
Ad Hoc Networks 11 (2013) 1202–1220
Contents lists available at SciVerse ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier .com/locate /adhoc
Energy-neutral scheduling and forwarding in
environmentally-powered wireless sensor networks
1570-8705/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.adhoc.2013.01.005

⇑ Corresponding author at: Sense and Sense-abilities Programme,
Institute for Infocomm Research, Singapore 138632, Singapore.

E-mail addresses: acvalera@i2r.a-star.edu.sg (A.C. Valera), elesohws@
nus.edu.sg (W.-S. Soh), hptan@i2r.a-star.edu.sg (H.-P. Tan).
Alvin C. Valera a,b,⇑, Wee-Seng Soh b, Hwee-Pink Tan a

a Sense and Sense-abilities Programme, Institute for Infocomm Research, Singapore 138632, Singapore
b Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore

a r t i c l e i n f o a b s t r a c t
Article history:
Received 9 July 2012
Received in revised form 20 November 2012
Accepted 11 January 2013
Available online 23 January 2013

Keywords:
Energy-harvesting
Wireless sensor network
Dynamic duty cycling
Dynamic wakeup scheduling
Sleep latency
Routing
In environmentally-powered wireless sensor networks (EPWSNs), low latency wakeup
scheduling and packet forwarding is challenging due to dynamic duty cycling, posing
time-varying sleep latencies and necessitating the use of dynamic wakeup schedules. We
show that the variance of the intervals between receiving wakeup slots affects the
expected sleep latency: when the variance of the intervals is low (high), the expected
latency is low (high). We therefore propose a novel scheduling scheme that uses the bit-
reversal permutation sequence (BRPS) – a finite integer sequence that positions receiving
wakeup slots as evenly as possible to reduce the expected sleep latency. At the same time,
the sequence serves as a compact representation of wakeup schedules thereby reducing
storage and communication overhead. But while low latency wakeup schedule can reduce
per-hop delay in ideal conditions, it does not necessarily lead to low latency end-to-end
paths because wireless link quality also plays a significant role in the performance of
packet forwarding. We therefore formulate expected transmission delay (ETD), a metric that
simultaneously considers sleep latency and wireless link quality. We show that the metric
is left-monotonic and left-isotonic, proving that its use in distributed algorithms such as
the distributed Bellman–Ford yields consistent, loop-free and optimal paths. We perform
extensive simulations using real-world energy harvesting traces to evaluate the perfor-
mance of the scheduling and forwarding scheme.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

An environmentally-powered wireless sensor network
(EPWSN) is a network consisting of sensor nodes powered
by energy harvested from the environment. EPWSN re-
cently gained traction due to breakthroughs in energy har-
vesting technologies and ultra low power computing and
communication devices [1–4]. A major appeal of EPWSN
is its potential to address the problem of limited lifetime
which is a major drawback of battery-powered wireless
sensor network (WSN). By powering nodes with renewable
energy, EPWSN can operate perpetually without the need
for battery replacement which is not only laborious or
expensive but also infeasible in certain scenarios.

But while EPWSN can theoretically enable perpetual
network operation, the use of energy harvesting poses a
major constraint on energy availability: the amount of en-
ergy available for consumption at any given instant is
unpredictable and changes significantly over time [5–7].
Thus, unlike battery-powered WSN where the aim is to
minimize energy consumption [8], the key objective in
EPWSN is to efficiently utilize available energy. The new
guiding principle in EPWSN is energy neutral operation,
which consists of two simultaneous goals: (i) optimizing

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.adhoc.2013.01.005&domain=pdf
http://dx.doi.org/10.1016/j.adhoc.2013.01.005
mailto:acvalera@i2r.a-star.edu.sg
mailto:elesohws@nus.edu.sg
mailto:elesohws@nus.edu.sg
mailto:hptan@i2r.a-star.edu.sg
http://dx.doi.org/10.1016/j.adhoc.2013.01.005
http://www.sciencedirect.com/science/journal/15708705
http://www.elsevier.com/locate/adhoc

1 Duty cycling can also be applied to other aspects of a sensor node
including its sensors. But in this paper, our focus is on duty cycling of radio
transceivers which affects network connectivity and consequently packet
forwarding.

A.C. Valera et al. / Ad Hoc Networks 11 (2013) 1202–1220 1203
the network performance while (ii) ensuring that energy
supply and energy demand are balanced [5,6,9,7,10].

To achieve energy neutral operation in the face of
unpredictable and dynamic energy availability, adaptive
duty cycling algorithms have been proposed [5,6,9,10].
These algorithms aim to dynamically adjust a node’s duty
cycle given its energy supply, energy buffer capacity as
well as current and predicted future harvesting rates. Duty
cycled operation necessitates the use of wakeup schedules
which specify the times at which a node listens for trans-
missions from its neighbors [11–15].

A major challenge in both static and dynamic duty cy-
cling networks is sleep latency which is the delay incurred
when a transmitting node must wait for the receiving node
to wakeup before it can commence packet transmission
[16,14,17]. In battery-powered WSN where duty cycles
are static, static wakeup schedules that minimize sleep la-
tency and end-to-end delay can be computed prior to the
operation of the network [14,15]. These pre-computed
and fixed wakeup schedules cannot provide optimal per-
formance in EPWSN where duty cycles are dynamic and
vary from node to node. Essentially, dynamic wakeup
scheduling needs to be adopted wherein every node must
compute its low latency wakeup schedule according to its
instantaneous duty cycle.

In this paper, we introduce an energy neutral schedul-
ing and forwarding scheme for EPWSN that aims to reduce
end-to-end delay due to sleep latency while maintaining
low computational complexity and low communication
and storage overheads. The major contributions of this
work are as follows:

� We show analytically that the expected sleep latency of
a wakeup schedule is related to the variance of the
intervals between receiving wakeup slots. In particular,
when the variance of the interval is low (high), the
expected latency is low (high). Hence, the ideal schedul-
ing scheme is the one where the receiving wakeup slots
are positioned at equal intervals since its variance is 0.
� To reduce the overhead for storing and exchanging

schedules, we propose sequence-based scheduling – a
compact representation of dynamic wakeup schedules
where the receiving wakeup slots can be obtained using
an integer sequence. We design a sequence-based
scheduling scheme that uses bit-reversal permutation
sequence (BRPS) and analytically obtain its worst-case
sleep latency which is slightly worse than the ideal
scheme but better than schemes where the receiving
wakeup slots are spaced uniformly or exponentially.
� To enable the selection of low latency and high reliabil-

ity paths, we formulate a metric called expected trans-
mission delay (ETD), which simultaneously considers
sleep latency (due to duty cycling), and wireless link
quality. We show that the metric is left-monotonic
and left-isotonic, proving that its use in distributed
algorithms such as the distributed Bellman–Ford will
yield consistent, loop-free and optimal paths.
� We evaluate our design in simulations using real energy

harvesting traces to verify and compare the perfor-
mance of the scheduling and forwarding scheme with
existing schemes.
The rest of the paper is organized as follows: Section 2
presents a review of related work and challenges in EPWSN
while Section 3 discusses the models and assumptions that
are used in the development of the proposed scheme. Sec-
tions 4 and 5 provide a detailed presentation of the sched-
uling and forwarding schemes, respectively. The
simulation models and parameters are discussed in Sec-
tion 6 while the simulation results are presented in Sec-
tion 7. We finally state our conclusions and future work
in Section 8.
2. Related work and motivation

Numerous data delivery protocols have been proposed
for battery-powered WSN [18]. The key objective of these
protocols is to conserve as much energy as possible, know-
ing that the energy supply is finite and will eventually be
depleted [8]. Evidently, this design principle is not suitable
for EPWSN where energy supply can be replenished. In this
section, we briefly discuss why dynamic duty cycling is
needed in EPWSN and the challenges that it poses to wake-
up scheduling and packet forwarding.

