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Abstract—Wireless sensor networks (WSNs) consist of au-
tonomous and resource-limited devices. The devices cooperate to
monitor one or more physical phenomena within an area of inter-
est. WSNs operate as stochastic systems because of randomness
in the monitored environments. For long service time and low
maintenance cost, WSNs require adaptive and robust methods
to address data exchange, topology formulation, resource and
power optimization, sensing coverage and object detection, and
security challenges. In these problems, sensor nodes are used to
make optimized decisions from a set of accessible strategies to
achieve design goals. This survey reviews numerous applications
of the Markov decision process (MDP) framework, a powerful
decision-making tool to develop adaptive algorithms and protocols
for WSNs. Furthermore, various solution methods are discussed
and compared to serve as a guide for using MDPs in WSNs.

Index Terms—Wireless sensor networks, Markov decision pro-
cesses (MDPs), stochastic control, optimization methods, decision-
making tools, multi-agent systems.

I. INTRODUCTION

ECENT demand for wireless sensor networks (WSNs),

e.g., in smart cities, introduces the need for sensing
systems that can interact with the surrounding environment’s
dynamics and objects. However, this interaction is constrained
by the limited resources of battery-powered sensor nodes. In
many applications, sensor nodes are designed to operate for
several months or a few years without battery maintenance [1].
The emerging applications of WSNs introduce more resource
intensive operations with low maintenance cost requirements.
Therefore, adaptive and energy efficient algorithms are becom-
ing more highly valued than ever.

WSNs operate in stochastic (random) environments under
uncertainty. In particular, a sensor node, as a decision maker
or agent, applies an action to its environment, and then transits
from a state to another. The environment can encompass the
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node’s own properties, e.g., location coordinate and available
energy in the battery, as well as many of the surrounding
objects, e.g., other nodes in the network or a moving target.
Thus, the actions can be simple tasks, e.g., switching the radio
transceiver into sleep mode to conserve energy, or complex
commands, e.g., the moving strategies of a mobile node to
achieve area coverage. In such an uncertain environment, the
system dynamics can be modeled using a mathematical frame-
work called Markov decision processes (MDPs) to optimize
the network’s desired objectives. MDPs entail that the system
possesses a Markov property. In particular, the future system
state is dependent only on the current state but not the past
states. Recent developments in MDP solvers have enabled the
solution for large scale systems, and have introduced new
research potentials in WSNs.

MDP modeling provides the following general benefits to
WSNs’ operations:

1) WSNs consist of resource-limited devices. Static decision
commands may lead to inefficient energy usage. For
example, a node sending data at fixed transmit power
without considering the channel conditions will drain
its energy faster than the one that adaptively manages
its transmit power [2], [3]. Therefore, using MDPs for
dynamically optimizing the network operations to fit
the physical conditions results in significantly improved
resource utilization.

2) The MDP model allows a balanced design of different
objectives, for example, minimizing energy consumption
and maximizing sensing coverage. A few works, e.g.,
[4]-[6], discuss the approaches of using MDPs in opti-
mization problems with multiple objectives.

3) New applications of WSNs interact with mobile enti-
ties that significantly increase the system dynamics. For
example, using a mobile gateway for data collection
introduces many design challenges [7]. Here, the MDP
method can explore the temporal correlation of moving
objects and predicting their future locations, e.g., [8], [9].

4) The solution of an MDP model, referred to as a policy,
can be implemented based on a look-up table. This table
can be stored in sensor node’s memory for online op-
erations with minimal complexity. Therefore, the MDP
model can be applied even for tiny and resource-limited
nodes without any high computation requirements. More-
over, near-optimal solutions can be derived to approxi-
mate optimal decision policies which enables the design
of WSN algorithms with less computation burdens.
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Fig. 1. Taxonomy of the applications of MDPs in WSNs.

5) MDPs are flexible with many variants that can fit the
distinct conditions in WSN applications. For example,
sensor nodes generally produce noisy readings, therefore
hampering the decision making process. With such im-
precise observations, one of the MDP’s variants, i.e., par-
tially observable Markov decision process (POMDP), can
be applied to reach the best operational policy. Another
example of the MDP’s flexibility is the use of hierarchi-
cal Markov decision process (HMDP) for a hierarchical
topology of nodes, cluster heads, and gateways found in
WSNs, e.g., [10].

In this paper, we survey the MDP models proposed for
solving various design and resource management issues in
WSNs. In particular, we classify the related work based on
the WSN’s issues as shown in Fig. 1. The issues include data
exchange and topology formation methods, resource and power
optimization perspectives, sensing coverage and event tracking
solutions, and security and intrusion detection methods. We
also review efficient algorithms, which consider the tradeoff
between energy consumption and solution optimality in WSNs.
Throughout the paper, we highlight the advantages and disad-
vantages of the solution methods. Note that although this survey
focuses on the applications of MDPs in WSNss, the techniques
and system models of the MDP reviewed in this survey can
be applied to other systems, e.g., green communications to
optimize energy efficiency.

Although there are many applications of Markov chains in
WSNs, such as data aggregation and routing [11], [12], duty
cycle [13], sensing coverage [14], target tracking [15]-[17],
MAC backoff operation [18], [19], and security [20]-[22], this
paper focuses only on the applications of MDPs in WSNs.
The main difference between an MDP and a Markov chain is
that the Markov chain does not consider actions and rewards.
Therefore, it is used only for performance analysis. By contrast,
the MDP is used for stochastic optimization, i.e., to obtain

the best actions to be taken given particular objectives and
possibly a set of constraints. The survey on the applications of
the Markov chain with WSNss is beyond the scope of this paper.

The rest of this paper is organized as follows. In Section II,
a comprehensive discussion of the MDP framework and its
solution methods is presented. Then, Sections III-VII discuss
the applications of MDPs in WSNs. In each section, a problem
is first presented and motivated. Then notable studies from the
literature are reviewed. Future directions and open research
problems are presented in Section VIII. Finally, the paper is
concluded and summarized in Section IX.

II. MARKOV DECISION PROCESSES

A Markov decision process (MDP) is an optimization model
for decision making under uncertainty [23], [24]. The MDP
describes a stochastic decision process of an agent interacting
with an environment or system. At each decision time, the
system stays in a certain state s and the agent chooses an action
a that is available at this state. After the action is performed, the
agent receives an immediate reward R and the system transits
to a new state s’ according to the transition probability Py
For WSNs, the MDP is used to model the interaction between
a wireless sensor node (i.e., an agent) and their surrounding
environment (i.e., a system) to achieve some objectives. For
example, the MDP can optimize an energy control or a routing
decision in WSNs.

A. The Markov Decision Process Framework

The MDP is defined by a tuple (S, A, P, R, T) where,

e S is afinite set of states,

» A is a finite set of actions,

» P is a transition probability function from state s to state
s after action a is taken,
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¢ R is the immediate reward obtained after action a is
made, and

e T is the set of decision epoch, which can be finite or
infinite.

7 denotes a “policy” which is a mapping from a state to an
action. The goal of an MDP is to find an optimal policy to
maximize or minimize a certain objective function. An MDP
can be finite or infinite time horizon. For the finite time horizon
MDP, an optimal policy 7* to maximize the expected total
reward is defined as follows:

T
max Vs (s) = Ex,s [stust,w(at»] (M
t=1

where s; and a; are the state and action at time ¢, respectively.

For the infinite time horizon MDP, the objective can be to
maximize the expected discounted total reward or to maximize
the average reward. The former is defined as follows:

max Vy(s) =E,

ZVtR(SHStﬂT(at))] N )

t=1

while the latter is expressed as follows:

L. 1
max V,(s) = hmTlggo TEW’S

T
ZR(sélst,ﬂat))] )
t=1

Here, ~y is the discounting factor and E[-] is the expectation
function.

B. Solutions of MDPs

Here we introduce solution methods for MDPs with dis-
counted total reward. The algorithms for MDPs with average
reward can be found in [24].

1) Solutions for Finite Time Horizon Markov Decision Pro-
cesses: In a finite time horizon MDP, the system operation takes
place in a known period of time. In particular, the system starts
at state sy and continues to operate in the next 7" periods. The
optimal policy 7* is to maximize V,(s) in (1). If we denote
v*(s) as the maximum achievable reward at state s, then we can
find v*(s) at every state recursively by solving the following
Bellman’s optimal equations [23]:

v(s) = max | Ry(s,a) + Y Pusls,a)vja ()| - @)

s'eS

Based on the optimal Bellman equations, two typical ap-
proaches for finite time horizon MDPs exist.

* Backwards induction: Also known as a dynamic program-
ming approach, it is the most popular and efficient method
for solving the Bellman’s equations. Since the process
will be stopped at a known period, we can first determine
the optimal action and the optimal value function at the
last time period. We then recursively obtain the optimal
actions for earlier periods back to the first period based
on the Bellman optimal equations.
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* Forward induction: This forward induction method is also
known as a value iteration approach. The idea is to divide
the optimization problem based on the number of steps to
go. In particular, given an optimal policy for ¢ — 1 time
steps to go, we calculate the Q-values for & steps to go.
After that, we can obtain the optimal policy based on the
following equations:

Quls.a) = Ris.a.8) + 3 Pls,a, s 4(s)),

S

vy (s) = max Qj(s,a) and 7} (s) = arg max Q; (s, a),
acA acA

where v;(s) is the value of state s and Q;(s,a) is the
value of taking action a at state s. This process will be
performed until the last period is reached.

Both approaches have the same complexity which depends
on the time horizon of an MDP. However, they are used
differently. Backward induction is especially useful when we
know the state of MDPs in the last period. By contrast, forward
induction is applied when we only know the initial state.

2) Solutions for Infinite Time Horizon Markov Decision Pro-
cesses: Solving an infinite time horizon MDP is more complex
than that of a finite time horizon MDP. However, the infinite
time horizon MDP is more widely used because in practice the
operation time of systems is often unknown and assumed to be
infinite. Many solution methods were proposed.

* Value iteration (VI): This is the most efficiently and
widely used method to solve an infinite time horizon
discounted MDP. This method has many advantages, e.g.,
quick convergence, ease of implementation, and is espe-
cially a very useful tool when the state space of MDPs is
very large. Similar to the forward induction method of a fi-
nite time horizon MDP, this approach was also developed
based on dynamic programming. However, for infinite
time horizon MDP, since the time horizon is infinite,
instead of running the algorithm for the whole time hori-
zon, we have to use a stopping criterion (e.g., ||v}(s) —
v;_1(s)|| < €) to guarantee the convergence [23].

e Policy iteration (PI): The main idea of this method is
to generate an improving sequence of policies. It starts
with an arbitrary policy and updates the policy until it
converges. This approach consists of two main steps,
namely policy evaluation and policy improvement. We
first solve the linear equations to find the expected dis-
counted reward under the policy 7 and then choose the
improving decision policy for each state. Compared with
the value iteration method, this method may take fewer
iterations to converge. However, each iteration takes more
time than that of the value iteration method because the
policy iteration method requires solving linear equations.

* Linear programming (LP): Unlike the previous methods,
the linear programming method aims to find a static policy
through solving a linear program [25]. After the linear
program is solved, we can obtain the optimal value v*(s),
based on which we can determine the optimal policy
7m*(s) at each state. The linear programming method is
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e MDP : Markov decision process

e POMDP : Partially observable Markov decision process

e MMDP : Multi-agent Markov decision process
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e SG : Stochastic game
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Fig. 2. Extensions of Markov decision models.

relatively inefficient compared with the value and policy
iteration methods when the state space is large. However,
the linear programming method is useful for MDPs with
constraints since the constraints can be included as linear
equations in the linear program [26].

* Approximation method: Approximate dynamic program-
ming [27] was developed for large MDPs. The method ap-
proximates the value functions (whether policy functions
or value functions) by assuming that these functions can
be characterized by a reasonable number of parameters.
Thus, we can seek the optimal parameter values to obtain
the best approximation, e.g., as given in [27]-[29].

* Online learning: The aforementioned methods are per-
formed in an offline fashion (i.e., when the transition
probability function is provided). However, they cannot
be used if the information of such functions is unknown.
Learning algorithms were proposed to address this prob-
lem [28], [30]. The idea is based on the simulation-based
method that evaluates the interaction between an agent
and system. Then, the agent can adjust its behavior to
achieve its goal (e.g., trial and error).

Note that the solution methods for discrete time MDPs can be
applied for continuous time MDPs through using uniformiza-
tion techniques [31], [32]. The solutions of discrete time MDPs
that solve the continuous time MDPs are also known as semi-
MDPs (SMDPs).

C. Extensions of MDPs and Complexity

Next we present some extensions of an MDP, the relation of
which is shown in Fig. 2.

1) Partially Observable Markov Decision Processes
(POMDRPs): In classical MDPs, we assume that the system
state is fully observable by an agent. However, in many WSNs,
due to hardware limitations, environment dynamics, or external
noise, the sensor nodes may not have full observability.
Therefore, a POMDP [33] becomes an appropriate tool
for such an incomplete information case. In POMDPs, the
agent has to maintain the complete history of actions and
observations to find an optimal policy, i.e., a mapping from
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histories to actions. However, instead of storing the entire
history, the agent maintains a belief state that is the probability
distribution over the states. The agent starts with an initial
belief state by, based on which it takes an action and receives an
observation. Based on the action and the received observation,
the agent then updates a new belief state. Therefore, a POMDP
can be transformed to an MDP with belief state [34], [35].
Additionally, for a special case when the state space is
continuous, parametric POMDPs [36] can be used.

2) Multi-Agent Markov Decision Processes (MMDPs): Un-
like an MDP which is for a single agent, an MMDP allows
multiple agents to cooperate to optimize a common objective
[37]. In MMDPs, at each decision time, the agents stay at
certain states and they choose individual actions simultane-
ously. Each agent is assumed to have a full observation of the
system state through some information exchange mechanism.
Thus, if the joint action and state space of the agents can be
seen as a set of basic actions and states, an MMDP can be
formulated as a classical MDP. Thus, the solution methods for
MDPs can be applied to solve MMDP. However, the state space
and action space will drastically grow when the number of
agents increases. Therefore, approximate solution methods are
often used.

