2
σ2
1

= σ2
2c2/ε = 1.875/ε.

The objective of [7] is to minimize total remuneration
subject to a QoS constraint

∑
i xi/σ

2
i = 1/ε. Since xi denotes

participation level and 1/σ2
i denotes data quality, xi/σ2

i can
be treated as user contribution (bid) and

∑
i xi/σ

2
i as system

revenue. Hence the profit is

πinf =
∑
i

xi/σ
2
i − λ

∑
i

pinfi = (1− 1.875λ)/ε.

In our case, the type vi represents user ability which
relates to unit cost ci in an opposite way. Suppose vi = 1−ci.
It can thus be derived that F1(v1) = v1 and F2(v2) = 1−(1−
v2)2 (and f2(v2) = 2(1− v2)). Therefore, 1−F1(v1)

f1(v1) = 1− v1

and 1−F2(v2)
f2(v2) = (1 − v2)/2. Using Theorem 1, we first

calculate agent bidding strategy to be b1 = v2
1/λ and

b2 = v2
2/[λ(1 + v2)], and then the profit from each agent

to be π1 = 1/(12λ) and π2 = 2
λ

∫ 1
0
v2(1−v)

1+v − v3(1−v)
(1+v)2 −

v2(1−v)2

2(1+v)2 dv = 1
λ

∫ 1
0
v2(1−v)

1+v dv = ln 4
λ −

4
3λ . Therefore, the

total profit π = π1 + π2 = (ln 4− 5
4 )/λ.

We plot the profits from the above two mechanisms
in Fig. 9. The horizonal line of π = 0 clearly indicates
that the profit obtained in [7] can be negative, when the
crowdsourcer values his payout too high, i.e., λ exceeds
some threshold (in this case 0.53). On the other hand, profit
of OPT is always positive.

Note that the above evaluation which pertains to a
particular scenario should not be overgeneralized. Due to
the difference between the model of [7] and that of this
study, there is no precise one-to-one mapping between the
parameters or functions used in these two studies. However,
as mentioned in Section 2.2, [7] appears to be the closest
to our work and hence is chosen here for evaluation as a
possible numerical illustration.

6 CONCLUSION

This paper addresses the problem of incentive mecha-
nism design for heterogeneous crowdsourcing, by casting
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Fig. 9. Profit results in an environmental sensing application setting [7]
(INFOCOM13).

it as an asymmetric all-pay contest. For the first time, this
model accommodates an arbitrary number of heterogeneous
workers with incomplete information, and is instrumented
with a prize tuple for the objective of maximizing the
crowdsourcer’s utility. We solve for this model and demon-
strate that the resultant mechanism induces maximal effort
from self-interested agents while minimizing the cost to
the crowdsourcer, and significantly outperforms traditional
mechanisms that employ a single, fixed prize in both sym-
metric and asymmetric cases.

Our asymmetric auction based mechanism also yields a
counter-intuitive property called strategy autonomy (SA). It
captures an equilibrium behavior that agents with hetero-
geneous knowledge behave independently of each other as
if they were in a homogeneous setting, or in other words,
an asymmetric auction admits a symmetric equilibrium. SA
could be an interesting enrichment to the mechanism design
theory, and also has several desirable practical implications.

One possible future direction is to explore an incentive
mechanism with multiple winners.
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APPENDIX

Available online at the IEEE Computer Society Digital Li-
brary (http://www.computer.org/csdl).
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