2.1. Dynamic duty cycling

The new guiding principle in EPWSN is the notion of en-
ergy neutral operation, which means operating the nodes
such that energy supply and energy demand are balanced
[5,6,9,7,10]. To achieve energy neutral operation in the face
of dynamic energy availability, adaptive duty cycling algo-
rithms have been proposed [5,6,9,10]. Adaptive duty cy-
cling algorithms aim to dynamically adjust a node’s duty
cycle given its energy supply, energy buffer capacity and
current harvesting rate. Some algorithms also consider fu-
ture harvesting rates, in which case an accurate prediction
scheme (e.g. [19,20]) needs to be employed to ensure opti-
mal algorithm performance. Duty cycling itself is not new
and has been proposed as an energy conservation method
in battery-powered WSN because radio transceivers con-
sume significant amounts of energy even when idle
[21,14,22,17,15].

2.2. Wakeup scheduling

In duty cycled operation, a node ‘‘sleeps’’ (powers off its
transceiver) and ‘‘wakes up’’ (powers on its transceiver)
according to a schedule1. A node’s wakeup schedule can
be generated using either random [11–13] or coordinated
[14,15] scheduling. In the former approach, a node randomly
and independently generates its schedule without consider-
ing the schedules of other nodes. In the latter approach, a
node considers the schedule of the other nodes in the net-
work in the computation of its own schedule such that a
performance metric is optimized. Sleep scheduling can
either be locally or globally coordinated. Locally coordinated

Table 1
Summary of notations used in the paper.

Notation Meaning

S Number of slots in one cycle
T Duration of one cycle
s ¼ T

S
Duration of one slot

u, v, w Variables used to denote nodes
k Variable used to denote a cycle or epoch
dv ðkÞ Duty cycle of v on the kth cycle
nv ðkÞ Number of receive slots in v’s schedule on the kth cycle
Cv ðkÞ Receiving wakeup schedule of v on the kth cycle
Nv Single-hop neighbors of v
Svt Successor node at v to sink node t

1204 A.C. Valera et al. / Ad Hoc Networks 11 (2013) 1202–1220
scheduling only considers local schedules while globally
coordinated scheduling considers the schedules of all the
other nodes in the entire network.

While numerous wakeup scheduling schemes have
been proposed for fixed duty cycling networks (e.g.,
[21,14,22,15]), few have been proposed for dynamic duty
cycling networks [7]. Compared with [7], our proposed
scheme does not require a fixed routing graph and can
therefore be used in conjunction with any routing protocol.
Furthermore, our scheme has low computational complex-
ity and requires lower communication and storage
overhead.

2.3. Energy neutral operation and its challenges

The use of dynamic duty cycling to support energy neu-
tral operation in EPWSN poses several challenges to sched-
uling and data delivery schemes. In this paper, we
specifically tackle the following two major challenges:

2.3.1. Dynamic wakeup scheduling
Sleep latency is a delay incurred in duty cycling net-

works due to the fact that a transmitting node must wait
for the receiving node to wakeup before it can commence
packet transmission [16,14,17]. In battery-powered WSN
where duty cycles are static, the problem of sleep latency
is easily tackled by performing optimization prior to the
operation of the network [14,15]. However, this is not pos-
sible in EPWSN where duty cycles are dynamic and vary
from node to node. We therefore need to devise a dynamic
wakeup scheduling scheme (wherein every node computes
its wakeup schedule according to its instantaneous duty
cycle) that can reduce sleep latency to the least extent pos-
sible. In addition, the scheme must also address the follow-
ing major issues: (i) For the scheme to be useful in practice,
it must be designed to be executed in a distributed man-
ner, i.e., in each of the EPWSN nodes. Given their limited
computational power, the computational complexity of
the scheduling scheme must therefore be kept as low as
possible. (ii) When a node’s schedule changes, it must be
conveyed to its neighbors. Every node must also store the
schedules of its neighbors so that it can schedule packet
transmissions correctly. As EPWSN nodes are bandwidth-
and memory-constrained, the overhead in the exchange
of schedules as well as their storage in memory must be
kept as low as possible.

2.3.2. Low latency and reliable forwarding
When a path needs to traverse multiple hops, determin-

ing the path that provides the least delay can be difficult
because the nodes may have different duty cycles and
therefore pose different sleep latencies. Existing metrics
(e.g., hop count, ETX [23]) do not consider sleep latency
even though it is known to be a significant factor in the
high end-to-end latency in EPWSN. An equally important
criteria in path selection is reliability which is mainly
determined by the quality of the wireless links along a
path. We therefore need to formulate a metric that simul-
taneously considers sleep latency and link quality to
enable the selection of low latency and high reliability
end-to-end paths.
3. Models and assumptions

3.1. Network model

We consider an EPWSN composed of N static nodes. No
assumptions are made on the deployment or distribution
of the nodes over the area of interest so long as the result-
ing network is connected. Every node is assigned a unique
identifier and has a finite queue which is used for storing
packets that need to be forwarded. For easy reference, we
provide a summary of the notational conventions used in
this paper in Table 1.
3.1.1. Application and traffic model
We consider an environmental monitoring application

wherein the sensor network is tasked to monitor the envi-
ronmental conditions (e.g., temperature, humidity, air
quality) of an area of interest. Every node performs peri-
odic readings every Ts which are sent to a common data
collection point. Similar to prior work [14,17,15], we as-
sume that the data generation rate is low (i.e., Ts is large)
and does not cause significant congestion. Note that this
assumption is reasonable as certain environmental moni-
toring applications require at most 1 reading every 5 min
[24].
3.1.2. Cross-layer implementation approach
The proposed scheme has two main components: (i) a

dynamic wakeup scheduling scheme; and (ii) a packet for-
warding algorithm. In terms of implementation, the com-
ponents are more appropriately implemented in separate
layers. The first component can be implemented in the
data link layer on top of a MAC protocol while the second
component and can be implemented in the network layer.
3.1.3. Slot synchronization
The proposed scheme operates in a slotted fashion,

thereby requiring slot synchronization or alignment. The
slot duration is defined prior to the operation of the net-
work and is given by s ¼ T

S, where T is the duration of
one cycle and S is the number of slots in a cycle. s is defined
such that it can accommodate the transfer of one maxi-
mum-length data packet and a corresponding ACK packet.

Fig. 1. Node model showing the duty cycle controller, which takes energy level Ev ðkÞ from the ambient energy source as input and provides the duty cycle
dv ðkÞ as output.

A.C. Valera et al. / Ad Hoc Networks 11 (2013) 1202–1220 1205
3.1.4. Medium access control and link estimation
The proposed scheme requires the underlying MAC to

support broadcast and two-way handshake packet trans-
mission (unicast data followed by ACK). If the sending
node fails to receive an ACK, the MAC layer informs the
network layer of the failure. In addition, we assume that
the underlying transceiver provides a link quality estimate.
Note that this assumption is reasonable since in the IEEE
802.15.4 standard [25], link quality indication (LQI) is a
feature required on radio transceivers.

3.1.5. Network initialization
As the proposed scheme focuses on the design of energy

neutral wakeup scheduling and forwarding, it assumes
that the network has been initialized, i.e., (i) every node v
is assumed to have established its set of one-hop neighbors
Nv ; and (ii) nodes have aligned their slots. We will not pro-
pose schemes for accomplishing these functions but the
reader can refer to existing work on neighborhood discov-
ery [26] and slot synchronization [27–29].