3) Decentralized Partially Observable Markov Decision
Processes (DEC-POMDPs): Similar to MMDPs, DEC-
POMDPs [38] are for multiple cooperative agents. However,
in MMDPs, each agent has a full observation to the system. By
contrast, in DEC-POMDPs, each agent observes only part of
the system state. In particular, the information that each agent
obtains is local, making it difficult to solve DEC-POMDPs.
Furthermore, in DEC-POMDPs, because each agent makes a
decision without any information about the action and state
of other agents, finding the joint optimal policy becomes in-
tractable. Therefore, the solution methods for a DEC-POMDP
often utilize special features of the models or are based on
approximation to circumvent the complexity issue [39], [40].
Note that a decentralized Markov decision process (DEC-MDP)
is a special case of a DEC-POMDP that all agents share their
observations and have a global system state. In WSNs, when
the communication among sensors is costly or impossible, the
DEC-POMDP is the best framework.

4) Stochastic Games (SGs): While MMDPs and DEC-
POMDPs consider cooperative interaction among agents,
stochastic games (or Markov games) model the case where
agents are non-cooperative and aim to maximize their own
payoff rationally [41]. In particular, agents know states of all
others in the system. However, due to the different objective
functions that lead to conflict among agents, finding an optimal
strategy given the strategies of other agents is complex [42].
Note that the extension of stochastic games is known as a
partial observable stochastic game [43] (POSG) which has a
fundamental difference in observation. Specifically, in POSGs,
the agents know only local states. Therefore, similar to DEC-
POMDPs, POSGs are difficult to solve due to incomplete
information and decentralized decisions.

It is proven that both finite time and infinite time horizon
MDPs can be solved in complete polynomial time by dy-
namic programming [44], [45]. However, extensions of MDPs
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TABLE 1
THE WORST CASE COMPLEXITY OF MARKOV MODELS
[ MODEL | COMPLEXITY |
MDP P-complete
MMDP P-complete

POMDP (finite time horizon)
DEC-MDP (finite time horizon)
DEC-POMDP (finite time horizon)
POSG (finite time horizon)

PSPACE-complete
NEXP-complete
NEXP-complete
NEXP-complete

may have different computation complexity. For example, for
POMDPs, the agents have incomplete information and thus
need to monitor and maintain a history of observations to infer
the belief states. It is shown in [46] that the complexity of
POMDPs can vary in different circumstances and the worst case
complexity is PSPACE-complete [44], [46]. Since MMDPs
can be converted to MDPs, its complexity in the worst case
is P-complete. However, with multiple agents and partial ob-
servation (i.e., DEC-POMDP, DEC-POMDP, and POSG), the
complexity is dramatically increased. It is shown in [38] that
even with just two independent agents, the complexity for both
finite time horizon DEC-MDPs and DEC-POMDPs is NEXP-
complete. Table I summarizes the worst case complexity. Note
that partially observation problems are undecidable because
infinite time horizon PODMPs are undecidable as shown
in [47].

WSNss consist of tiny and resource-limited devices that coop-
erate to maintain the network topology and deliver the collected
data to a data sink. However, the connecting links between
nodes are not reliable and suffer from poor performance over
time, e.g., fading effects. MDPs can model the time correlation
in network structure and nodes. Therefore, many algorithms
have been developed based on MDPs to address data exchange
and topology maintenance issues. These methods are discussed
in the next section.

III. DATA EXCHANGE AND TOPOLOGY FORMULATION

A WSN may experience continual changes in its topology
and transmission routes (e.g., new nodes can join the network,
and existing nodes can encounter failures). This section re-
views the applications of MDPs in data exchange and topology
maintenance problems. Most surveyed works assume that the
network consists of redundant sensors such that its operation
can be performed by some alternative sensors. The use of MDPs
in these applications can be summarized as follows:

e Data aggregation and routing: MDP models are used to
obtain the most energy efficient sensor alternative for data
exchange and gathering in cooperative multi-hop commu-
nications in WSNs. Different metrics can be included in
the decision making such as transmission delay, energy
consumption, and expected network congestion.

* Opportunistic transmission strategy: Assuming sensors
with adjustable transmission level, the MDP models adap-
tively select the minimum transmit power for the sensors
to reach the destination. This adaptive transmission helps
in reducing the energy consumption and the interference
among nodes.
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* Relay selection: When the location and distance infor-
mation is available at the source node, a relay selection
decision can be optimized by using simple MDP-based
techniques to reduce the energy consumption of the relay
and source nodes.

A. Data Aggregation and Routing

In WSNSs, sensor nodes collect and deliver data to a data
sink (e.g., a base station). Moreover, routing protocols are
responsible for discovering the optimized routes in multi-hop
transmissions [48]. However, sensor nodes are resource-limited
devices, and they can fail, e.g., because of hazardous envi-
ronment. Accordingly, adaptive data aggregation and routing
protocols are needed for WSNs. Different MDP models for
such purposes are summarized in Table II. The column “De-
cision” specifies the decision making to be either distributed or
centralized. Throughout the paper, we consider an algorithm to
be distributed only if it does not require a centralized coordi-
nator. Consequently, if the decision policy is computed using a
central unit, and the policy is then disseminated to nodes, we
still classify the algorithm as a centralized one. The columns
“States,” “Actions,” and “Rewards/costs” describe the MDPs’
components.

1) Mobile Wireless Sensor Networks (MWSNs): Data collec-
tion in mobile sensor networks requires algorithms that capture
the dynamics because of moving sensors, gateways, and data
sinks. Moreover, distributed data aggregation can be even more
challenging. Ye et al. [49] addressed the problem of sensing a
region of interest by exchanging data locally among sensors.
This is referred to as a distributed data aggregation model,
which also takes the tradeoff between energy consumption and
data delivery latency into account. As data acquisition and ex-
change are stochastic processes in WSNs, the decision process
is formulated as an SMDP with the expected total discounted
reward. The model’s states are characterized by the number of
collected data samples by the node. This includes the samples
forwarded by the neighbor nodes and the self-collected sam-
ples. The actions include (a) sending the queued data samples
immediately, while stopping other operations, or (b) waiting
until more data is collected. The waiting action can reduce
a MAC control overhead when sending more data samples at
once, achieving energy savings at the expense of increased data
aggregation delay. Two real time solutions are provided, one
is based on dynamic programming and the other is based on
Q-learning. The interesting result is that the real time dynamic
programming solution converges faster but consumes more
computation resources than that of the Q-learning method.

In the similar context, Fei et al. [50] formulated the data
gathering problem in MWSNSs using the MDP framework. Op-
timal movement paths are defined for mobile nodes (i.e., data
sinks) to collect sensor readings. The states are the locations
of the mobile nodes. The region of interest is divided into
a grid, and each node decides to move to one of the nine
possible segments. The reward function reflects the energy
consumption of the node and the number of collected readings.
Numerical results show that the proposed scheme outperforms
conventional methods, such as the traveling salesman-based
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TABLE 1II
DATA AGGREGATION AND ROUTING TECHNIQUES (SMDP = SEMI-MDP, E2E = END-TO-END)

APPLICATION CONTEXT [ ARTICLE [ TYPE | DECISION | STATES [ ACTIONS | REWARDS/COSTS |
Mobile networks [49] SMDP Distributed Arrivals of samples Send, wait Energy, E2E delay
Transmission queue and Data volume, the
[50] MDP Distributed smission q Select a moving direction distance between the
distance
sensor and collector
Network query [51] POMDP | Centralized | Sensor’s attribute values Query (or ﬁg dr;ot query) a Query confidence
[52] MDP Distributed Cham}el S propaygatlon Select a transmit power Received packets,
gain, queue size E2E delay
The delay-energy tradeoff [53] MDP Distributed Forwarding candidates Forward data, wait Energy, E2E delay
L . . i Select a transmit power
[54] MDP Distributed Forwarding candidates and data forwarders Energy, E2E delay
[55] MDP Distributed Available énergy, m obile Select data forwarders Energy variance, load
anchor’s location balancing

solutions, in terms of connectivity error and average sensing
delay.

Even though MWSNs have some useful properties over
static networks, some of their drawbacks must be considered.
Basically, these MWSN algorithms are hard to implement
and maintain in real world scenarios, and distributed MDP
algorithms converge after a long-lived exploration phase which
could be costly for resource-limited devices.

2) Network Query: Data query in WSNs serves to dissem-
inate a command (i.e., a query) from a base station to the
intended sensor nodes to retrieve their readings. Chobsri et al.
[51] proposed a probabilistic scheme to select the set of sensor
nodes that should answer to the user query. For example, a
query may request for the data attributes, e.g., temperature,
to be within an intended confidence range. The problem is
formulated as a parametric POMDP with average long-term
rewards as the optimization metric. The action of the node is
whether to answer the query or not. The states are formulated
as a vector that includes the data attribute from each sensor.
Since the sensors are error prone, the base station maintains the
collected readings as beliefs (i.e., not the actual states). The data
acquisition problem is solved using the value iteration method
to achieve near-optimal selection policy.

3) Delay-Energy Tradeoff: In [52], Lin et al. suggested a
distributed algorithm for delay-sensitive WSNs under dynamic
environments. The environment is considered stochastic in
terms of the traffic pattern and wireless channel condition.
A transceiver unit of a sensor node controls its transmission
strategies, e.g., transmit power levels, to maximize the node’s
reward. In each node, wireless channel’s propagation gain and
queue size are used to define the MDP’s states. The actions
consider the joint power consumption (i.e., transmission power
level) and the next forwarder selection decisions. Additionally,
the messages are prioritized for transmission using the earliest
deadline first criterion. Similarly, Hao et al. [53] studied the
energy consumption and delay tradeoff in WSNs using the
MDP framework. The nodes select their actions of “immediate
data forwarding” or “wait to collect more data samples” based
on local network states (i.e., the number of relay candidates).
The local network states include the node’s own duty cycle
(i.e., activation mode) and its neighbor’s duty cycle modes.
Furthermore, the duty cycle of the nodes is managed using
simple beacon messages exchanged locally among the nodes

)

()

()

—

Hotspot sensors

: ®)
\ ( >)/é
é Destination

()

Source

Transmission strategy

C

Fig. 3. Data transmission strategy to decide sending data over one of the
available paths as considered in [55].

to inform each other about their wake up (i.e., active) mode.
The numerical results show that the adaptive routing protocol
enhances successful packet delivery ratios under end-to-end
delay constraints.

Guo et al. [54] used MDPs to develop an opportunistic rout-
ing protocol for WSNs with controlled transmit power level.
The preferred power source is selected by finding the optimal
policy of the MDP’s configuration. Again, each potential next
forwarding node is considered as a state in the MDP, and source
and destination nodes are considered as the initial and goal
states, respectively. Compared with conventional routing pro-
tocols, the proposed scheme shortens the end-to-end delay and
consumes less energy as a result of the opportunistic routing
decisions. Furthermore, in [55], Cheng and Chang suggested
a solution to manage node selection in event-detection appli-
cations using mobile nodes equipped with directional antenna
and global positioning system (GPS). Basically, the directional
antenna and GPS technologies are used to divide the network
into operational zones. The solution aims at balancing the
energy consumption of the next forwarding nodes surrounding
the sink, i.e., the energy of the hotspot nodes (Fig. 3). The fully
observable states are based on the energy level and positions
of the nodes within the hotspot. The discounted reward is
formulated to find an optimal action for selecting the data
forwarding node at each time instant. In this solution, transition
probabilities are not needed, as reinforcement learning is used
to solve the formulated MDP model.
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[ APPLICATION CONTEXT | ARTICLE | TYPE | DECISION | STATES ACTIONS | REWARDS/COSTS |
[56] MDP Distributed Buffer occupancy, SIR, Select modu]gtlon level Received packets,
data rate and transmit power energy
Transmission policies Delay, energy,
[57] SG Distributed CSI Transmit, wait successful
transmission
[58] MDP Distributed Cones .Wlth at least one Select a transmit power Energy, neighbor
neighbor node discovery
[59] MDP Distributed Cones .Wlth at least one Select a transmit power C_olllslon, _energy,
neighbor node neighbor discovery
Buffer occupanc Transmit using static
[60] MDP Distributed . pancy, nodes or wait for a E2E delay, energy
distance to mobile sink L
- . mobile sink
Transmission scheduling SNR. channel’s Donpler
[61] MDP Distributed : T ' PP Transmit, wait Energy, collision
frequency
CSI, buffer occupancy, Select cross laver
[62] MDP Distributed transmission success ct cross fay X Energy
. transmission protocols
probability
[63] MDP Distributed CSlL, transmlss_lqn success Transmit, wait Energy
probability
[2] POMDP Distributed bChanney] s.t'a‘t.es observed Tran;mli]datﬁ, Wal]t’ Interference, energy
Transmit power y transmission outcome probe the channe
) [3] MDP Centralized Residual energy Select a transmit power Energy, throughput
Fading channel Reception probabilit
[64] MDP Centralized coefficient, reception Select a transmit power P enerr)gy ¥
error

Overall speaking, fully observable MDPs have been success-
fully applied to find a balanced delay-energy tradeoff as shown
in [52]-[55]. However, only limited comparison to other state-
of-the-art algorithms is provided in these papers, which restricts
the result interpretation and performance gain evaluation.

B. Opportunistic Transmission Strategy and
Neighbor Discovery

Opportunistic transmission with neighbor discovery is an
essential technique in large scale WSNs to achieve the min-
imum transmit power that is needed to maintain the network
connectivity among neighboring nodes and exchange discovery
messages. In addition to minimizing the energy consumption,
opportunistic transmission is also important to minimize data
collision among concurrent data transmission. The transmit
power is also defined to meet the signal-to-noise ratio (SNR)
requirements. Moreover, channel state information (CSI) is
a widely used indicator for the channel property and signal
propagation through channels. A summary of surveyed MDP-
based transmission methods is given in Table III.

1) Distributed Transmission Policies: Pandana and Liu [56]
presented an adaptive and distributed transmission policy for
WSNs. The policy examines the signal-to-interference ratio
(SIR), data generation rate at source sensors, and the data
buffer capacity. The solution is also suitable for data exchange
among multiple nodes. Reinforcement learning is used to solve
the MDP formulation, which results in near-optimal estimation
of transmit power and modulation level. The reward function
presents the total number of successful transmissions over total
energy consumption. Therefore, an optimized transmission pol-
icy requires using a suitable power level and data buffer without
overflow. The suggested scheme is compared with a simple
policy which selects a transmission decision (a modulation level

and transmit power) to match the predefined SIR requirement.
The experiment shows that the proposed scheme achieves twice
the throughput of the simple policy.