3.2. Energy-harvesting node model and duty cycle

Every node, except for the sink node, is powered by
ambient energy and uses adaptive duty cycling
[5,6,9,7,10] to optimize its utilization of available energy
for communication. The sink node does not perform duty
cycling (i.e., it is always awake) and has unlimited energy
supply.

3.2.1. Energy-harvesting node model
Fig. 1 illustrates the energy-harvesting node model used

in this paper. The duty cycle controller model, which is in-
spired by Vigorito et al. [9], requires the energy level of the
buffer EvðkÞ as input and provides the duty cycle
dv ðkÞ 2 ½0;1� as control output.2 In simple terms, the duty
cycle controller [9] chooses dvðkÞ as the duty cycle that min-
imizes jE�vðkÞ � EvðkÞj, where E�vðkÞ is a preset target energy
level. (A more detailed discussion of this model is presented
in Section 6.2.) In general, it can be said that the resulting
duty cycle dvðkÞ / EvðkÞ.

3.2.2. Duty cycle
As mentioned, the duty cycle dv ðkÞ indicates the fraction

of time that v can be active at k, i.e., all of its components
2 Of course, other controller models (which may require more informa-
tion such as power requirements of transmission and reception and current
harvesting rate) can also be used as long as they can provide the energy
neutral duty cycle which indicates the fraction of time that a node can be
active.
(microcontroller, radio, sensors and miscellaneous periph-
erals) are powered up. To emphasize, this means that each
of the components can have a duty cycle of dv ðkÞ. As our
objective in this study is to perform wakeup scheduling
of the radio, from hereon, we will only consider dv ðkÞ as
allocated to the radio component.
3.2.3. Transmit and receive slots allocation
At the kth cycle, the total amount of time for the radio

of v to be active is TdvðkÞ. As v must also perform relaying
and not just transmitting its own readings, it must allocate
a fraction of its active time for reception as well. We pro-
pose the following simple allocation: First, v reserves a cer-
tain amount of time for transmitting its own readings. If
there is excess time, v divides the remaining time such that
the number of transmit and receiving wakeup slots are
equal. The rationale behind this is to ensure that v will
have a chance to forward all packets generated (its own
readings) and received within a cycle. Note that if v allo-
cates less transmit slots and more receive slots, then pack-
ets will potentially accumulate if v receives more packets
than its transmit slots. Let nv ðkÞ be the number of receive
slots of v at k. If Ts is the sensing interval, then at every cy-
cle v has an average of T

Ts
readings which requires T

Ts
s.

Whereas, the time needed for receiving and transmitting
transit packets is 2nvðkÞs. Then Tdv ðkÞ ¼ T

Ts
sþ 2nvðkÞs.

Solving for nvðkÞ and forcing the result to be an integer,
we obtain

nvðkÞ ¼
T
2

dv ðkÞ
s � 1

Ts

� �j k
if dvðkÞ > s

Ts
;

0 if dvðkÞ 6 s
Ts
:

8<
: ð1Þ
3.3. Wakeup schedule

A duty-cycled node requires wakeup schedules for data
transmission and reception. When node v needs to forward
a packet to node w, v needs to know the receiving wakeup
schedule of w so that it can wakeup at the appropriate slot
in the future to perform the actual transmission. We define
the receiving wakeup schedule as follows.

Definition 1 (Receiving wakeup Schedule). Every node v
has a receiving wakeup schedule Cv ðkÞ for the kth cycle
which contains nv ðkÞ time slots indicating the times at
which v wakes up to listen for transmissions from its
neighbors. A receiving wakeup slot is represented by an
integer which ranges from 0 to S� 1. A number g 2 CvðkÞ
means that v should wake up in the interval ½gs; ðgþ 1Þs�
relative to the start of the cycle.

Fig. 2. An example of a receiving wakeup schedule of v where Cv ðkÞ ¼ f1;3;5;8g; S ¼ 10 and T = 1 s. The shaded slots are the time slots where v listens for
transmissions from its neighbors.

1206 A.C. Valera et al. / Ad Hoc Networks 11 (2013) 1202–1220
To clarify this definition, consider the receiving wakeup
schedule of node v; Cv ðkÞ ¼ f1;3;5;8g, where S = 10 and
T = 1 s as shown in Fig. 2. It must be noted that CvðkÞ only
contains the slots at which v wakes up to receive packets
from its neighbors. To transmit its packets, v can do so in
any unused slot b R CvðkÞ but must ensure that the in-
tended receiver node w is awake to listen for packet trans-
missions, i.e., b 2 CwðkÞ.

We complete the discussion on wakeup schedule by
considering the following example. Suppose that v (with
receiving wakeup schedule given in Fig. 2) intends to
transmit a packet to w which has a receiving wakeup sche-
dule of CwðkÞ ¼ f1;3;4;7g. Node v can choose either slot 4
or 7 to transmit its packet but it cannot choose slots 1 and
3 because they are part of its own receiving wakeup sche-
dule. If v chooses slot 4, then v must transmit the data
packet the moment slot 4 begins and should w correctly re-
ceive the data packet, it must send back an ACK packet
within the same slot. This is possible because the slot dura-
tion s has been defined to accommodate the transfer of one
data packet and a corresponding ACK packet.

4. Dynamic wakeup scheduling

We now begin the development of a dynamic wakeup
scheduling scheme that can reduce sleep latency to the
least extent possible. Because it has to be ultimately exe-
cuted on sensor nodes which have limited computational
power, we want the scheduling scheme to have low com-
putational complexity and low communication and storage
overhead. We begin our discussion with a formal definition
of sleep latency as it is a key concept in the paper.

Definition 2 (Sleep Latency). The sleep latency from node
u to v, denoted by Wuv , is the delay from the time that a
packet becomes ready for transmission at u until the actual
packet transmission from u to v. The latency occurs
because u must schedule its transmission in the future
when v is awake to receive its transmission.

As highlighted in Section 2, sleep latency is a major
challenge in both battery-powered and environmentally-
powered WSN as it is the main cause of high end-to-end
delay. To reduce sleep latency, existing scheduling
schemes [14,7,15] perform ‘‘tight’’ coordination wherein
the receive slots of v are positioned at times that are close
to the receive slots of its successor node w. The key idea is
that when v receives a packet in its receive slot, it can
quickly forward the packet to w thereby reducing sleep la-
tency. While such an approach may work in perfect condi-
tions, it will face difficulties in situations where link
qualities are not ideal. Because of lossy links, v may not
be able to successfully transmit at the ‘‘nearest’’ receive
slot of w. The retransmission of the lost packet will surely
increase its delay which depends on how the receive slots
of w are distributed over the cycle. Furthermore, because of
the dependence of one node’s schedule on another node’s
schedule, a change in one node may unnecessarily trigger
a change in the schedule of other nodes.

We instead propose a ‘‘loose’’ coordination approach
wherein the receive slots of v are distributed as evenly as
possible within the cycle duration T without regard for
the position of the receive slots of its neighbors. The basis
of this simple approach is the following lemma which
shows that minimizing the variance of intervals between
receive slots leads to reduced sleep latency.

Lemma 1 (Expected Sleep Latency). Suppose that n is the
number of receiving wakeup slots of node v at a particular
cycle. Let Di denote the ith interval between two successive
receiving wakeup slots, where 1 6 i 6 n (c.f. Fig. 3). Suppose
that the packet ready times at some neighbor node u is
uniform in [0,T]. Whenever u has a packet to transmit to v, the
expected sleep latency from u to v is

EðWuvÞ ¼
1
2

EðDÞ 1þ VðDÞ
E2ðDÞ

" #
; ð2Þ

where E(D) and V(D) are the mean and variance, respectively,
of all the intervals fDig.
Proof. Suppose that intervals fDig are independent and
identically distributed and let D be a random variable with
distribution FDðxÞ and that PðDi 6 xÞ ¼ FDðxÞ, where
1 6 i 6 n. With fDig being i.i.d. sequence of positive ran-
dom variables, we can use results from renewal theory,
in particular renewal reward processes (see [30], p. 441)
to obtain the expected sleep latency.