Krishnamurthy et al. [57] considered the slotted ALOHA
protocol in WSNs with the aim to maximize the network
throughput using stochastic games (SGs). Specifically, each
node tries to minimize its transmission collision with other
non-cooperative nodes and by exploiting only the CSI. The
players are the nodes with two possible transmission actions
of waiting and immediate channel access. Then, the intended
policy probabilistically maps CSI conditions, i.e., states, to the
transmission action. Using a distributed threshold policy, the
nodes achieve a Nash equilibrium solution, where the game
formulation assumes finite numbers of players and actions. The
experiments reveal that the threshold value is proportional to
the number of nodes, and therefore each node is less probable
to access the channel when the network size increases.

In light of previous studies, Madan and Lall [58] considered
the problem of neighbor discovery of randomly deployed nodes
in WSNs. The node deployment over an area is assumed to
follow the Poisson distribution. An MDP model is used to solve
the neighbor discovery problem to minimize energy consump-
tion. The plane area surrounding each node is divided into
cones (e.g., 3 cones) and the neighbor discovery algorithm must
ensure that there is at least one connected neighbor node in each
cone. To minimize the computational complexity, the MDP
policy is solved offline, using linear or dynamic programming
methods. Then, the policy is stored on the nodes for an online
operation. In the MDP formulation, states are the number of
connected cones and the discrete levels of transmit power in
previous interval. The nodes manage the minimum required
transmit power (i.e., the MDP actions) to discover the neighbor
nodes. In [59], Stabellini et al. extended [58] and proposed
an MDP-based neighbor discovery algorithm for WSNs that is
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solved using dynamic programming. Unlike [58], the energy
consumption of the node in listening mode is considered. The
model proposed in [58] considers the average energy consump-
tion which monotonically decreases as the node density in-
creases. This does not take into account the contention windows
and collisions in dense networks. This modeling limitation is
solved in [59] by considering any additional transmissions that
result from undiscovered neighbors.

A primary limitation of the algorithms presented in [56]-[59]
is their discrete models (i.e., transmission decisions are only
made at discrete time intervals). This means that a node must
stay in a state for some time before moving to the next state
which hinders the use of the algorithm in critically time-
sensitive applications. An interesting research direction would
be in using continuous time models and SMDPs for proposing
distributed transmission policies.

2) Packet Transmission Scheduling: In [60], Boloni and
Turgut introduced two scheduling mechanisms for packet trans-
mission in energy-constrained WSNs with mobile sinks. Occa-
sionally, a static node may not be able to aggregate its data using
a nearby mobile sink, and can use only the more expensive
multi-hop retransmission method for data aggregation. Thus,
the scheduling mechanism decides if the node should wait for a
mobile sink to move and come into proximity, or immediately
transmit data through the other static nodes. The first mecha-
nism uses a regular MDP method, and the second one intro-
duces historical data to sequential state formulation. Thus, the
former method (i.e., without using historical data) outperforms
the latter, despite not having precise knowledge of the sink node
mobility pattern. Likewise, Van Phan et al. [61] addressed the
transmission strategy optimization, while minimizing the en-
ergy consumed for unsuccessful transmission. The SNR is used
to predict the channel states (i.e., good or bad), by using a
simple threshold mechanism. The transition probabilities can
be calculated using the channel Doppler frequency, the frame
transmission time, and the probability of symbol error. A trans-
mission is performed only when the channel is good, which can
increase the probability of success. Simulations using the Net-
work Simulator (NS-2) and fading channels with 20 states show
the energy efficiency of the introduced transmission policy.

Xiong et al. [62] proposed an MDP-based redundant trans-
mission scheme for time-varying channels. The data redun-
dancy can achieve better performance and lower energy
consumption than that of conventional retransmission schemes
especially in harsh environments. In this case, each node es-
timates the energy saving of its contribution on forwarding
data packets. The algorithm selects the optimized cross-layer
protocols to transmit the data at the current condition, e.g.,
combining the forward error correction (FEC) and automatic
repeat request (ARQ) protocols. The CSI, extracted at the
physical layer, is considered as states. This cross-layer solution
formulates the cost as a function of energy consumption in an
infinite horizon time domain. Again and unlike the data redun-
dancy method used in [62], Xiong et al. [63] tackled the design
of optimal transmission strategy, while data retransmission is
performed for undelivered packets.

3) Wireless Transmit Power: Udenze and McDonald-Maier
[2] presented a POMDP-based method to manage transmit

IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 3, THIRD QUARTER 2015

A

Sleep, active

Y

Sleep, sleep

Active, sleep [« »| Active, active

Fig. 4. State transition of two nodes under the scheme proposed in [2].

Noise
Ll ()
—>  Plant state Sensor 1
F'/‘:j dback
Control / Ee ac
message Channel with //\/

fading effects |/

/
o0/
re é
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power and transmission duration in WSNs, while adapting with
the system dynamics, e.g., unknown interference model. The
partial information about interfering nodes is used to define the
problem observations and beliefs. For example, a successful
transmission indicates an idle channel state. Each node has
partial information about the environment as a hidden terminal
problem may exist. Fig. 4 shows an example of the allowable
state transition of two nodes. The node decides to transmit data
at a specific energy level, continue waiting, or send a probing
message to test the channel status. Thus, each node can utilize
channel information to increase its transmission probability
during the channel idle state.

Kobbane et al. [3] built an energy configuration model using
an MDP. This centralized scheme is to manage the node trans-
mission behavior to maximize the network’s lifetime, while
ensuring the network connectivity and operations. The backend
(e.g., a base station), which runs the centralized scheme, is as-
sumed to have complete information about the environment in-
cluding the nodes’ battery levels and connecting channel states.
As a centralized method, no local information exchange is re-
quired among the sensors, as the nodes receive the decision pol-
icy from the backend. Based on the simulation with 64 states,
the interesting result is that the transmit power policy takes
constant values during the first 40 time slots of the simulation,
and subsequently the transmit power increases as the state value
increases. A more specialized framework was proposed by
Gatsis et al. [64] to address the transmit power control prob-
lem in WSNs used for dynamic control systems. Intuitively,
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TABLE IV
RELAY SELECTION AND COOPERATIVE COMMUNICATIONS (E2E = END-TO-END)

| APPLICATION CONTEXT [ARTICLE | TYPE [ DECISION | STATES | ACTIONS | REWARDS/COSTS |
POMDP, _— Energy budget, event Transmit directly or use | Data priority, energy,
Relays with energy harvesting (661 MDP Distributed occurrence a relay coverage
Available energy, event Transmit directly or use
[67] POMDP | Distributed | occurrence, recharging ) 1 y ) Accuracy, energy
state arelay
Duty cycle of nodes
[68] MDP Distributed within transmission Transmit or wait E2E delay, energy
Relay activation and scheduling range Transmii Wail or probe
[69] MDP Distributed Relay set P ’ p E2E delay, energy
for other relays
[70] POMDP | Distributed Relay set ob;erved by Transmit or wait Hop count, _EZE
wake-up instants delay, energy
(71] MDP Centralized Relative deployment Place (or (%o not place) Hop count
location a relay

the more the gathered information from sensors, the more
precise the decision can be made at the control unit. However,
this increases energy consumption at the nodes. In the infinite
time horizon formulation, the MDP considers the reception
(decoding) error and the channel fading condition which are
determined by a feedback controller as shown in Fig. 5. There-
after, suitable transmit power can be selected to achieve a func-
tional control system operation at a minimum operating cost.

C. Relay Selection and Cooperative Communications

A source sensor node has to select relay node(s) to forward
data to an intended sink. This is based on the maximum
transmission range of the source node, and available energy of
the source and relay nodes. Relay placement is usually designed
to keep the network connected using the minimum set of relay
nodes [65]. The source node may use direct transmission mode,
if applicable, to save the overall network energy when it cannot
find a suitable relay node. Thus, the relay selection problem
must evaluate the energy consumption of relay paths and direct
link decisions. MDPs are employed in relay selection and
cooperative networking as summarized in Table I'V.

1) Relay Selection With Energy Harvesting: In [66], Li et al.
addressed the relay selection problem in energy harvesting sen-
sor nodes. The problem is formulated as a POMDP and relaxed
to an MDP for obtaining the solution. The states of source
and relay nodes are characterized by energy budgets and any
event occurrence. Naturally, the battery budget varies because
of energy consumption and recharging processes. The source
node fully observes its own state but has partial information on
the other relay nodes. Every node decides if it should participate
in the current transmission to maximize the average reward.
The available actions of the communicating devices (a source
and a relay node) are “idle, idle,” “direct, idle,” “relay, relay,”
“direct, self-traffic,” and “idle, self-traffic.” Again, Li et al.
[67] reused the POMDP formulation previously proposed in
[66], however, with the intention of providing a practical and
near-optimal solution. In particular, they consider the tradeoff
between solution optimality and computational complexity. The
state space comprises the available energy, event occurrence,
and recharging state (on or off). The actions are similar to those
in [66]. Relay selection is only explored once the source node’s
energy budget is below a defined threshold. This naive method,

i.e., the threshold mechanism, is shown to provide near-optimal
solution with low computational complexity. Running a simu-
lation test case of 5 million time units shows that the threshold
based scheme consumes only half of the energy of the optimal
policy solution while achieving near-optimal packet delivery
ratio.

The main limitation of [66], [66] is the low performance
when operating in harsh environments, e.g., because of rapidly
changing channel interference. In such cases, the relay selection
policy has to be reconstructed to fit the new conditions which
will be a resource demanding task.

2) Relay Activation and Scheduling: Koulali et al. [68]
proposed an MDP-based scheduling mechanism in WSNs by
modeling sensors’ wake up patterns. A sensor wakes up either
to sense a sporadic event or to relay other nodes’ messages. A
relaying node can transmit the data to the already active next
hop node, or it waits for the activation of other nodes nearer to
the sink. Therefore, the tradeoff between data gathering delay
and expected network energy consumption is considered. A
node can be either in the active or sleep mode.

Naveen and Kumar [69] extended previous studies that
tackled relay selection in WSNs using an MDP. In particular,
in addition to being able to select among the explored relay
nodes, a transmitting node can decide to continue probing to
search for farther relay options. During the probing, the node
determines the reward to be distributed to the reachable relays.
The states are the best historical reward and the rewards of un-
probed relays at previous stages. Then, the Bellman equation
is used to solve the MDP formulation. Subsequently, Naveen
and Kumar [70] discussed geographical data transmission in
event-monitoring WSNs. As long as the nodes’ duty cycles are
asynchronous, the nodes need to control the sleep time, i.e.,
wait or wake up for transmission, to match that of their relay
neighbors. The waiting time of the nodes and the progress of
data forwarding toward the sink are employed in the state of the
POMDP. The partial observability in the system is introduced
as the number of relays is assumed to be unknown as no beacon
message is exchanged between neighboring nodes.

Sinha et al. [71] discussed the online and random construc-
tion of relay paths from source node to destinations. The solu-
tion explores the placement of relays to minimize the weighted
cost including the hop count and transmission costs. This MDP
model is independent of location, and it considers only the
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previous relay placement to predict the optimal deployment of
the next relay. The model is useful in densely covered regions,
e.g., forests. However, the online placement of relays can be
used only in very low rate networks, e.g., one reading over a few
seconds. The extraction of the optimal policy requires a finite
number of iterations which makes this solution suitable for
WSNs. However, the conventional placement methods that are
based on a distance threshold can achieve near-optimal results
when the threshold value is carefully selected.

When dealing with relay activation and scheduling, the best
suited MDP variant is the POMDP model because of the low
communication overhead as shown in [70]. However, other
algorithms (e.g., [68], [69], [71]) assume the full informa-
tion availability about the neighboring nodes when making
decisions.

In summary, there are two important remarks about the
reviewed algorithms in this section for data exchange and
topology formation. Firstly, the fully observable MDP model
with complete information about neighbor nodes and relays has
been favored in most reviewed papers. This is due to the low
computational burden of the fully observable model. However,
this is at the cost of increased transmission overhead as ex-
changing beacon messages is required. Secondly, the reviewed
papers have clearly shown the efficiency of the MDP models
in the problems related to data exchange and topology for-
mulation. However, most of these papers do not include long-
running experiments using real world testbeds and deployments
to assess their viability and system-wide performance under
changing conditions. The next section discusses the use of
MDPs in resource and power optimization algorithms.

IV. RESOURCE AND POWER OPTIMIZATION

A major issue of WSN design is the resource usage at the
node level. Resources include available energy, wireless band-
width, and computational power. Clearly, most of the surveyed
papers in this section focus on resource-limited nodes and long
network lifetime. In particular, the related work uses MDP for
the following studies:

* Energy control: For the energy charging of sensors, an
MDP is used to decide on the optimal time and order
of sensor charging. These energy recharging methods
consider each node’s battery charging/discharging time
and available energy. Moreover, some of them deal with
the stochastic nature of energy harvesting in WSNs.
Therefore, the energy harvesting nodes are scheduled to
perform tasks that fit their expected energy harvesting.

* Dynamic optimization: A sensor node should optimize
its operation at all protocol stacks, e.g., data link and
physical layers. This is to match the physical conditions
of the environment, e.g., weather. Therefore, unlike static
configurations, the operations are performed at minimized
resource consumption, while providing service in harsh
conditions. Moreover, MDP-based network maintenance
algorithms were developed. These maintenance models
generate a low cost maintenance procedure, while assur-
ing network functionality over time.
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* Duty cycling and channel access scheduling: Sensor
nodes consume less energy when they switch to a sleep
mode. The MDP-based methods predict the optimal wake
up and sleep patterns of the sensors. During duty cycle
management, each node evaluates the activation of sur-
rounding nodes to exchange data and to minimize the
interference with other nodes.

A. Energy Recharging, Harvesting, and Control

The literature is rich with MDP-based energy control as
summarized in Table V. These solutions consider the energy
recharging and harvesting in WSNs as follows.

1) Recharging Management: In WSNs, a sensor node may
have to operate without battery replacement. Moreover, the
nodes drain their energy unequally because of different oper-
ation characteristics. For example, the nodes near the data sink
drain energy faster as they need to relay other nodes’ data. The
battery charging of the node must be performed to fit the node’s
energy consumption and traffic load conditions. Accordingly,
an MDP is used to select the order and the time instant of node
charging. Note that the node charging can be based on wired
and wireless energy transfer.

Misra et al. [72] used an MDP to model the energy recharg-
ing process in WSNs. Naturally, since the available energy
levels affect the recharging delay, the recharging process of
nodes must be designed to account for the difference in avail-
able energy at different nodes. The available energy of dif-
ferent nodes differs because of different transmission history
and different battery technologies used in the nodes. Thus,
the recharging process of the nodes is also not a uniform
task, and some nodes need longer charging time than others.
Therefore, the proposed solution is intended to minimize the
recharge delay and maximize the total number of recharged
nodes. The battery budget is quantized into a few states, e.g.,
{[0% — 20%)],...,[80% — 100%]}. At each decision interval,
the node decides either to perform energy charging under sleep
mode, or to continue its active mode (recharging cannot be done
under the active mode).

In [73], Osais et al. discussed the problem of managing
the recharging procedure of nodes attached to human and
animal bodies. Therefore, it is important to take the temper-
ature produced from the inductive charging of batteries into
account, as a high temperature harms the body. Under the
maximum threshold of acceptable temperature, the proposed
solution produces an MDP policy that maximizes the number
of readings collected by any node, and therefore enhances the
body monitoring. The state of the node is characterized by
its current temperature and energy level. At each interval, an
action is selected from three feasible options: (i) recharge the
battery, (ii) switch to sleep mode, or (iii) collect data sample.
A heuristic policy is proposed to minimize the computational
complexity of the optimal policy. In short, the heuristic policy
selects actions based on the current biosensor’s temperature
and energy level. For example, the sample action is chosen
at low temperature values and high energy levels, while the
recharge action is performed at very low energy levels. The
heuristic policy is compared with a greedy policy. The greedy
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TABLE V
COMPARISON AMONG ENERGY CONTROL AND HARVESTING TECHNIQUES (CMDP = CONSTRAINED MARKOV DECISION PROCESS)

[ APPLICATION CONTEXT | ARTICLE | TYPE | DECISION | STATES | ACTIONS | REWARDS/COSTS |
. . Recharge the battery .
. [72] MDP Centralized Quantized available (sleep) or continue Rechargm_g delgy,
Recharging management energy Lo network disruption
operations
(73] MDP Centralized Available energy, sensor Rechqge, sleep, or Numbgr of cgllected
temperature sample samples
(74] POMDP | Distributed Spectrum state, available Access the spectrum or Successtul packet
energy wait delivery
(75] MDP Distributed Spectrum state, available Access the spectrum, or Success%ul packet
energy wait delivery
(76] POMDP | Centralized AYal??.P]e energy, Schedule the‘ﬁpectrum Succzssl.ful packet
Energy harvesting transnp»mn outcome access elivery
) Available energy,
expected energy Compression
[77] MDP Centralized harvesting, event Set the compression error pres:
accuracy, energy
occurrence, buffer
occupancy
Available energy, Transmit or discard Delivery of important
[78] MDP Centralized harvesting state, data ) . y ‘p
. packets packets
importance
[79] POMDP | Centralized Partial CSL, avmlablé Select a transmit power Successtul packet
energy, data packets delivery
(80] CMDP | Distributed | 2 delay, available Transmit or continue Deadline violation
energy, mobile location waiting
81] MDP Distributed Weat'her condition, Transmit or continue Transm1§31on rate,
available energy waiting charging rate
Available energy, buffer N .
[82] MDP Distributed occupancy, harvesting A'HO.CV%Fe energy to{ Successtul packet
) N transmission and sensing delivery
state, channel state
[83] MDP Centralized Available e;l;;gy, channel Select a transmit power Packet dropping
Event occurrence
) MDP, - . ’ . ) Energy, event
[84] POMDP Distributed ayallable gnergy, Activate or sleep detection
node’s activation history
policy selects an action based on a fixed-priority order: sample, Energy harvesting
recharge and sleep. The simulation shows that the heuristic
policy’s performance is close to that of an optimal policy, and ()

it reduces the sample generation time by 75% when compared
with the greedy approach.

An interesting extension of [72], [73] is to consider event
occurrence and data priority which enables the delivery of
important packets even at low available energies. Another ap-
pealing future research direction is to implement distributed
algorithms using partial information models to minimize the
transmission overhead.

2) Energy Harvesting: Battery charging can be complex and
inconvenient in many cases. Therefore, a more viable choice
is to harvest energy from the environment, e.g., thermal and
radiant energy, for a sensor node’s battery [85]. Although the
natural energy is free and infinite, it is random and sporadic.
Therefore, many studies explored the prediction of energy
harvesting in WSNs. The majority of research efforts in the
literature examine the dynamics of available energy and buffer
size as shown in Fig. 6 to optimize node’s operations. Thereby,
a balanced tradeoff between the energy consumption and har-
vesting is achieved. We refer the readers to [86], [87] for
more insight on energy harvesting in WSNs and its challenges.
Instead, here we focus on the applications of MDPs for energy
harvesting in WSNs.

In [74], Park et al. designed a dynamic, POMDP-based
spectrum access control scheme for energy harvesting WSNs
as shown in Fig. 7. The nodes are assumed to be unable to
access the spectrum during the harvesting stage. Then, the

Wireless channel

Sink
Data samples
Fig. 6. System model of energy harvesting methods.
Spectrum state
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Operations of the m-th node
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A Transmission by the m-th
m-th node’s residual
energy Time
>

Fig. 7. Spectrum access with energy harvesting as discussed in [74].

decisions are based on partial information about the spectrum
state (occupied or idle) and available energy. The reward of
spectrum access, i.e., data transmission, is measured from an
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acknowledgment message from the data sink which is as-
sumed to be error-free. Similarly, Kashef and Ephremides [75]
discussed WSN’s operation under time varying channels and
energy harvesting. The channel access is determined using an
MDP policy based on the channel information and the current
energy level. The channel state information is known from the
feedback from the destination node. The reward function is
a discounted sum of the packet delivery. Moreover, an upper
bound of the number of successful transmitted packets is de-
rived. Even though the authors of [74], [75] did not directly
consider energy harvesting in the reward functions, energy
harvesting still affects the future reward values as collecting
more energy increases the successful packet delivery.

In a similar context to [74], Iannello et al. [76] considered
the spectrum access scheduling problem in energy harvesting
WSNs. It is assumed that the number of nodes, which are
equipped with energy harvesting capability and able to transmit
data to a single collector, is larger than the number of avail-
able channels. Moreover, to minimize the local data exchange
among the centralized scheduling controller and transmitting
nodes, the scheduling controller is assumed to have no infor-
mation about the battery levels of the transmitting nodes. The
problem is modeled as a POMDP, and the resulting policy is
for the spectrum access of the nodes. The scheduling controller
builds its model beliefs by observing the past transmission
results as well as the charging and discharging behavior of the
batteries.

Several future research ideas can be inspired from [74]—[76]
to achieve dynamic spectrum management in energy harvesting
WSNs. For example, an upper bound constraint of nodes’ wait-
ing time can be imposed and solved using CMDPs. This enables
a fair and delay-bounded spectrum access for all nodes. Another
potential idea is using stochastic games for non-cooperative
algorithms which could reduce the data exchange among
nodes.

Different from the above work, Mohamed et al. [77] pre-
sented an adaptive data gathering scheme for WSNs with
energy harvesting devices. The scheme considers a balance
between lossy data compression and the energy budget of the
sensors. Most lossy data compression methods can adjust a
compression ratio. For example, a higher compression ratio
results in poorer data reconstruction performance but more
energy savings as less data is transmitted. The MDP model is
formulated by incorporating current available energy, expected
energy harvesting in the current interval, event occurrence in
previous interval, and queued data in the node’s buffer. The
intended compression error (i.e., error radius between source
signal and recovered one at the controller) can be chosen as
the MDP’s actions. The lower error configuration requires less
compression and more energy consumption for data aggrega-
tion. Using real-world samples of water pressure and solar
energy harvesting data, the simulation shows that the adaptive
compression policy provides a small signal reconstruction error
at any time during the day or night. With a similar idea,
Michelusi et al. [78] modeled the ambient energy harvesting in
a WSN that collects data of different importance with respect
to the system operations. The data importance depends on each
sample indication of an event existence, e.g., a high temperature
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reading indicates a fire event. The ambient energy harvesting is
modeled as two states, i.e., good and bad modes. The proposed
model enables a node with the bad energy harvesting state to
balance between the transmission cost and the energy budget.
As aresult, a stable overall system service is achieved. In short,
in each iteration, the system uses the energy harvesting effi-
ciency, data importance, and current energy budget to predict
and take an action so that battery overflow and drainage can be
avoided. The MDP’s optimal policy is obtained using the policy
iteration algorithm.

In [79], Aprem et al. considered error control based on ARQ
for data retransmission in energy harvesting WSNs. In ARQ,
the destination acknowledges a successful packet reception
to the sender. Otherwise, the sender assumes an unsuccessful
transmission after a timeout period. In the propoesd scheme, a
packet acknowledgment (either positive or negative feedback),
which is sent back to the transmitter, can be used to build the
transmitter’s belief and observations about the channel condi-
tion and its state information. The states are node’s available
energy, channel state, number of transmitted packet within a
frame, and packet acknowledgment state. The generated beliefs
are utilized in the POMDP model to find a near-optimal and
low-complexity retransmission policy.

Niyato and Wang [80] addressed the stochastic wireless en-
ergy harvesting of a mobile node. Under the hard delay require-
ment, the collected data is received, stored, and forwarded by
the mobile node to the destination within a specified threshold
constraint. Otherwise, the data, which misses the threshold, will
be discarded and removed from the buffer. Therefore, the pro-
posed scheme ensures the delay quality of service requirement
given the uncertainty in energy harvesting that are introduced
by node mobility. The problem is formulated as a CMDP with
delay stages, energy budget levels, and location as the states.
The optimal CMDP policy decides whether data transmission
is advantageous over the waiting action.

In many locations, solar energy is considered the most prac-
tical source for WSN recharging [88]. Murtaza and Tahir [81]
used an MDP to model the battery charging of nodes from solar
panels. Accordingly, the energy harvesting is determined by the
weather condition, e.g., sunny or cloudy and time of day. The
proposed scheme considers the energy requirement of the node
at different data transmission rates. Thus, the scheme optimizes
the tradeoff between energy harvesting process and the energy
consumption. The data collection and data transmission are
assumed to follow the Poisson distribution. The node decides
whether data transmission is required for event detection using
the policy obtained from the MDP. Similarly, Mao et al. [82]
considered the problem of maximizing the amount of transmit-
ted data in energy harvesting WSNs. Data transmission may be
deferred because of various reasons including a drained battery,
an empty transmission buffer, and poor transmitting channel
condition. The energy harvesting and allocation problem is
formulated as an MDP which is later solved using the value
iteration method. The data receiver notifies the transmitter
about the CSI. The infinite time horizon MDP has the state
as the node’s available energy, data buffer, harvesting state,
and channel state. The actions specify energy allocation for
transmission and sensing operations.
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TABLE VI
SUMMARY OF THE SURVEYED DYNAMIC OPTIMIZATION METHODS (DSE = DESIGN SPACE EXPLORATION, E2E = END-TO-END)

[ APPLICATION CONTEXT [ ARTICLE | TYPE [ DECISION | STATES \ ACTIONS |  REWARDS/COSTS |
Task scheduler [90] MDP Centralized Executed tasks Allocate time slots to mehed. tasks, missed
tasks deadlines, energy
System maintenance [91] MDP Centralized Exhausted nodes Replace (or keep) an Deplioymelvlt ACOSI’
exhausted node network performance
[92] MDP Centralized DSE’s hardware Modify hardware Network performance,
components components components cost
Dynamic configuration [93] MDP Centralized Hardware components Modify hardware Network performance,
components components cost
) MDP, - e . Sleep, inferior , sample, E2E delay, energy,
[94] POMDP Distributed | Position of generated data or aggregate. data consistency
Active links, buffer
[95] MDP Centralized occupancies, and Join the transmission set Energy
available energies

Then, Nourian et al. [83] designed a transmission scheme
over an error-prone channel in energy harvesting WSNs. The
channel’s data dropping depends on the transmit power, and
the channel gain and fading properties. This dropping problem
affects the data acknowledgment from the receiver to the trans-
mitting node, i.e., an imperfect and incomplete feedback. An
MDP is used to minimize the average error from the channel.
To calculate the channel’s average error, a Kalman filter-based
channel estimation technique is used, see [89] for an introduc-
tion to the Kalman filter. The MDP is solved using dynamic
programming, and the suboptimal solution is obtained with
reduced computational complexity. In a similar application,
Ren ez al. [84] addressed the scheduling and activation problem
of rechargeable nodes in event monitoring WSNs. Monitored
events and node recharging processes are assumed to be ran-
dom. Firstly, it is assumed that a node has full information about
the event occurrence from the previous iteration. The problem is
formulated as an MDP. Herein, energy budget, node’s activation
history, and event occurrence history are the states of the MDP.
Secondly, when the node has partial information about the
events (knowledge about currently active events), the problem
is formulated and solved as a POMDP. In this case, the energy
budget, node activation history, and node beliefs about event
occurrence are all used for POMDP’s states initialization. Fur-
thermore, cooperative event detection by multiple nodes is also
discussed. In a Matlab-based simulation, the event occurrence
is assumed to follow a Weibull or a Pareto distribution. The
results show that the activation policy captures events with
higher probabilities as the battery capacity increases.

B. Dynamic Optimization and Resource Allocation

WSNs operate in dynamic environments, and sensor nodes
need to adapt to the changes to minimize their resource con-
sumption. For example, a node that optimizes its channel access
protocol to a congestion condition can minimize its overall
energy consumption. Table VI outlines dynamic optimization
methods that are based on MDP schemes.