Let NðtÞ ¼ supfm P 0 : Sm ¼ D1 þ D2 þ D3 þ � � � þ Dm

6 tg. The sleep latency from the current time t until the
next receiving wakeup slot at node v is simply the residual
time B (t) given by
BðtÞ ¼ SNðtÞþ1 � t:
Since the packet ready times at node u are uniform, the ex-
pected sleep latency from u to v, denoted by EðWuvÞ, is
equal to

Fig. 3. Model used in the derivation of expected sleep latency. Given a node with n receive slots, Di is the interval between two successive receiving wakeup
slots, where 1 6 i 6 n.

A.C. Valera et al. / Ad Hoc Networks 11 (2013) 1202–1220 1207
EðWuvÞ ¼ lim
t!1

R t
0 BðsÞds

t

which is the average residual time. To obtain EðWuv Þ using
renewal reward theory, we simply associate a reward that
is equal to the residual time B(t). Let R(t) denote the total
accumulated reward until time t. Then we have

RðtÞ ¼
Z t

0
BðsÞds:

Using Proposition 7.3 in [30] (p. 433), we have

EðWuvÞ ¼ lim
t!1

RðtÞ
t
¼ EðRÞ

EðDÞ ; ð3Þ

where E(R) is the expected reward per renewal cycle or
interval and E(D) is the expected duration of an interval.
The former quantity can be easily obtained as follows:

EðRÞ ¼ E
Z D

0
ðD� tÞdt

� �
¼ EðD2Þ

2
: ð4Þ

Substituting (4) in (3), we have

EðWuvÞ ¼
EðD2Þ
2EðDÞ : ð5Þ

Noting that EðD2Þ ¼ E2ðDÞ þ VðDÞ, where V(D) is the vari-
ance of fDig, we finally obtain (2). h

Note that the result in Lemma 1 is not unique to
EPWSN. In fact, a similar result on bus waiting times have
been shown in transportation studies [31]. The above re-
sult can also be explained by the waiting time paradox
(also known as ‘‘inspection’’ paradox) [32] in renewal the-
ory. In terms of packets, the paradox states that it is more
likely for a packet to become ready for transmission at a
larger interval than a shorter interval. The net effect is that
the average waiting time will be higher than the typical
value.

For a cycle k with duration T and nvðkÞ, (5) can be
rewritten as

EðWuvÞ ¼
T

2nvðkÞ
1þ C2ðDÞ
� �

; ð6Þ

where CðDÞ ¼
ffiffiffiffiffiffiffi
VðDÞ
p

EðDÞ is the coefficient of variation. Eq. (6)
seems to imply that EðWuv Þ can be reduced by decreasing
the duty cycle duration T. Recall however from (1) that
nvðkÞ / Tdv ðkÞ which really implies that EðWuvÞ / 1

dv ðkÞ.
Hence, given a duty cycle to operate on, the only other
way to reduce EðWuv Þ is by reducing the variance or the
coefficient of variation of the interval between receive
slots.
Using Lemma 1, the ideal schedule is composed of
equally-spaced receiving wakeup slots. For a node v with
nv ðkÞ receive slots, the schedule

CvðkÞ ¼
S

nvðkÞ

� �
n;n ¼ 0;1;2; . . . ;nvðkÞ � 1

� �
ð7Þ

is the most ideal as it provides zero variance. However, one
major disadvantage of (7) is that it is not robust to changes
in nv ðkÞ.

4.1. Schedule robustness

Consider two consecutive cycles k and kþ 1. Suppose
that nvðkÞ – nv ðkþ 1Þ, then the receive slots in Cv ðkþ 1Þ
may be entirely different from the receive slots in CvðkÞ.
The implication is that if some other node u fails to receive
a schedule update from v, u will transmit at a slot where v
is not likely to be awake. We formally define this concept
as follows.

Definition 3 (Schedule Robustness). Given two cycles k and
k0, where k – k0; nvðkÞ– nvðk0Þ and nvðkÞ; nvðk0Þ– 0, let
qðk; k0Þ be defined as

qðk; k0Þ ¼ jCvðkÞ \ Cvðk0Þj
min½nvðkÞ;nvðk0Þ�

: ð8Þ

A schedule Cv is robust if for any k and k0; qðk; k0Þ ¼ 1.
Note that in general, 0 6 qðk; k0Þ 6 1. A schedule with

qðk; k0Þ ¼ 0 means that the receive slots in Cv ðkÞ are en-
tirely different from Cv ðk0Þ while a schedule with
qðk; k0Þ ¼ 1 means that the receive slots in Cv ðkÞ and
Cv ðk0Þ are the same except for additional slots in one of
the schedules.

It is easy to see that the schedule defined in (7) is not
robust according to Definition 3. Consider two cycles k
and k0. Let a ¼ b S

nv ðkÞc and b ¼ b S
nv ðk0 Þ
c. Without loss of

generality, suppose a > b and let m be the least common
multiple of the two numbers. Then Cv ðkÞ \ Cv ðk0Þ ¼
fmn;n ¼ 0;1;2; . . . ; r � 1g. We then obtain r as follows.
Since a > b, then jCvðkÞj < jCvðk0Þj. The maximum slot
number in Cv ðkÞ is therefore the maximum possible
common slot in the two schedules. That is,

mðr � 1Þ 6 a½nvðkÞ � 1�

r 6
a½nvðkÞ � 1�

m
þ 1 ð9Þ

Solving for qðk; k0Þ yields

qðk; k0Þ 6 a
m
þ 1

nvðkÞ
1� a

m

� �
;

1208 A.C. Valera et al. / Ad Hoc Networks 11 (2013) 1202–1220
which can only be at most 1 when either a = m (i.e., the
schedules are the same) or nvðkÞ ¼ 1 (i.e., one of the
schedules has only one receive slot). The following lemma
clarifies why a robust schedule is desirable.

Lemma 2. Let k and k0 be two cycles where
k < k0; nv ðkÞ – nvðk0Þ and nvðkÞ; nv ðk0Þ – 0. Consider a node
u with knowledge of Cv ðkÞ alone and needs to transmit at k0.
For a robust schedule, the probability that u transmits at a slot
where v is awake, denoted by PðcÞ, is given by

PðcÞ ¼
1 if nvðkÞ < nvðk0Þ;
nv ðk0 Þ
nv ðkÞ if nvðkÞ > nvðk0Þ:

(
ð10Þ
Proof. If nvðkÞ < nv ðk0Þ, the new schedule Cv ðk0Þ has more
slots and that Cv ðkÞ � Cv ðk0Þ. Since u knows Cv ðkÞ, it will
transmit at g 2 Cv ðkÞ) g 2 Cv ðk0Þ. Hence PðcÞ ¼ 1.

If nvðkÞ > nvðk0Þ the new schedule Cvðk0Þ has fewer
slots. Since u knows CvðkÞ which has nvðkÞ slots and that
nv ðk0Þ of these slots are contained in Cvðk0Þ, then

PðcÞ ¼ nv ðk0Þ
nv ðkÞ . h

A subtle implication of Lemma 2 is that if a node u does
not know the new schedule of v but has knowledge of its
old schedule, u can improve its chances of successfully
sending to v by being conservative with its estimate of
the number of slots in the new schedule.