1) Task Scheduler: Zhu et al. [90] discussed task scheduling
and allocation of parallel applications in heterogeneous WSNs.
This scheduling process considers the energy consumption of
the heterogeneous nodes and parallel tasks’ deadlines. For
example, a resourceful node can finish the task in shorter time
but it consumes more energy than that of a less resourceful

node. Considering the task dependencies, the scheduler uses an
MDP framework to make the scheduling decision and assign
each task to the suitable nodes. The states include the currently
executed tasks and task allocation over heterogeneous nodes.
The action space corresponds to time slot allocation of tasks
to the available nodes. Moreover, the reward function evalu-
ates the task release (finishing) time, missed deadlines, and
energy consumption during task execution. The MDP-based
task allocation method is compared with a heuristic method
and a greedy one. The heuristic policy considers the task’s
release time, while the greedy policy considers the energy
consumption. The greedy policy does not guarantee tasks’
deadlines, and the MDP-based task allocation leads to less
energy consumption than that of the heuristic policy.

2) System Maintenance: Misra et al. [91] suggested an
algorithm for modeling WSN maintenance. In particular, the
designed algorithm considers the tradeoff between node re-
placement and network performance. The MDP policy de-
cides the minimum number of nodes that must be replaced to
maintain the network operation, and therefore minimizes the
network’s operational cost. Equally important, the algorithm
takes into account the replacement cost per sensor, e.g., when
replacing more sensors, the cost per sensor decreases. The
states are defined as the number of drained nodes in the net-
work. Additionally, a maintenance action is defined as replacing
a specific set of nodes at each maintenance instance.

3) Dynamic Configuration and Lifetime Modeling: In [92],
Grassi et al. considered the computer-aided design (CAD) of
WSNss that helps in selecting the optimized configuration of
hardware components. The node’s components, such as the
central processing unit (CPU), memories, and radio transceiver,
are designed to fit the deployment scenario and requirements.
An MDP is used instead of the conventional methods which
require complex simulation analysis of design space explo-
ration (DSE). The MDP’s states characterize different design
solutions of the DSE problem. The actions describe the com-
ponent changes that can be applied to each solution and result
in transition to a new solution state. In the same context,
Munir et al. [93] suggested tuning the node’s configuration
using an MDP. For example, the sampling frequency of the
node is optimized to match the responsiveness requirement and
environment condition. The full list of system’s parameters,
such as CPU’s voltage, frequency, sampling rate, defines the
MDP’s states.
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TABLE VII
SUMMARY OF DUTY CYCLE AND MAC PROTOCOLS (SG = STOCHASTIC GAME, SNR = SIGNAL TO NOISE RATIO,
E2E = END-TO-END, CAP = CONTENTION ACCESS PERIOD, CFP = CONTENTION FREE PERIOD)

[ APPLICATION CONTEXT [ ARTICLE [ TYPE | DECISION | STATES \ ACTIONS | REWARDS/COSTS
Duty cycle management [97] MDP Distributed lmuallzed&;lizep, active, Change node mode Energy
[98] SG Distributed Numbe;ggipponent Transmit, listen, or sleep Collision, energy
[99] MDP Distributed SNR Select access time Collision
MAC [100] MDP Centralized Butt'e T occupancy, Select transmission slots Energy » buffer cost,
available energy failing-penalty
[101] SG Distributed Numbern(:)tdz(smpetmg Transmit, listen, or sleep Energy, delay
. Buffer occupancies in Transmit (CAP, CFP, or Energy, throughput,
(102] MDP Centralized super-frames both), or wait bandwidth
DEC- - Buffer occupancies, . .
[103] POMDP Distributed traffic source Transmit or listen Throughout, E2E delay
Spectrum access [104] POMDP | Centralized Spectrum occupancy Sense §°r oc.cupy) the Ultra low .pqwer
spectrum networks

Another direction for system configuration is to optimize
nodes’ run time operations to match the dynamic environ-
ment conditions. For example, Kovacs ef al. [94] introduced a
methodology for dynamically optimizing WSN protocols such
as routing, data aggregation, and topology control. Essentially,
the considered performance metrics include data gathering
delay, energy consumption, and data consistency. The actions
are switch to idle mode, listen to events, sample readings, and
aggregate packets. Likewise, Lin et al. [95] addressed the multi-
hop transmission in both cooperative and non-cooperative
WSNs at MAC, routing, and physical layers. In cooperative
networks (CTNs), sensor nodes can decide to cooperate for
creating a virtual multiple-input multiple-output (VMISO) link
that is useful for delivering data to a sink at a distance.
These cooperating nodes (i.e., a co-operator) are called the
transmission set and each of them is assumed to have data in
its transmission queue. The analysis assumes that no neighbor
nodes can transmit at the same time, and hence hidden terminals
can cause collisions. The states include the transmission nodes,
buffer sizes, and available energies. Experimental results reveal
that the CTN with one co-operator extends the non-CTN’s
lifetime by a factor of 1.89. The network’s lifetime is also
linearly proportional to the battery capacity by factors of 1, 1.6,
and 2.1 in non-CTNs, CTNs with 2 co-operators, and CTNs
with 1 co-operator, respectively.

In summary, these algorithms for dynamic configuration and
lifetime modeling could be particularly challenging in outdoor
and harsh environments, where changing weather conditions
influence the wireless channel and interference models.

C. Duty Cycling and Medium Access Control (MAC)

WSNs operate under limited energy resource and the simul-
taneous activation of all autonomous nodes can ineffectually
waste this limited energy budget [96]. For example, continuous
activation of all sensors attached to the human body in activ-
ity recognition applications is not energy friendly. Moreover,
centralized activation systems require energy expensive data
exchange among network components. Duty cycling is the
mechanism to manage the active and sleep modes of nodes

while performing the required operations. MDPs are used to
optimize duty cycle and MAC as shown in Table VII.

1) Duty Cycle Management: Yuan et al. [97] proposed the
duty cycling algorithm for WSNs based on an MDP. The avail-
able energy is the main parameter to decide on the activation
of the sensor nodes. In particular, the algorithm guarantees that
the set of active nodes consists of the connected nodes with the
highest energy budgets. The MDP’s states correspond to node’s
states of initialized, sleep, active, or dead modes. Each node
must broadcast its available energy to other nodes, and therefore
full information is available for nodes. The key result is that the
energy conservation is inversely proportional to the number of
connected neighbors.

2) Media Access Control (MAC): Zhao et al. [98] suggested
a MAC protocol by using a stochastic game, where each node
deals with other nodes as opponents. The MAC operation is
divided into cycles and each cycle interval is for a packet
transmission. In each interval, a node takes an action of:
i) transmitting a buffered packet, (ii) switching to listen mode,
or (iii) switching to sleep mode. Moreover, the nodes dynami-
cally optimize their MAC contention parameters, e.g., backoff
time, based on the channel condition. This distributed algorithm
does not require exchanging action information among nodes.
Instead, the other nodes’ actions are predicted using the his-
torical observation. In particular, the detection of competing
nodes considers various cross-layer parameters such as SNR,
transmission probability, collision probability, and datagram
loss ratio (DLR). Accordingly, the current state is predicted as
the number of opponent nodes in each interval.

In [99], Wang et al. suggested an enhancement to the carrier
sense multiple access with collision avoidance (CSMA/CA)
protocol in WSNs. Basically, the study analyzes CSMA/CA
and its limitations in slowly fading Rayleigh channels. The
Rayleigh channel is modeled as an MDP to predict the channel
fading state. The SNR is quantized into ranges to represent
channel fading, and the node decides its channel access time
based on the channel state. Assuming that the channel state can
only change to one of the two neighbor states, the transmission
matrix is a tridiagonal matrix, i.e., a matrix with zero entries
except for main diagonal, and one line above and below the
main diagonal. This tridiagonal form helps in determining the
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Fig. 8. Timing and data exchange among a cluster head, two sensor nodes and
a sink using the hybrid MAC protocol proposed in [100] (CIFS = contention
window inter-frame spacing, RTS = request to send, CTS = clear to send,
ACK = acknowledge, SA = slot announcement, GB = guard-band, CA =
cumulative acknowledgment).

state at future time slots without specifying the initial state. In a
similar context, Jagannath et al. [100] introduced a MAC proto-
col that considers the physical layer parameters for optimizing
scheduling decisions. The protocol is designed for underwater
WSNs where nodes’ battery replacement is a laborious task.
Two MAC protocols are used: TDMA protocol for intra-cluster
transmission and CSMA/CA for inter-cluster transmission, i.e.,
cluster heads and sink data exchange. The exchanged data and
control messages are shown in Fig. 8. CSMA/CA’s control mes-
sages include contention window inter-frame spacing (CIFS),
request to send (RTS) and clear to send (CTS) handshaking,
and acknowledge message (ACK). By contrast, TDMA uses
coordinating messages such as slot announcement (SA), guard-
band (GB), and cumulative acknowledgment (CA) packets.
Within each cluster, a node selfishly estimates its required
transmission allocation using an MDP model and sends the
estimation to the cluster head. Then, the cluster head, based
on the channel quality and the data priority, assigns the MAC’s
slots to transmitting nodes to minimize the energy consumption.
The state of the node is a buffer size and battery state. Then, the
MDP’s action is the number of slots that the node requires for
transmission. The reward is composed of the energy consump-
tion in data transmission, buffering cost (avoid buffer over-
flow and hence data loss), node failure, and energy saving in
sleep mode.

Similar to [98], Mehta et al. [101] proposed a suboptimal
backoff algorithm for a MAC protocol to avoid collision in
WSNs. The backoff algorithm is used in CSMA/CA and is
decided by each node based on the transmission behavior of the
other nodes. The players in the stochastic game are the sensor
nodes competing for channel access. The actions are transmit,
listen, or sleep. Furthermore, each node tunes its contention
window size during the transmit mode. The proposed algorithm
considers the energy consumption, transmission delay, and
throughput. The proposed backoff algorithm is validated using
a Matlab-based simulation with 100 nodes. The conventional
MAC algorithm achieves high packet transmission rates for
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small numbers of nodes. However, the rate decreases as the
number of nodes increases, e.g., more than 20 nodes. The
proposed backoff algorithm enhances the scalability of conven-
tional MAC protocols by achieving better performance at the
increased number of nodes.

Unlike [100] which considers a hybrid CSMA/CA and
TDMA protocols at different hierarchical levels, Shrestha et al.
[102] divide the channel access into two periods of contention
(CSMA/CA) and contention-free (TDMA) phases. The pro-
posed design is for tackling the problem of poor CSMA/CA’s
performance (i.e., energy consumption and throughput) when
the channel is congested. This hybrid protocol is adopted in
IEEE 802.15.4 networks when the nodes encounter large buffer
sizes. A large buffer size is an indicator of a congested channel,
and data is dropped if the maximum buffer size is exceeded.
Based on the buffer occupancy, the infinite time horizon MDP
model is formulated and solved to obtain the transmission
policy: transmit in contention access period (CAP), transmit in
contention free period (CFP), transmit in both CAP and CFP, or
continue waiting without transmission. The reward is composed
of energy consumption, required bandwidth, and throughput.

Apart from the aforementioned work, Pajarinen et al. [103]
cast the problem of medium access using as a DEC-POMDP to
capture tempo-spatial correlation in data traffic. This MAC pro-
tocol is designed to consider the tradeoff between high through-
put and small delay. The DEC-POMDP model is employed
because of sensors’ noise and partial information about other
transmission. Each transmitting node builds its belief about
others’ transmissions by monitoring the interference level, and
therefore the protocol does not require control data exchange
among nodes. The system states include two parameters: traffic
source data generation (data and no-data generated), and the
current buffer occupancy of the transmission controllers.

On the negative side, applying an offline solution to find an
optimal MAC policy requires disseminating a new policy when
there are changes in the network, which would be relatively
costly. Moreover, even though the stochastic games are well
suited for MAC management, the computational complexity
becomes critical in large scale WSNs.

3) Spectrum Access: In [104], Seokwon et al. considered
the spectrum access of multiple WSNs with ultra low power
devices operating simultaneously. This introduces interference
and significant energy consumption. Hence, the study proposes
using a POMDP for spectrum access decisions which reduces
switching among transmitting channels. The POMDP’s states
include the spectrum occupancy state, and the action space con-
sists of commands to sense or occupy the spectrum. However,
it is found that the transmission overhead can be considerable
when sending the spectrum access schedule from the central
coordinator to each sensor at the beginning of each transmission
cycle.

As demonstrated with several examples in this section, im-
plementing resource and power optimization algorithms using
MDPs is possible and can significantly improve WSN opera-
tions. Sensing coverage and object detection are other important
issues in the development of WSNs. In the following section,
we review the existing literature on MDP-based sensing cover-
age and object detection algorithms in WSNs.
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TABLE VIII

SUMMARY OF SURVEYED SENSING COVERAGE APPLICATIONS (PTZ = PAN-TILT-ZOOM, AOI = AREA OF INTEREST, E2E = END-TO-END)

[ APPLICATION CONTEXT | ARTICLE | TYPE [ DECISION | STATES | ACTIONS |  REWARDS/COSTS |
[107] POMDP | Centralized Sensor activations Select k active nodes Detection probability
. . and coverage
Object detection Increase or decrease the
[108] MDP Distributed - o Move the actor node Detection probability
detection probability
[109] | POMDP | Distributed Zoomed-in or Manage PTZ camera Detection probability
zoomed-out camera zooming and direction
Rescue applications [110] POMDP | Distributed Cells within an AOI Select a moving direction cell coverage
i pp i Distance between the Connectivity, E2E
[111] MDP Centralized | coordinator and previous Choose movement steps delay, deployment
deployed relay cost

V. SENSING COVERAGE AND OBJECT DETECTION

Sensor nodes can be deployed manually or randomly. More-
over, some nodes can be mobile, and thus the deployed lo-
cations can change dynamically. In all deployment scenarios,
MDPs are used to achieve the following benefits:

» Sensing coverage: The MDP models are used to predict
the minimum number of active nodes to achieve the re-
quired coverage performance over time. Moreover, some
work assumes that mobile nodes can change their loca-
tion. In the latter, the MDP can predict optimal movement
strategies (e.g., movement steps and directions) of the
nodes to cover the monitored area.

* Target tracking: To increase the probability of object de-
tection, WSNs use MDPs to predict the future locations of
the targeted object, and to activate sensors at the expected
locations and switch off sensors in other locations. Addi-
tionally, the MDP models can predict optimal movement
directions of nodes to increase the probability of target
detection.