4.2. Sequence-based wakeup schedule

From Definition 1, we can view a receiving wakeup
schedule CvðkÞ as a set of integers with cardinality of
nv ðkÞ. Exchanging and storing raw schedules (i.e., the en-
tire contents of CvðkÞ) may therefore entail high overhead
especially if nv ðkÞ is high. To address this, we propose a se-
quence-based wakeup schedule pattern for exchanging and
storing schedules in a compact manner.

Definition 4 (Sequence-Based Wakeup Schedule). Let tn be
an integer sequence that satisfies the following conditions:

(a) 0 6 tn 6 S� 1; n ¼ 0;1;2; . . . ; S� 1
(b) tm – tn; 8m – n

A wakeup schedule of v at k is sequence-based if
CvðkÞ ¼ ftn;n ¼ 0;1;2; . . . ;nv ðkÞ � 1g.
Conditions (a) and (b) will ensure that the generated se-
quence will contain every possible slot number
g ¼ 0;1;2; . . . ; S� 1 exactly once. With a sequence-based
schedule, Cv ðkÞ can be effectively specified by the tuple
ftn;nv ðkÞg. If the sequence tn is the same for all nodes, then
only nvðkÞ is needed to completely specify Cv ðkÞ. Another
important property of a sequence-based schedule is that
it is robust according to Definition 3. We clarify this fact
in the following lemma.

Lemma 3. A sequence-based wakeup schedule is robust.
Proof. Let k and k0 be two cycles, where k – k0 and
nv ðkÞ; nv ðk0Þ– 0. Without loss of generality, assume that
nv ðkÞ < nv ðk0Þ. Then Cv ðkÞ ¼ ftn;n ¼ 0;1;2; . . . ;nv ðkÞ � 1g
and Cv ðk0Þ ¼ ftn;n ¼ 0;1;2; . . . ;nv ðk0Þ � 1g, that is, the two
schedules have the same terms up to nvðkÞ (since
nv ðkÞ < nv ðk0Þ). Hence, jCv ðkÞ \ Cvðk0Þj ¼ nv ðkÞ. Using (8),
qðk; k0Þ ¼ nv ðkÞ=nvðkÞ ¼ 1 for any k and k0. h
4.3. Bit-reversal permutation sequence

Definition 4 provides two conditions for an integer se-
quence tn to be usable as a wakeup schedule generator. If
we can obtain such tn, then the schedule is guaranteed to
be robust. We have also shown in Lemma 1 that a schedule
with low variance can reduce the expected sleep latency.
Thus, aside from satisfying the two conditions in Definition
4, we must also formulate tn such that the generated sche-
dule yields the minimum variance.

To obtain a suitable sequence, we proceed as follows.
Let S be the number of slots in one cycle. If nv ¼ 1 (we drop
the parameter k in this discussion as it is clear that we are
at a specific cycle), then we can simply decide to position
the slot, which we label as g(0) at 0. (For the purpose of
labeling the receive slots, we use the notation g(i), where
i is the index.) If nv ¼ 2, then we just add an active slot
in the middle of the cycle at S/2 which we label g(1). If
nv ¼ 3, then we add a slot in the middle of g(0) and g(1).
This new slot labeled g(2) is at S/4. Fig. 4 shows an example
up to nv ¼ 8. Observe that for this method to work,
S; S=2; S=4; S=8; . . . ; S=ðS=2Þ; S=S must be integers. In other
words, S must be a power of 2.

Table 2 provides a summary of the slot positions using
the method above. We also show in columns 3–5 that
when the numerator coefficient is represented in 3-bit bin-
ary, its bit-reversal yields the index of the slot label (col-
umn 1). The sequence in column 3 can be actually
generated using bit-reversal permutation [33].

Definition 5. Consider an integer n 2 ½0;2r � 1� with
binary representation ðbr�1; br�2; . . . ; b1; b0Þ, where
bi 2 f0;1g. Then its bit-reversal in r bits is ðb0; b1; . . . ;

br�2; br�1Þ. If Bðn; rÞ denotes the decimal value of the bit-
reversal of n in r bits, then

Bðn; rÞ ¼
Xr�1

i¼0

bi2
r�1�i:

We are now ready to generalize the method for obtain-
ing the slot position of gðnÞ; n ¼ 0;1;2; . . . ;nv � 1. Let
S ¼ 2s. Suppose that 2a�1

6 nv < 2a
6 2s. Then we have

gðnÞ ¼ Bðn; aÞ S
2a ¼ Bðn; aÞ 2s

2a :

It is straightforward to show that gðnÞ satisfies the condi-
tions in Definition 4. The minimum value of Bðn; aÞ is the
bit-reversal of 000 � � � 000 which is 0. Hence the minimum
value of gðnÞ is also 0. Whereas, the maximum value of
Bðn; aÞ is the bit-reversal of 111 � � � 111 which is 2a � 1.
Hence the maximum value of gðnÞ is ð2a � 1Þ 2s

2a ¼
2s � 2s

2a 6 2s � 1. Also, every n has a unique a-bit represen-
tation. Bit-reversal also yields a unique a-bit representa-
tion which yields a unique value. Multiplying this value

Fig. 4. Illustrating the idea behind the proposed sequence for generating wakeup schedules.

Table 2
Summary of the example sequence for generating schedule.

Label Slot
position

Numerator
coefficient

Numerator
coefficient (3-
bit binary)

Bit reversal
and decimal
value

g(0) 0 0 000 000) 0
g(1) S

2 ¼ 4S
8

4 100 001) 1

g(2) S
4 ¼ 2S

8
2 010 010) 2

g(3) S
2þ S

4 ¼ 6S
8

6 110 011) 3

g(4) S
8

1 001 100) 4

g(5) S
2þ S

8 ¼ 5S
8

5 101 101) 5

g(6) S
4þ S

8 ¼ 3S
8

3 011 110) 6

g(7) S
2þ S

4þ S
8 ¼ 7S

8
7 111 111) 7

A.C. Valera et al. / Ad Hoc Networks 11 (2013) 1202–1220 1209
by 2s

2a does not affect its uniqueness. Hence, gðnÞ is an
admissible sequence.

4.3.1. Expected waiting time
We now obtain the expected sleep latency that results

when bit-reversal permutation is used to generate a sche-
dule. For conciseness, we drop the parameter k in nv ðkÞ as
it is clear that the results apply to a specific cycle or epoch
k.

Theorem 1. The expected sleep latency incurred using a bit-
reversal permutation sequence schedule is
EðWuvÞ ¼
T

2nv
1þ 1

22aþ1 ðnv � 2aÞð2aþ1 � nvÞ
	

; ð11Þ

where nv > 0 is the number of receive slots and a ¼ blog2nvc.
Proof. a ¼ blog2nvc) 2a
6 nv < 2aþ1. The first 2a slots

divide T equally such that the interval between slots is
T=2a. The excess slots x ¼ nv � 2a further divides x of the
2a intervals into 2. Thus, finally there are 2x intervals with
duration T=2aþ1 and nv � 2x ¼ 2aþ1 � nv intervals with
duration T=2a. Since EðDÞ ¼ T=nv , the variance V (D) of
the intervals is

VðDÞ ¼ 2nv � 2aþ1

nv

 !
T

2aþ1 �
T
nv

	
2

þ 2aþ1 � nv

nv

 !
T
2a �

T
nv

	
2

¼ 1
22aþ1

	

T
nv

	
2

ðnv � 2aÞð2aþ1 � nvÞ: ð12Þ

Solving for C2ðDÞ ¼ VðDÞ=E2ðDÞ ¼ VðDÞ=ðT=nv Þ2 and substi-
tuting in (6), we obtain (11). h

Note that when nv is a power of 2, nv ¼ 2a which results
in the coefficient of variation to vanish. The following cor-
ollary further shows that C2ðDÞ has an upper bound and
that EðWuv Þ therefore has an upper bound.