A. Sensing Coverage and Phenomenon Monitoring

Sensing coverage describes the ability of sensor networks to
provide complete information about the monitored area. The
sensor coverage problem is coupled with other networking and
connectivity perspectives of WSNs [105], [106]. For example,
although some nodes may not perform reading, they have to
be active to relay sensed data to a sink. Table VIII outlines
notable studies of sensor coverage modeling using MDPs. For
a clear discussion of these methods, we define three terms that
are widely used in the literature.

e Area of interest (Aol): Aol is the area that must be
precisely covered over time. Subareas inside the Aol can
be spatially correlated with each other, and therefore using
correct models enables predicting phenomena at uncov-
ered part based on other covered subareas. Moreover,
one specific area’s readings can be temporally correlated,
which means that the future readings can be predicted
from the past ones.

* Points of interest (Pol): Pol reflects the interest of phe-
nomena readings at specific location. Again, location
points can be temporally and spatially correlated, and
hence can be extracted from each other.

* Detection probability: In object tracking, the detection
probability describes the level of certainty about an ob-
ject’s location that can be achieved by activating a set of
nodes. Accordingly, when a higher detection probability
is required, generally more active sensors are needed.

1) Object Detection: The connected k-coverage problem is
a common formulation of the coverage problem, where k con-
nected nodes must be active at any time instant. Therefore, the
problem formulation insures coverage quality of the network.
Fei et al. [107] addressed the problem of enhancing the area
coverage in WSNs. Assuming a dense sensor deployment, the
algorithm selects the most useful sensors to be active. There-
fore, the other sensors can switch to sleep mode to conserve
their energy. Assuming a network that consists of n nodes,
an action is taken to activate k out of the n sensor nodes at
each decision interval. However, without complete information
about the targeted object, the algorithm is designed based on
an POMDP, and hence the object’s location is probabilistically
identified. The reward function is increased by one unit if the
object moves within an active sensor detection range, and a
negative reward is received otherwise. In [108], Ota et al. pre-
sented an optimized, MDP-based event detection mechanism
by using mobile sensor nodes. The mechanism is to minimize
mobile robot’s (also called actor node) movement strategy,
while maximizing the event detection probability. The param-
eters of the model are predicted using maximum-likelihood
estimation (MLE), see [89] for an introduction to the MLE. The
states are structured to capture an improvement or deterioration
of the detection probability, i.e., the state is either “increase” or
“decrease” in detection probability. The MDP model is solved
using reinforcement learning algorithms.

Vaisenberg et al. [109] utilized a POMDP to model the future
physical phenomenon. Consequently, the Aol can be better
monitored and covered by the deployed monitoring system.
The remotely-sensed values are considered as the POMDP’s
states. For example, consider a pan-tilt-zoom (PTZ) camera
monitoring system as a potential application. The designed
system optimizes camera directions and zooming actions to
maximize event detection probabilities. A “zoomed-in” action
help capture images with high resolution, but with small Aol.
On contrary, a “zoomed-out” action provides images for a larger
Aol. Then, the rewards are increased when objects are within
the captured images, e.g., object occurrence can be recognized
by an image processing technique. Fig. 9 shows the block
diagram of the developed system. The proposed decision policy
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Fig. 9. The block diagram of the scheduling framework presented in [109].

is evaluated for a human monitoring system and compared with
other standard methods such as a round robin-based method
that continuously cycles the camera’s focus between zooming
in and out. The proposed system outperforms the other standard
methods and gain the highest total reward values.

2) Area Coverage in Rescue Applications: Murtaza et al.
[110] discussed the coverage perspectives of using WSNs for
path planning of victim evacuation from disaster areas. The
path planning aims to determine the optimal paths for short-
time rescuing operation, which is critical for saving human
lives. Assuming unknown number and locations of victims,
a POMDP model locates casualties with the shortest possible
time. Moreover, due to the disaster damages, the mobile robot
has incomplete information about the covered area’s terrains
and how the casualties are distributed throughout the area.
Therefore, the proposed solution cannot prioritize subareas
of the total Aol. The states correspond to searching squares
of the Aol’s grid. Correspondingly, the actions are the eight
possible moving directions to neighboring squares. A robot will
acknowledge the base station if it can find a victim in any
locations during its movement. Therefore, the rescue team up-
dates its belief map simultaneously. Moreover, the probability
of finding other victims in nearby locations is also increased.
Otherwise, if no case is found in the scanned square, a clear
message is also reported.

In a similar context, Mondal et al. [111] discussed the
optimal deployment of relay sensors in emergency scenarios
and without prior knowledge of terrains. It is to decide sensor
placement for maintaining good connectivity, e.g., small end-
to-end delay at low cost. The problem is modeled as an MDP.
A coordinator, which deploys relay nodes, moves through the
Aol and decides whether a relay is needed at each step. The
distance between the coordinator and the last deployed relay is
considered as the current system state. The numerical results
consider a corridor area scenario with a restricted number of
available relays and show that deploying more relays decreases
the total energy consumptions of the network.

In conclusion, using MDPs for area coverage in rescue ap-
plications, as implemented in [110], [111], is an interesting and
useful idea to save human lives. However, more experimental
validation within practical environments should be conducted
before using these systems in real rescue cases.
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B. Target Tracking and Localization

The object tracking component is an important part of
WSNs in monitoring and surveillance applications. The core
object classification and detection process can be efficiently
performed by supervised machine learning algorithms [112].
Conversely, this section explains energy efficiency aspects of
tracking applications which can be modeled as MDPs, e.g.,
minimum node activation. The MDP-based methods analyze
the tradeoff between the energy consumption and the object
detection accuracy. Additionally, they predict the next object
activity and location that can be used to trigger the required
actions such as sensor and alarm activation. A comparison
of these target tracking methods is presented in Table IX. In
column “Parameters”, the detection accuracy is usually given
by the probability of false alarm generated by the algorithm.

1) Cooperative Object Tracking: In [113], Fuemmeler and
Veeravalli proposed a duty cycle management policy for track-
ing applications in densely deployed WSNs. A few sensor
nodes detect an object at the same time. Therefore, the other
sensors can be switched to sleep mode without affecting the
detection performance. An asleep sensor is assumed to stay
in inactive mode until its internal sleep timer finishes, and
it cannot be switched on by any external signal from the
control unit. There is a minimum threshold for the number of
active nodes that must be considered at any time instant. The
developed system is based on a POMDP model to optimize the
tradeoff between sleep nodes and detection performance using
a suboptimal policy. The nodes are assumed to be in one of two
states: sleep and active modes. The sensors’ sleep decisions are
managed by a central unit, which decides the sleep time for each
sensor. The cost function is composed of energy saving and a
detection performance.

For object detection in security and monitoring application,
Zhan and Li [8] proposed the scheme to locate malicious
objects in WSNs (Fig. 10). An adversary’s location is found
by cooperating nodes, and the final location is extracted by
an MDP. The MDP’s states represent the possible regions
surrounding a node, and a region can be at the intersection
of nodes’ detection areas. Therefore, the policy determines the
set of nodes to be activated to maximize the malicious object
detection. The simulation of a grid topology indicates that the
ratio between the localization error and coverage radius is less
than 0.3.

As an extension of the previous studies, Atia et al. [9]
considered the problem of object tracking under two sensor
deployments: overlapped and non-overlapped sensing ranges.
The overlapped case occurs when the targeted object is covered
by many sensor ranges, and the non-overlapped one considers
object detection by a single active node. In these cases, the
energy and detection efficiency tradeoff is optimized using
a POMDP. The POMDP’s states refer to beliefs about the
locations of an object which are stored in a central controller
to derive optimal sensor selection process. Later, Fuemmeler
et al. [114] extended the studies by assuming that the sensor
locations can be outside the covered areas. Each node can be
either in sleep or wake up modes. Therefore, the target object
can leave the network area. A centralized controller that uses
the POMDP determines the node activation and sleep time.
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TABLE IX
SUMMARY OF TARGET TRACKING AND LOCALIZATION METHODS IN WSNS (SG = STOCHASTIC GAME, HMDP = HIERARCHICAL
MARKOV DECISION PROCESS, CH = CLUSTER HEAD, CMDP = CONSTRAINED MARKOV DECISION PROCESS)

[ APPLICATION CONTEXT | ARTICLE | TYPE | DECISION | STATES [ ACTIONS |  REWARDS/COSTS
[113] POMDP | Centralized Node activations (sleep, Energy, detection
i active) probability
Cooperative object tracking [8] MDP Centralized Estimated Adversary s Energ)f consumption,
region Select active nodes detection probability
. Estimated object’s ’ ) Energy consumption,
9] POMDP | Centralized location detection probability
) . Estimated object’s Energy consumption,
(114] POMDP | Centralized location, sleep times detection probability
[115] SG Centralized | Quantized spectrum Energy, successful
) bandwidth transmission
Distributed CH’s state (sensing, Sensing rate, detection
([10] HMDP (CH) listening, or tracking) probability
Clustered tracking systems [116] MDP Distributed | Sensor’s state (sleep, Energy, detection
(CH) fully or partially active) probability
Oc(i‘uo‘:gz tlecr())nblszgci:)n Select active nodes and Network congestion,
[117] CMDP Centralized P myz’ttriX get detection threshold detection probability
(Upper tier) P”O”Fy : Assign a spectrum Priority
matrix, competing users
. Targets’ locations, node Energy consumption,
Multiple target tracking (18] POMDP | Centralized activations detection probability
Tareets’ locations and Select active nodes Nodes’ interception
[119] POMDP | Centralized et . risk, detection
velocities
accuracy
[120] POMDP | Centralized | Human body activities ﬁnerg)f COHSU];I‘I 1[))t110n
Health and body networks ctection probabiity
) [121] POMDP | Centralized Human body activities Energy consumption,
(sit, stand, etc) detection probability
[122] MDP Centralized Asset’s location Move (ng?:&ei?)u th, east, Transportation delay
Prioritized data delivery [123] MDP Distributed Targets 100"& tions and Send or discard a Detection probability
velocities message
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Fig. 10. Adversary detection by nodes where each node has a different detec-
tion range as presented in [8].

Huang et al. [115] considered the problem of object de-
tection, where the channel spectrum is limited and shared
among nodes. A node takes actions to control its operation
state which is active or sleep. Moreover, a coordinator manages
the required spectrum bandwidth by considering the number of
active nodes. The joint actions of all nodes are important from
two perspectives. Firstly, it is used in spectrum management to
decide the transmission. Secondly, it is required to optimize the

object detection task by selecting the number of active nodes.
The problem is solved using a Q-learning algorithm to find a
correlated equilibrium. The experimental analysis considers a
2 x 2 grid topology and 10 states of the available spectrum
bandwidth. The correlated equilibrium policy is found after 300
update iterations, which is relatively fast.

To sum up, the algorithms proposed in [8], [9], [113]-[115]
require an offline learning phase at a central unit. This central-
ized design incurs high costs of gathering data to a base station,
and calculating a tracking policy.

2) Clustered Tracking Systems: In clustered architectures,
object detection is performed by considering the resource avail-
ability at each device. Yeow et al. [10] introduced the target
tracking algorithm that considers both the spatial and temporal
characteristics of sensor movement. The tracking problem is
divided into two parts: (i) prediction of targets at lower level
agents (LLAs), and (ii) activation management at a higher level
agent (HLA). Here, the HLA is a cluster head that selects the set
of active sensor nodes, i.e., LLAs. The algorithm is based on an
HMDP model which minimizes the sensing rate of the sensors
and maintains the detection accuracy. The model’s states are
shown in Fig. 11. The cluster head operates under the states of
periodic sensing, tracking, or active listening. In the periodic
sensing state, the cluster head sleeps and wakes up periodically
to sense any target. The tracking mode is activated when a target
is detected. Finally, the listening mode is triggered when other
cluster heads inform the detection of a target and it is expected
to approach the cluster head covered area.
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Fig. 11. Sensor’s state transition during target tracking as suggested by [10].
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Fig. 12. State transition of object tracking sensors in surveillance systems as
presented in [10].

Misra and Singh [116] considered the problem of precise
object targeting in surveillance systems using WSNs. The min-
imum number of active nodes is selected by cluster heads to op-
timize energy consumption of the network. The node selection
is optimized based on an MDP. A cluster head knows about an
object’s existence after receiving a message from neighboring
clusters or when the object moves within the cluster head’s
detection area. The future object location is predicted using
a Kalman Filter. Accordingly, a sensor node can be in sleep
mode, partially active (sensing signals but not processing), or
fully active mode (sensing and processing) as shown in Fig. 12.
In the partially active mode, the cluster head can send a wake
up request to the node to switch it to the full active mode.

In cognitive radio, secondary users are allowed to oppor-
tunistically access the spectrum when it is not occupied by the
primary users [124]. Jamal et al. [117] used two CMDP models
for efficient detection in cognitive radio WSNs. The system
takes into account the detection accuracy, network congestion,
and spectrum access constraints. The system is structured into
two tiers. The upper tier consists of secondary users (cluster
heads) to deliver messages to a base station. The lower tier
comprises sensor nodes and the corresponding cluster head, i.e.,
a secondary user. A typical clustered architecture is shown in
Fig. 13. The CMDP model is employed for balancing between
high detection accuracy and low network congestion. Each
node estimates the detection delay and sends it to the cluster
head where a consensus delay decision is calculated. The
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Fig. 13. A typical clustered architecture consisting of cluster heads and sensor
nodes.

second CMDP model is used to manage spectrum access at the
upper tier by considering event arrival rates, queue status, link
quality, service priority, and collision probability. At this upper
tier, the actions comprise assigning the available spectrum to
the secondary users.

3) Multiple Target Tracking: Li et al. [118] extended the
model in [113] to consider multiple target tracking. Again, the
main goal is to analyze the tradeoff between energy saving
through node sleep and detection performance. The centralized
POMDP model uses a Monte Carlo method to find the belief
states and to select a set of sensors for activation. The problem
is solved using a combined method of particle filtering and a
Q-value algorithm. In the same way, Zhang et al. [119] pre-
sented a multiple target tracking solution based on a POMDP.
The solution minimizes the number of active sensors to reduce
the likelihood of sensor discovery (signal emission discovery)
by enemy entities. Therefore, the balanced design is between
the detection accuracy and the sensor’s interception threat.
The study assumes fixed sensors which operate independently.
Each sensor can track a few targets simultaneously as long
as the targets are within the detection range of the sensors.
The POMDP’s states correspond to target locations and moving
velocities.

4) Health and Body Wireless Sensor Networks: Biometric
sensors, e.g., pulse oximeters and electrocardiogram sensors
(ECQG), are widely used to detect human body activities such
as in e-health applications. Au et al. [120] discussed WSN-
based chronic disease monitoring systems for real time tracking
of human physical conditions. To prolong sensor lifespan, the
scheduling algorithm is used to manage the sensor selection
and activity by using the POMDP framework. In particular,
the scheduling algorithm considers an equilibrium between
detection accuracy and energy consumption by predicting if a
sensor’s activation is required in the next time instant. The state
space contains the classified human’s activities, and the sensors’
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Fig. 14. An example of poor coverage issue that generally occurs in indoor
sensor applications [122].

readings are the observed beliefs. The action space includes
the command for activating or switching off sensors. Similarly,
Zois and Mitra [121] introduced a model for activity detection
in wireless body area networks (WBANSs). The network is
composed of heterogeneous nodes, and the node selection is
optimized for maximum energy saving and maximum detection
performance. Examples of detected human activities include
standing up, running, walking, etc. Assuming noisy sensor
outputs, a POMDP formulation is derived and solved using
dynamic programming to obtain the selection strategy. The
transition matrix is a square matrix that reflects the probabilities
of switching between different body activities.

For fast asset transportation, Pietrabissa et al. [122] dis-
cussed the tracking complication in hospitals including the
localization of medical asset. This enables finding the moveable
asset efficiently by using radio-frequency identification (RFID)
technology. As an indoor application, the sensor coverage is
affected by wall and equipment inside the building (Fig. 14).
The developed scheme also uses an agent to locate an asset and
optimal path to bring the needed asset from storage location
to asset’s usage room. The states of the MDP correspond to
the grid sectors of the hospital area, and the actions of the
controller unit are movement operations to any of the four
directions (north, south, east, or west). A reward is given if the
transportation agent delivers the asset to the destination.

5) Prioritized Data Delivery: In [123], Pino-Povedano et al.
discussed the operation of selectively dropping unimportant
data samples in target tracking applications. To maximizing
the probability of delivering important messages over normal
ones. In this application, an unimportant sample is that does not
help in the object detection. The dropping scheme considers the
node messages’ importance, battery level, and transmission link
cost. Each node takes an action of either sending or dropping
the message to reduce its energy consumption over the radio
transceiver based only on its local information. A successful
delivery of important messages to the sink yields one unit of
reward, and therefore a feedback is expected from the sink
back to the source node. However, as the feedback may require
long time to be received resulting in significant data load, the
proposed scheme uses a suboptimal scheme based on two hop
feedback, i.e., the outcome of data transmitted for two hop away
from the source node. The simulation compares the suggested
forwarding policy with a non-selective scheme that forwards
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all data samples. The proposed policy remarkably extends the
network’s lifetime and minimizes the total energy consumption.

The reviewed papers in this section have shown that the MDP
models are useful for solving problems in sensing coverage
and object detection. However, experiments using real world
testbeds and deployments are still needed. Moreover, consid-
ering a grid topology is common in the literature, and hence
further work is required for more general deployment distribu-
tion (e.g., the Poisson distribution). The next section reviews
the adoption of MDPs for security and intrusion detection.
The security component of a WSN ensures confidentiality and
integrity of collected sensors’ data [125].

VI. SECURITY AND INTRUSION DETECTION

This section reviews the security related applications of an
MDP in WSNs as summarized in Table X. The few MDP-based
security methods in the literature discuss the following issues:

* Intrusion detection: One method for the detection of intru-
sion vulnerable node is based on an MDP. This is done by
analyzing the correlation among samples collected from
the nodes. Thus, the intrusion and intrusion-free samples
are traced by an intrusion detection system (IDS).

* Resource starvation attacks: Resource starvation attacks
aim at denying nodes from accessing the network re-
sources such as wireless bandwidth. This is similar to
the denial-of-service (DoS) attack. MDP-based security
methods are developed to analyze the attacking entity
behavior to select the optimal security configuration.

A. Intrusion Detection and Prevention Systems

An intrusion detection system (IDS) monitors the nodes’
collected data for abnormal samples. An abnormal reading is
treated either as an indication of a malfunctioned sensor node
or an external malicious attack. Agah et al. [126] addressed
the problem of intrusion detection in WSNs by determining
the most probable vulnerable nodes in the network. Thus, a
vulnerable node can be protected and defended by further se-
curity mechanisms. The idea behind this design is to minimize
the resource consumption in terms of memory and energy in
protecting the network by restricting the number of protected
nodes. One of the introduced mechanisms to define the vulner-
able nodes is obtained from an MDP formulation. The MDP
formulation is to predict the attacker’s behavior and the next
attacked node, i.e., the most vulnerable node. Then, the IDS
receives the reward based on its prediction accuracy. That is,
if the attacker attacks the protected node, this results in high
reward value. The states of the MDP is the different nodes in
the network and the attacker will move between these states.
Additionally, the IDS will predict the transition probabilities
between the states. The IDS receives a positive reward if it
successfully predicts the next attacked node and a negative
reward upon a failed prediction.

Alpcan and Basar [127] considered the problem of intrusion
detection in WSN5s using a 2-player zero-sum stochastic game.
The IDS is the first player, aiming to protect the network. The
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TABLE X

SUMMARY OF SECURITY SURVEYED SECURITY METHODS (SG = STOCHASTIC GAME, IDS = INTRUSION DETECTION SYSTEM,
MTTF = MEAN TIME TO FAILURE, PDR = PACKET DELIVERY RATIO, RSSI = RECEIVED SIGNAL STRENGTH INDICATOR)
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[ SECURITY ASPECT | ARTICLE | TYPE [ DECISION | STATES | ACTIONS | REWARDS/COSTS
[126] MDP Centralized Attacked sensor nodes Detect the mtmjﬂon s Pl.”f‘!d]C[]On
next attack performance
IDS: select a protecting
Intrusion detection . action .
[127] SG Centralized Attack type Attacker: select an attack Attack detection
type
[128] POMDP | Centralized Intruder’s 100th 1on, sensor Select active sensors Detection
activations performance
[129] MDP Centralized Sample, alarm Control active nodes False a(liz;;r;/, alarm
IDS: defend, do not
[130] SG Centralized Vulnerable, weak, risk defend MTTF
N ’ T Attacker: attack, do not
attack
[131] MDP Centralized Node's state (ul?der—attack Defense a node Intrusion detection
or secure)
[132] MDP Centralized Attacker’s detection Defense a node Attack detection
. (detected or undetected)
Resource starvation attacks - - - — -
[133] MDP Centralized Channel jamming (PDR Activate an anti-jamming Energy, overhead,
o & RSSI) method channel hopping cost
IDS: defend, do not
. Coordinator state (hacked defend
[134] G Centralized or normal) Attacker: attack, do not Hop count
attack

second player is an attacking entity. The attacking entity takes
actions by deciding an attack type that it can perform. The
IDS action space includes passive and active action. Alarm
activation is an example of passive actions, and collecting more
information is an example of the active actions. The game state
represents the detected attack at a time instant. Thereby, the
transition matrix contains the probabilities of switching from
one attack to another. As a zero-sum game, a successful IDS
prediction of the attack results in a positive reward for the IDS
and the negative reward for the attacker, and vice versa for a
failed prediction by IDS.

To minimize energy consumption of an IDS, Krakow et al.
[128] considered the design of an energy efficient perimeter
security system using WSNs and a POMDP. In particular, the
POMDP model is to optimize the tradeoff between the detection
performance and energy consumption by predicting the future
location of an intruder. The system assumes partial information
about the intruder state, and the posterior probabilities of the
state beliefs are updated over time. The states consist of the
intruder location and velocity, and the activation of other nodes.
Then, the centralized POMDP policy predicts the activation
decision for each sensor. Similarly, Premkumar and Kumar
[129] suggested an energy efficient, MDP-based scheme for
detecting intrusions using WSNs. During the system sampling
state, a central unit coordinates all sensors into two operational
subsets: an active and a sleep subset. The reward function takes
into account the cost of false alarm, alarm delay, and collected
samples using sensors.

Shen et al. [130] proposed a stochastic game-based attack
detection mechanism for WSNs. The mechanism detects future
attacks and the probabilities of changing the attack behaviour.
Similar to [127], the problem is modeled as a 2-player zero-
sum stochastic game. The mechanism maximizes the mean
time to failure (MTTF) of nodes, which is a reliability metric.
Therefore, an attacked node can be in one of three states:

vulnerable, weak, and risk states. The attacker has two actions
of whether to attack the nodes or not. The defending system
takes protection actions, or it stays idle. The attacker receives a
positive reward if it attacks the network while the protection
system decides to stay idle. The simulation shows that the
MTTF decreases as the attacking probabilities increase, and the
survival lifetime is proportional to the number of nodes.

Furthermore, Huang et al. [131] proposed an MDP-based
intrusion detection and protection scheme for WSNs. The MDP
framework detects a set of the vulnerable nodes to intrusion
attacks at each time instant. The IDS coordinator receives a
positive reward when it successfully predicts and secures the
attacked nodes, and a negative reward if it fails to do so. The
IDS stores the attackers’ information and patterns, such as
the time and interval of each attack, to predict future intrusion
behavior and the time of their occurrence.

By contrast, the algorithms proposed in [126]-[131] require
an offline learning phase at a central unit. This centralized
design incurs high costs for data gathering to a base station.

B. Resource Starvation Attacks

Resource starvation attacks aim at stopping WSNs from
normal operation by consuming network resources. For exam-
ple, McCune et al. [132] proposed a security mechanism to
prevent packet denial attacks in broadcast protocols. In this
type of attacks, the adversary prevents the network nodes from
receiving the broadcast messages sent by the base station.
The proposed mechanism relies on receiving acknowledgment
messages (ACKs) from a randomly selected subset of nodes,
thereby preventing acknowledgment implosion problems. Ac-
knowledgment messages are received from each node in the
network. Consequently, the failure to receive the broadcast
message is assumed to be due to the adversarial attack, not a
result of networking congestion. The proposed mechanism uses
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an MDP to model the attacker. The two attacker’s states are a
detected and an undetected states. The actions reflect the chosen
node by the attacker for a denial attack, and hence the system
will try to protect that vulnerable node.

Li et al. [133] tackled the problem of radio jamming in
WSNs which causes low data exchange rates among sensor
nodes. The proposed framework implements many state-of-the-
art methods, and each method solves only a specific jamming
case and no general solution can handle all jamming cases.
Therefore, the suggested framework dynamically enables a
suitable method for the existing jamming case based on the
characteristics of jamming attacks. This MDP-based adaptive
framework enables selecting the anti-jamming scheme without
any node reprogramming. Applying an anti-jamming technique
at a specific time is considered as an MDP’s action. The action
is chosen based on the cost of different anti-jamming technique
and sensed channel conditions. The channel conditions depend
on the jamming nodes’ transmit power formulated as packet
delivery ratio (PDR) and received signal strength indicator
(RSSI). Additionally, the cost of different anti-jamming tech-
niques are identified by power adjustment cost, error control
overhead, and channel hopping and scanning costs.

Liu et al. [134] studied the security issues of using cen-
tralized coordinator to manage WSNs. Specifically, attacking
the coordinator node can severely degrade the network per-
formance and throughput. For example, a simple jamming
attack near the coordinator can stop the data flow. Therefore,
a coordination selection method is suggested to minimize hop
counts from ordinary nodes to the coordinator as well as to
protect the coordinator from malicious attack. The defending
mechanism is based on stochastic games. The coordinator is
the defending player and the malicious entity is the attacking
player. The state space includes both normal and attacked states.
The actions are attack and defend. Using the Network Simulator
(NS-2) and a jamming attack scenario, it is shown that selecting
a new un-attacked coordinator to manage the network topology
increases the total throughput and lifetime of the network.

In summary, the existing literature of MDP-based security
methods is relatively small. Clearly, stochastic games are well
suited for probabilistic security monitoring and attack remedi-
ation, and further research is required to expand the prelimi-
nary results reviewed in this section. By contrast, using fully
observable MDPs for preventing channel jamming seems to
be practical because they do not require high computational
resources. The following section is dedicated to custom ap-
plications of WSNs that have been addressed using MDP-
based algorithms. Each of these applications comes with special
requirements in terms of sensor types, energy consumption, and
design objectives.

VII. CUSTOM APPLICATIONS AND SYSTEMS

This section describes many WSN applications that have
been enhanced using the MDP framework including visual and
modeling systems, traffic management and road safety, unat-
tended wireless sensor networks (UWSNs), agriculture wire-
less sensor networks (AWSNSs), wireless sensor and vehicular
networks (WSVNs).
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A. Visual and Modeling Systems

Zhuang et al. [135] addressed the combination of Web ser-
vices for real time data retrieval and search in WSNs, e.g.,
for equipment monitoring applications. In this context, a Web
service provides an efficient mechanism to deliver the physical
data for many applications in a uniform manner, and hence it
provides an interoperable data exchange. The continuous and
massive data collected by sensor nodes requires an optimized
query architecture. The raw sensor data is represented using
the Extensible Markup Language (XML) which facilitates data
processing and information retrieval. This design adopts an
MDP to estimate the uncertainty in query results. The states
include the service’s stateful resources (i.e., sensors with tem-
poral data) which can be queried by exchanging messages
among web services.

Many recent applications of WSNs are based on camera
sensors which require special resource management in terms
of energy and bandwidth resources. Therefore, Fallahi et al.
[136] discussed the assurance of quality of service (QoS) in
WSNss consisting of video camera nodes that capture and send
video to a fusion center. In addition to energy limitations be-
cause of sending large size data, the QoS provisioning imposes
another constraint. The authors therefore proposed an MDP-
based scheme for adaptive power allocation while considering
the scene generation rate, transmission buffer allocation, and
physical channel parameters. The MDP formulation considers
the moving picture experts group (MPEG) coded video, and
an optimal policy is found using dynamic programming. The
considered QoS metrics are the energy saving, data dropping
rate, and transmission delay.

B. Traffic Management and Road Safety

In [137], Witkoskie et al. considered the problem of multiple
target road monitoring systems fixed at road intersections. An
MDP resource management algorithm is developed to manage
the sensor activation. The road is divided into monitoring
segments and a unified hypothesis about any hostile existence
is built by considering sensors’ outputs at each road segment.
The states represent the system knowledge about the number of
discovered targets. Therefore, if the system state, i.e., knowl-
edge, about the targets is high, less samples are needed from
the sensors, and more sensors can be switched to sleep mode to
save energy.