Corollary 1. The expected sleep latency incurred using a bit-
reversal permutation sequence schedule is bounded and
0:5 T

nv
6 EðWuv Þ 6 0:5625 T

nv
.

Proof. Since 2a
6 nv < 2aþ1, let d ¼ 2aþ1 � 2a ¼ 2a. Then

for 0 6 m < 2a, we can rewrite ðnv � 2aÞð2aþ1 � nv Þ as
f ðmÞ ¼ ðd�mÞm ¼ ð2a �mÞm ¼ 2am�m2. Solving for
f 0ðmÞ and f 00ðmÞ,

Fig. 5. An example illustrating the adverse effect of neglecting link
quality in forwarder selection. pvw denotes the packet delivery probability
from v to w.

1210 A.C. Valera et al. / Ad Hoc Networks 11 (2013) 1202–1220
f 0ðmÞ ¼ 2a � 2m

and

f 00ðmÞ ¼ �2:

Since f 00ðmÞ < 0; f ðmÞ is concave and setting f 0ðmÞ ¼ 0 will
yield the maximum value of f (m). Doing this gives us
m ¼ 2a�1. Hence, nv ¼ 2a þ 2a�1 will give the maximum
C2ðDÞ. Therefore,

C2ðDÞ ¼ ð2
a þ 2a�1 � 2aÞð2aþ1 � 2a þ 2a�1Þ

22aþ1 ¼ 1
8
¼ 0:125:

Substituting this in (11), we finally have the upper bound
EðWuv Þ ¼ 0:5625 T

nv
. h

In Table 3, we compare the upper bound of the expected
sleep latency under different distributions. For the uniform
distribution, we let the slot intervals range from 0 to 2T=nv

such that the expected value is still T=nv . The coefficient of
variation of exponential distribution is always 1. Note that
bit-reversal permutation sequence schedule yields lower
expected sleep latency compared with uniform or
exponential.
4.3.2. Per node sequence
The disadvantage of using the same sequence g(n) in all

of the nodes is that they will have common wakeup sched-
ules. This is not a desirable situation because more nodes
may transmit at the same slot even though their intended
receivers are different. Although traffic flow is assumed to
be low, this may still result in higher occurrence of packet
collisions. To reduce common receiving wakeup slots
across nodes, we introduce an offset to gðnÞ for every node
v as follows:

tn ¼ ½v þ gðnÞ� mod S;

where v is the ID of node v. The modulo operation is neces-
sary to ensure that tn does not exceed S� 1.

4.3.3. Computational complexity
One of the key advantages of the proposed scheme is its

low computational complexity. As a matter of fact, it does
not require the computation of any schedule as it only
needs to compute the number of receiving wakeup slots.
Hence, its complexity is Oð1Þ.

4.3.4. Scheduling overhead
In terms of communication overhead, the advantage of

a sequence-based wakeup schedule is that for any node v
Table 3
Upper bound of the expected sleep latency under different distributions.

Slot distribution Upper bound

Ideal (equally-spaced slots) 0:5 T
nv

Bit-reversal permutation sequence 0:5625 T
nv

Uniform 0:6667 T
nv

Exponential T
nv
in the network, it only needs to send nvðkÞ. In terms of stor-
age overhead, the compact representation of the wakeup
schedule in terms of nvðkÞ requires considerably lower
overhead compared to schemes that require the storage
of the entire schedule. If v has to store the schedule of
every neighbor, then the overhead of a sequence-based
wakeup schedule is OðjNv jÞ. Whereas, the overhead of
schemes that require the storage of entire schedules is
OðjNv jSÞ, where S is the number of slots in the cycle.
5. Low latency and reliable forwarding

So far, our development assumed that the links are ideal
and that packet transmissions are always successful on the
first transmission. However in practical deployments, links
in wireless sensor networks are far from being ideal [17].
The impact of lossy links is to essentially increase the ex-
pected sleep latency as will be shown in the following
motivating example.

5.1. Motivating example

In the example shown in Fig. 5, the number of receiving
wakeup slots of nodes 2 and 3 are indicated. pvw denotes
the packet delivery probability from v to w. Thus, we can
see that the link (1,3) has better quality than link (1,2). If
only sleep latency were considered, then the selected
forwarder would be node 2 since EðW12Þ ¼ T

2n2ðkÞ
¼

T
32 < EðW13Þ ¼ T

2n3ðkÞ
¼ T

16. But because the delivery probabil-

ity across (1,2) is only 0.4, this implies that a packet needs
to be transmitted 1/0.4 = 2.5 on the average3 before being
successfully received by node 2. Hence, the total latency
would be roughly ð2:5ÞEðW12Þ ¼ 2:5T

32 . Whereas, for link
(1,3) which has a link quality of 0.9, the total latency would
be roughly ð1:1ÞEðW13Þ ¼ 2:2T

32 .

5.2. Expected transmission delay

The example above clearly shows that considering sleep
latency alone in selecting the next hop may result in poor
performance. On the other hand, considering link quality
alone will also not necessarily lead to the best perfor-
mance. This is because the next hop node with the highest
3 This argument is explained as follows. Each transmission attempt
across link (u,v) can be considered as a Bernoulli trial. Because the
probability of success is puv , then from elementary probability, the
expected number of transmission attempts is simply 1=puv .

A.C. Valera et al. / Ad Hoc Networks 11 (2013) 1202–1220 1211
link quality might have a very high sleep latency. We
therefore define a new metric that combines sleep latency
and link quality.

Definition 6 (Transmission Delay). The transmission delay
between adjacent nodes u and v, denoted by Duv , is the
delay from the time a packet becomes ready for transmis-
sion at u until it is successfully received by v.

We now obtain the expected transmission delay (ETD)
EðDuvÞ from u to v. For a transmission to be deemed suc-
cessful, the receiving node v must receive the data packet
and the sending node u must receive the corresponding
ACK packet. If puv and pvu are the two-way delivery proba-
bilities of link (u,v), then a packet is considered success-
fully transmitted with probability puvpvu. Following the
same argument as in [23], the expected number of trans-
missions is 1

puv pvu
. Given that for every transmission attempt

the delay is EðWuvÞ, we have

EðDuvÞ ¼
EðWuvÞ
puvpvu

: ð13Þ
5.2.1. Expected transmission delay of a path
Finally, the ETD of a path P from s to t, denoted by

EðDstÞ, is defined as the expected delay measured from
the time a packet becomes ready for transmission at s until
it is successfully delivered to t. This is simply given by

EðDstÞ ¼
X
8ðu;vÞ2P

EðDuvÞ: ð14Þ
5.2.2. Distributed calculation
The search for the minimum ETD path from every sen-

sor node v to the data collection point t can be performed
in a distributed manner using the distributed Bellman–
Ford algorithm. However, for such an algorithm to yield
consistent, loop-free and minimum cost paths, we have
to show that the ETD metric is both left-monotonic and
left-isotonic [34].

Lemma 4. The ETD metric is left-monotonic and left-isotonic.
Proof. To show left-monotonicity, consider a path A from v
to w with cost EðDAÞ . Suppose that we prepend a path C
from u to v with cost EðDCÞ. Then the cost of the path from
u to w through (C,A) is EðDCAÞ ¼ EðDCÞ þ EðDAÞ. Clearly,
EðDAÞ 6 EðDCAÞ, proving its left-monotonicity.

To show left-isotonicity, consider two paths A and B
from v to w with costs EðDAÞ and EðDBÞ, respectively, and
with EðDAÞ 6 EðDBÞ. Suppose that we prepend a path C
from u to v with cost EðDCÞ. Then the cost of the path from
u to w through (C,A) is EðDCAÞ ¼ EðDCÞ þ EðDAÞ while the
cost of the path from u to w through (C,A) is
EðDCBÞ ¼ EðDCÞ þ EðDBÞ. Clearly, EðDCAÞ 6 EðDCBÞ, proving
its left-isotonicity. h
5.3. Protocol overview

We now present the details of a forwarding scheme that
incorporates the BRPS and ETD to perform minimum-cost
path computation and packet forwarding. As a matter of
notation, we maintain the variable naming conventions
but affix the node ID as superscript to indicate that a vari-
able is maintained by a node.

5.3.1. State variables and data structures
Every node v maintains two global state variables and a

neighbor table. The global variables are Sv
vt and EðDv

vtÞ
which are the ID of the next hop node and the minimum
ETD, respectively, to the sink node t. The neighbor table
contains an information tuple ðnv

u ; EðDv
vuÞ; EðDv

utÞ; pv
vu; p

v
uv Þ

about every node u 2 Nv , where nv
u is the number of receive

slots of u; EðDv
vuÞ is the ETD from v to u; EðDv

utÞ is the min-
imum ETD from u to t; pv

vu is the link delivery probability
from v to u and pv

uv is the link delivery probability from u
to v.

5.3.2. Initial values
After a node has completed performing neighbor dis-

covery using some suitable protocol (e.g., [26]), it initial-
izes every neighbor information tuple as follows:
nv

u 0; EðDv
vuÞ 1; EðDv

utÞ 1; pv
vu 0, and pv

uvÞ 0.
More importantly, it initializes its state variable EðDv

vtÞ as
follows:

EðDv
vtÞ ¼

0 if v is the sink node t;

1 otherwise:

�
ð15Þ
5.3.3. Control update and node update slot
At every cycle k, every node v must broadcast an update

packet UPDATEðnv ðkÞ; EðDvtðkÞÞ; fpuv ðkÞ;8u 2 NvgÞ at a
designated node update slot. For simplicity, we assign the
slot ðvmodSÞ as the node update slot of v. Hence, every
neighbor of v must wakeup at slot ðvmodSÞ to listen for up-
dates from v and must not use that slot for its own packet
transmission.

Algorithm 1. Algorithm for processing an update packet.

1: if received
UPDATEðnuðkÞ; EðDutðkÞÞ; fpwuðkÞ;8w 2 NugÞ from u
then

2: nv
u nuðkÞ

3: E Dv
ut

� �
 EðDutðkÞÞ

4: pv
vu pvuðkÞ

5: pv
uv PHY LQI estimate of puv

6: else
7: nv

u anv
u

 �
8: end if
5.3.4. Control update processing
When v receives an update packet from u, it updates the

corresponding information tuple for u in its neighbor table
as indicated in lines (2)–(5) of Algorithm 1. Because the
radio transceiver provides link quality information, v can
also obtain an estimate of pv

uv . Studies [35,36] have shown
that LQI is highly-correlated with packet delivery probabil-
ity and can therefore be used to obtain the latter. If v does

1212 A.C. Valera et al. / Ad Hoc Networks 11 (2013) 1202–1220
not receive an update packet from u on its designated slot,
v sets nv

u banv
uc, where 0 < a < 1. We refer to the param-

eter a as the receive slot discount factor. By conservatively
estimating nuðkÞ; v is essentially improving its probability
of successful transmission to u. This is possible because of
the robustness property of the scheduling scheme as
shown in Lemma 2.

5.4. Path computation

Algorithm 2 provides a listing of the algorithm that is
executed at every node v to obtain the minimum cost path
from v to t. The algorithm is executed at the end of every
node update slot of every neighbor node u.

Algorithm 2. Distributed algorithm for path computation.
1: if pv
uv ¼ 0 or pv

vu ¼ 0 or nv
u ¼ 0 then

2: EðDv
vuÞ 1

3: if Sv
vt ¼ u then

4: EðDv
vtÞ 1

5: for w 2 Nv n u do
6: M EðDv

vwÞ þ EðDv
wtÞ

7: if M < EðDv
vtÞ then

8: EðDv
vtÞ M

9: Sv
vt w

10: end if
11: end for
12: end if
13: else
14: a blog2nv

uc
15: EðWv

vuÞ T
2nv

u
1þ 1

22aþ1 ðnv
u � 2aÞð2aþ1 � nv

u Þ
� �

16: EðDv
vuÞ

EðWv
vuÞ

pv
uv pv

vu

17: M EðDv
vuÞ þ EðDv

utÞ
18: if M < EðDv

vtÞ then
19: EðDv

vtÞ M
20: Sv

vt u
21: end if
22: end if
5.4.1. Infinite ETD to neighbor u
Lines (2)–(12) lists the steps that are executed when the

ETD to a neighbor node u becomes infinite. The ETD to u
becomes infinite whenever the number of receive slots of
u becomes zero (which happens at initial state or after sev-
eral non-reception of update packets) or link delivery
probability estimates are not available. If u is the successor
node to t, v searches for an alternative neighbor w that pro-
vides the minimum ETD path to t.

5.4.2. Finite ETD to neighbor u
Lines (14)–(21) lists the steps that are executed when

the ETD to a neighbor node u is finite. Node v computes
the ETD to u using (13). If the resulting ETD through u is
less than the current minimum ETD, then u is chosen as
the new next hop node and the corresponding ETD is set
as the minimum ETD from v to t.

5.4.3. Convergence
Lines (5)–(11) and (18)–(21) ensure that after every

execution of Algorithm 2, v either has infinite cost to t or
a finite cost which satisfies the following:

EðDv
vtÞ ¼min

u2Nv
E Dv

vu

� �
þ E Dv

ut

� �� �
ð16Þ

This equation is essentially the update rule of the distrib-
uted Bellman–Ford algorithm [37]. Together with the ini-
tial values in (15) and neighbor update processing in
Algorithm 1, (16) ensures that the computation will con-
verge to the correct minimum cost within finite time [37].
5.5. Packet forwarding

Algorithm 3 lists the packet forwarding algorithm of the
protocol. Upon receipt of a data packet P from a neighbor
node, from a local application, or from a previous unsuc-
cessful transmission, v checks if it has a path to the sink.
If it has no path, v drops P and the algorithm terminates.
Otherwise, v checks the number of times that P has been
transmitted previously. If P has been transmitted more
than L, P is dropped and the algorithm terminates.

Algorithm 3. Packet forwarding algorithm.

1: if EðDv
vtÞ ¼ 1 then

2: Drop P
3: return
4: end if
5: r Number of retransmissions of P
6: if r P L then
7: Drop P
8: return
9: end if
10: s Current slot
11: w Sv

vt

12: Cv ftn;n ¼ 0;1;2; . . . ; nvðkÞ � 1g
13: Cw ftwðnÞ;n ¼ 0;1;2; . . . ; nv

w � 1g
14: tmin 1
15: for g 2 Cw do
16: if g ¼ u mod S;8u 2 Nv or g 2 Cv then
17: continue
18: end if
19: tdiff g� s
20: if tdiff 6 0 then
21: tdiff tdiff þ S
22: end if
23: bf if tdiff < tminthen
24: tmin tdiff

25: end if
26: end for
27: if tmin <1 then
28: Schedule P for transmission at sþ tmin

29: else
30: Drop P
31: end if

A.C. Valera et al. / Ad Hoc Networks 11 (2013) 1202–1220 1213
5.5.1. Slot search

If P is eligible for transmission, v searches for a time slot

that is closest to the current slot in the schedule of the next
hop node w. Node v ensures that a chosen transmit slot
does not conflict with an update slot from a neighbor node
or that the slot is not in v’s own schedule. If a slot is found,
P is scheduled for transmission at the specified slot sþ tmin.
Otherwise, a scheduling failure is considered to have oc-
curred and P is dropped.