C. Unattended Wireless Sensor Networks

Unattended wireless sensor networks (UWSNs) are designed
to work for relatively long time without maintenance or battery
change. Accordingly, Misra and Ankur [138] presented an
energy saving scheme for selective node activation in UWSNSs.
The scheme considers the energy consumption, topology main-
tenance, and reliability requirements in the MDP formulation.
The scheme considers the distance between nodes, node’s
energy budget, and number of neighboring nodes. A global
positioning system (GPS) device is assumed to be available at
each node. The node transits between five states: sleep, active,
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neighbor discovery, emergency detection, and idle (no sensing)
modeS. Likewise, Ghataoura et al. [139] investigated the use of
UWSNSs in monitoring and security applications. A POMDP is
used to extract the temporal context of the threat and determine
the optimized transmission time.

Self-management solutions enable nodes to reconfigure
themselves if they experience software and hardware failures.
For example, Bhuiyan et al. [140] discussed WSN maintenance
in event detection applications by proposing a local mainte-
nance and failure monitoring routine. Specifically, the sug-
gested maintenance algorithm detects specific network failures
that can occur during event monitoring, such as link and node
faults. Accordingly, the algorithm activates a prompt mainte-
nance action. The node autonomously detects its faults using
an SMDP during its active mode. The active mode includes
three states: pre-processing, running and idle modes. The node
is considered to be failed if the current state is inconsistently
modified, i.e., does not follow the transition matrix. Moreover,
the study considers link faults and suggests an election scheme
for the link monitoring coordinator that uses a Markov chain in
its link estimation process.

D. Agriculture Wireless Sensor Networks

Shuman et al. [141] developed an energy efficient soil mois-
ture sensing scheme using a POMDP. The scheme schedules
the sampling task of the sensors in such a way that sparse
samples are taken for the area of interest. Then, the nodes are
assumed to be noiseless and operate in one of two modes: active
or sleep modes. The actions correspond to sensing moisture
measurements at different soil depths. These assumptions are
used to cast the POMDP problem into an infinite time horizon
MDP structure which can be solved by dynamic programming.
Similarly, Wu et al. [142] studied soil moisture sensing us-
ing a few readings. The measurement management scheme is
designed based on a POMDP. The locations of measurements
over time are considered as the states, and the action space
describes whether sensing the moisture is required at each state.
The moisture values are assumed to be quantized to a finite
number of states. The proposed scheme is compared with an
open-loop method that is based on compressive sensing. The
POMDP method is more precise and achieves a balanced trade-
off between the sensing cost and recovery error. However, the
compressive sensing method is less computationally intensive
and does not require statistical knowledge of the underlying
random process.

E. Wireless Sensor and Vehicular Networks (WSVNs)

Wireless sensor and vehicular networks (WSVNs) use mov-
ing vehicles such as cars and buses to collect data from de-
ployed sensors and then deliver the data to the base station. An
example of WSVNSs is shown in Fig. 15. In [143], Arshad et al.
studied the buffer allocation problem of vehicular nodes in
sparsely deployed WSNs. The proposed scheme provides fair
service to all source nodes that are selected to transmit their
data through the roadside relay node by managing their buffer
requirements. An SMDP model is developed to provide a look-
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Fig. 15. An example of wireless sensor and vehicular networks (WSVNs).

up table of the optimal data collection decision at the relay
node. The buffer size of the relay node is divided into multiple
levels, and the current state depends on the buffer occupancy
with sensor data. At each time instant, a relay node decides to
receive the nearby sensor’s data, drop data, or keep the current
state until the data in the buffer is delivered to a passing vehicle.
The study assumes that the data sensing process follows a
Poisson distribution, and the buffer state duration is indepen-
dent and identically distributed (iid).

Similarly, Choi et al. [144] designed an MDP model to
optimize data routing in WSVNSs. The problem formulation
takes into account the data delivery delay which is affected by
the vehicle’s speed and distribution. The state space consists of
the data delivery at the intersections. The data delivery depends
on the link condition which is decided using the MDP model.

VIII. FUTURE TRENDS AND OPEN ISSUES

WSNs find new applications and serves as a key platform
in many smart technologies and Internet of Things (IoT). This
continually introduces open design challenges in which MDPs
can be used for making decisions. In this section, we discuss a
few open research problems that have not been fully studied in
the literature, and they require further research attention. These
future research directions are discussed under three topics:
(i) challenges of applying MDPs to WSN, (ii) emerging MDP
models, and (iii) emerging topics in WSNss.

A. Challenges of Applying MDPs to WSNs

The MDP framework is a powerful analytical tool to address
stochastic optimization problems. The MDP framework has
proven its applicability in many real world applications such
as finance, agriculture, sports, etc [30], [145]-[147]. How-
ever, there are still some limitations that need further research
study.

1) Time Synchronization: Most existing studies assume per-
fect time synchronization among nodes. This assumption en-
ables the network nodes to construct a unified MDP cycle
(sense current state, make decision and take actions, sense new
state, etc.). Therefore, the clock of the node must be adjusted
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to a central timing device (see [148], [149] for time syn-
chronization algorithms in WSNs). Besides, the clock may
not be perfectly synchronized because of various delay. The
mechanisms to address these issues must be developed.

2) The Curse of Dimensionality: This is an inherent problem
of MDPs when the state space and/or the action space become
large. Consequently, we cannot solve MDPs directly by apply-
ing standard solution methods. Instead, approximate solutions
[27]-[29] are usually used. The work in [51], [56], [67], [79]
present some examples of using approximate solutions to re-
duce the complexity of MDP-based methods in WSNs.

3) Stationarity and Time-Varying Models: It is assumed that
the MDP’s transition probabilities and reward function are time
invariable. Nevertheless, in some systems, this assumption may
be infeasible. There are two general methods to deal with non-
stationary transition probabilities in Markov decision problems.
In the first solution, an online learning algorithm, e.g., [150],
[151], is used to update the state transition probabilities and the
reward function based on the environment changes.

In the second approach, the state space is extended by in-
cluding time to deal with non-stationary transition probabilities.
This idea derives from the fact that transition probabilities can
be defined as a function of time. Thus, by using time as a
state, the transition probabilities become stationary with state
space. For example, conjugate MDPs (CoMDPs) [152] include
selecting time-varying parameters when transiting from a cur-
rent state to a next state. Examples of time-varying parameters
include approximation weights and learning rates. After mov-
ing to a new state, the time-varying parameters are also updated.
Therefore, a coordinate ascent method is used for the policy and
time-varying parameter optimization. A related idea is found in
the one-counter MDP (OC-MDP) model [153] which extends a
basic MDP formulation by introducing a counter variable that
is modified during state transition. In particular, the transition
depends not only on the current state but also on the counter
value. OC-MDPs include two types of states: random and
controlled states. The transition of the random state is decided
over a probability distribution. Alternatively, the transition from
the controlled state is determined by a controller.

4) Real System Measurements: The reviewed papers in
Sections III-VII have clearly shown the efficiency of the MDP
models in various WSN problems. However, using real world
data sets is limited to a few papers as in [109], [140], [142].
In particular, most of the reviewed papers restrict their experi-
ments to empirically generated data and simulators (e.g., using
Matlab [49], [73], [93], [94], the NS-2 simulator [60], [61],
[72], [103], and OMNeT++ [11], [139], [140]). Therefore, the
existing literature lacks insight into long-running experiments
using real world testbeds and deployments to assess system-
wide performance under changing conditions, and hence rigor-
ous testbeds are still required for systematic validations of the
MDP models.

B. Emerging MDP Models

Recently, many new models and solution techniques have
been introduced for MDPs. These recent advances can help
in developing more effective WSN solutions and overcoming
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Fig. 16. A self organizing map with a 4D input space that is mapped to
12 distinctive classes in a 2D output lattice. Synaptic connections are tuned
using an offline competitive learning over historical data.

limitations of classical MDP-based models. Examples of these
advances are summarized as follows.

1) State Abstraction Using Self-Organizing Maps (SOMs):
Self-organizing maps (SOMs) [154] classify continuous value
sensory inputs into distinctive output classes. SOMs are un-
supervised artificial neural networks that can learn high-level
features from a historical data as shown in Fig. 16. For MDP
state abstraction, the input layer is fed with the state parameters,
and the high-level states are produced at the output layer.
Thus, the generated states present the correlations between
input parameters. It has been shown that using SOMs can
automate the formulation of distinctive states for MDPs in
general robotics [155], [156]. Even though SOMs were used
in a few applications [112], the use of SOMs for MDP state
formulation in WSNs is not well explored. Such exploration can
reduce the complexity of solving problems with continuous and
discrete state values which is a promising benefit for practical
applications of MDPs in WSNs.

2) Learning Unknown Parameters: In a MDP framework,
we assume that the transition probability function and the
reward function are known in advance. In some application
contexts, this requirement may be impossible. Therefore, learn-
ing algorithms [28], [30] are used. Another direction is using
robust MDPs (RMDPs) [157] that deal with the uncertainty
in selecting modeling parameters (e.g., transition kernel) by
learning these unknown parameters from historical data. An
RMDP model is suitable for the systems where the long term
expected reward is sensitive to the difference between the esti-
mated and actual transition probabilities. This model provides a
probabilistic confidence on the system performance and under
worst-case conditions.

3) Near-Optimal Solutions: Sensor nodes are independent
controllers located in an environment and their decisions have
mutual effects on each other. Many Markov models were used
to for multiple controllers as reviewed in this paper including
multi-agent MDPs, distributed MDPs, and stochastic games.
Nevertheless, most of the existing solutions assume that the
nodes can observe the state of each other by exchanging infor-
mation or through a central coordinator. This assumption may
be inapplicable in some practical contexts because of noise,
constrained-hardware, and battery limitation. Consequently,
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we have to consider other kinds of the Markov models, e.g.,
partially observable multi-agent MDPs. Two major candidates
for such models are decentralized partially observable MDPs
(DEC-POMDPs) [38] and partially observable stochastic
games (POSGs) [43]. Although these models formulate prob-
lems with partial observations and multiple controllers, their
solutions are very complicated as explained in Section II-C.
Therefore, this leads to implementation difficulties in WSNss.
Alternatively, a possible research direction is to derive near-
optimal solutions and estimations for these methods, which
incur less complexity.

C. Emerging Topics in WSNs

This section discusses three potential research opportunities
for using MDPs in WSNGs.

1) Cross-Layer Optimized Sensor Networks (CLOSNs): The
cross-layer optimization has been proposed to circumvent the
limitations because of standard layer-based protocol design,
and it is recently adopted in WSNs. A cross-layer architecture
enables the interaction of protocols at different layers and
supports multiple QoS objectives such as end-to-end (E2E)
delay, bandwidth usage, loss rate, etc. This provides more
flexibility to solve many issues in WSNs [158]. MDPs are
suitable for optimizing multiple objectives at different layers,
and a few works in the literature presented MDP-based cross-
layer algorithms such as in data aggregation [52], transmission
scheduling [62], and object tracking [15]. Accordingly, further
research is required for a viable and universal design, and
where the MDP model can be used for the multi-objective
optimization (e.g., resource allocation algorithms, distributed
source coding, cross-layer signaling, secure transmission, etc.).

2) Cognitive Radio Sensor Networks (CRSNs): Cognitive
radios are developed for efficient dynamic spectrum sharing.
CRSNs benefit from dynamic spectrum access, and they can
be applied to many applications such as indoor and heteroge-
neous sensing, multimedia networks, and real-time surveillance
applications [124]. A few works in the literature discussed
the potentials of using MDPs in CRSNs with a centralized
coordinator, e.g., [74], [117]. However, there are many further
research potentials for using MDPs in CRSNs including QoS
aware routing methods, distributed spectrum sensing, and op-
portunistic data collection and transmission. Moreover, game-
theoretic studies for CRSNs are interesting research directions
where nodes independently and rationally take spectrum access
actions. A stochastic game approach enables finding any kind
of equilibrium solutions and minimizing interference among
transmissions of competing nodes. On the complexity aspect,
finding optimal MDP solutions in CRSNs depends on the
number of sensor nodes, and therefore exploring suboptimal
and estimation solution with less complexity is important for
large scale CRSNs.

3) Privacy Models: WSNs are finding more applications in
human-centric services, and hence the collection of private and
confidential data becomes a crucial issue. Privacy is required
to protect data form suspicious entities. For example, many
studies discussed the patients’ privacy concerns when using a
wireless body area network to gather data about daily health
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conditions [159], [160]. However, the resource limitations of
WSNs impede the wide inclusion of privacy solutions to protect
message confidentiality [161]. MDPs can be used to find a
balanced tradeoff between the complexity of privacy models
and energy consumption. Furthermore, another direction is to
use stochastic games to model the interaction between a WSN
and malicious entities.

4) Internet-of-Things (IoT): The IoT consists of sensing
devices and benefits from the Internet infrastructure, and hence
the WSN technology is a key component of many IoT ap-
plications. Herein, sensor nodes (referred to as smart objects)
require energy-efficient solutions and interact with a variety
of computing systems. An MDP is a promising tool to op-
timize the multi-objective optimization in IoT systems. For
example, Li er al. [162] studied the integration of web services
in IoT systems while considering the reliability and resource
consumption (e.g., energy and bandwidth cost) using an MDP
model. Yau et al. [163] proposed an MDP-based intelligent
planning in mobile IoT that incorporates mobile cloud systems
into the standard IoT technology. In 2020, 24 billion devices are
expected to be interconnected [164]. Therefore, an important
research direction is proposing scalable and distributed MDP
solutions for decision making in IoT systems. For example,
traffic-aware routing and transport protocols which consider
the energy-QoS constraint specifically need further research
efforts. Moreover, the IoT networks require massive buffering,
and therefore IoT transport protocols must also include the
buffering constraints.

IX. SUMMARY

This paper has provided an extensive literature review related
to the Markov decision process framework and its applications
in wireless sensor networks. An introduction to Markov deci-
sion processes has been given, and important extension models
have been also reviewed. Then, many designs of the Markov de-
cision process in wireless sensor networks have been discussed
including data exchange and topology formation, resource and
power optimization, area coverage and event tracking solutions,
and security and intrusion detection methods. Finally, the paper
has discussed about a few interesting research directions.
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