5.5.2. Packet transmission
At the appropriate slot, v wakes up to initiate the trans-

mission of the scheduled packet P. The packet is sent uni-
cast to w and v waits for an ACK from w. When an ACK is
received, v proceeds to schedule the next packet in the
queue, if there is any. When no ACK is received, the num-
ber of retries counter r is incremented, and Algorithm 3 is
invoked to try to schedule P again.

6. Simulation models

We implemented a simulation model of the proposed
wakeup scheduling and forwarding scheme in Qualnet
[38], including other required components such as energy
harvesting source and duty cycle controller. We set the slot
duration s to be 10 ms which is more than sufficient for the
transmission of a 127-byte data packet (the maximum
payload of an IEEE 802.15.4 PHY frame is 127 bytes [25])
and ACK.

6.1. Energy harvesting source model

Fig. 6 shows the energy harvesting source model which
is composed of a solar panel, a charging circuit, and a sup-
ercapacitor. This model captures the state-of-the-art in cir-
cuit design for micro-solar energy harvesting systems
[39,40]. The model requires solar irradiance data (in Watts
per square meter) as input. For this purpose, we used real
solar data traces from the National Renewable Energy Lab-
oratory (NREL) [41]. We selected 2 days of solar radiation
trace, representing ‘‘sunny’’ and ‘‘cloudy’’ scenarios, which
are shown in Fig. 7. For each node, the actual irradiance va-
lue used is a random number between the diffuse and glo-
bal irradiance values.

The solar panel is characterized by its surface area ASP

and conversion efficiency gSP. The energy output ESPðkÞ of
the solar panel at the kth epoch is given by
ESPðkÞ ¼ ASPgSPEsðkÞ, where EsðkÞ is the solar irradiance.
Whereas, the charging circuit is characterized by its charg-
ing efficiency gCC. The amount of energy that reaches the
supercapacitor is simply the output of the charging circuit
which is given by

ECCðkÞ ¼ gCCESPðkÞ ¼ gCCASPgSPEsðkÞ ¼ gEHEsðkÞ:

We shall refer to gEH ¼ gCCASPgSP as the effective harvesting
efficiency. In the simulations, we used ASP ¼ 0:01 m2,
gSP ¼ 0:1, and gCC ¼ 0:5, which yields gEH ¼ 0:0005. Note
that these values are conservative compared to what is
currently available or achievable in the literature. For in-
stance, current photovoltaic cells can achieve as high as
25% energy conversion efficiency while state-of-the-art
supercapacitor charging circuits can attain as high as 89%
efficiency [39]. We also conduct simulations where gEH is
varied from 0.0001 to 0.0005. Finally, we used 25 Farad 4
Volt supercapacitor as energy buffer.

6.2. Duty cycle controller model

The duty cycle controller is modeled after the LQ-
Tracker algorithm proposed by Vigorito et al. [9]. Our main
motivation for using LQ-Tracker is that it represents the
state-of-the-art in adaptive duty cycling algorithms and
is easily implementable in simulations. We provide a brief
description of the controller below while interested
readers can refer to [9] for a detailed discussion of the
controller.

The controllers’s objective is to achieve ENO-Max,
which entails two simultaneous objectives: (i) to ensure
that energy consumed is always less than or equal to the
energy harvested; and (ii) to maximize task performance
(energy consumption). To derive the adaptive control
law, the authors modeled the dynamics of the battery level
as a first order, discrete time, linear dynamical system with
colored noise which conforms to

yðkþ 1Þ ¼ ayðkÞ þ buðkÞ þ cwðkÞ þwðkþ 1Þ;

where y is the battery level, u is the control, w is a zero-
mean input noise, and a, b, c are real-valued coefficients.
The objective of the control system is to minimize the error
jyðkÞ � y�j for all k, where y⁄ is the target battery level. Note
that this objective is equivalent to minimizing the average
squared tracking error

lim
K!1

1
K

XK

k¼1

yðkÞ � y�½ �2; ð17Þ

which is the ENO-Max objective. The optimal control law
that minimizes (17) is

uðkÞ ¼ y� � ðaþ cÞyðkÞ þ cy�

b
: ð18Þ

The authors proposed an on-line algorithm based on stan-
dard gradient descent techniques to estimate the coeffi-
cients a, b, and c.

6.3. Network parameters

The network consists of 200 static nodes that are uni-
formly-distributed in a 500 m � 500 m area. A single sink
node is positioned at (0, 0). Fig. 8a shows the cumulative
distribution of hop count to the sink of a typical scenario.
We can see that the hop count ranges from 1 to 12 and that
a large fraction of nodes are 5–10 hops away from the sink.
The positioning of the sink at (0,0) results in a challenging
scenario where data traffic converges to a ‘‘narrow spot’’ in
the network.

The sensor node is modeled after a Libelium Waspmote
equipped with XBee-802.15.4, an IEEE 802.15.4-compliant
radio transceiver (see Fig. 8b). The transceiver is configured
to send at a data rate of 250 kbps and a transmit power of
0 dBm. This yields a transmit range of approximately
100 m. With these configurations, the node consumes

Fig. 6. Solar energy harvesting source model.

Fig. 7. Solar irradiance data (at 6-min resolution) from NREL Florida Solar Energy Center on July 2 and July 8, 2000.

1214 A.C. Valera et al. / Ad Hoc Networks 11 (2013) 1202–1220
approximately 180 mW, 195 mW, and 240 lW in transmit,
receive (active and idle), and deep sleep modes, respec-
tively at 4 V [42,43].

A constant bit rate (CBR) traffic generator is used to gen-
erate data traffic. Each data packet is 64 bytes and every
node (except the sink) generates data at intervals of 60,
120, 180, 240, 300 s. These data generation rates are already
considered to be high for certain environmental monitoring
applications which require around 1 sample every 5 min
[24]. Packet generation times are randomly staggered
among different nodes. Each data point is obtained by aver-
aging the results from 20 seed values, with every simulation
run configured for 43,200 s (12 h) in simulation time.
Fig. 8. Cumulative hop count distribution of a
7. Simulation results

We first evaluate the effect of the three design param-
eters, namely, the duty cycle duration T, maximum retry
limit L, and receive slot discount factor a on the perfor-
mance of the proposed scheduling and forwarding
scheme.

Duty cycle duration T. To determine the effect of T, we
varied the number of slots per cycle T=s, such that
T=s 2 f256;512;1024;2048;4096g. Note that these values
are exact powers of two as required by the bit-reversal per-
mutation scheduling scheme. The smallest value of 256 is
chosen since there are 200 nodes in the network. This
typical scenario and sensor node model.

A.C. Valera et al. / Ad Hoc Networks 11 (2013) 1202–1220 1215
ensures that every node will have its own slot for transmit-
ting its update packet.

We first study the convergence time of the distributed
path computation algorithm. To measure the convergence
time, we forced the nodes to use fixed duty cycles through-
out the simulation. The convergence time is affected by T
since each node sends updates at an interval equal to T. As
shown in Fig. 9a, the algorithm takes longer time to converge
at higher T since the propagation of updates is slower.

However, one advantage of using a larger T is that it re-
duces the occurrence of scheduling failures (see Fig. 9b). As
discussed in Section 5.5, a scheduling failure occurs when
the forwarding algorithm fails to find a receiving wakeup
slot at the intended receiver that does not conflict with
neighbor update slots. Note that when T is small (i.e., num-
ber of slots per cycle is small), there are fewer receiving
wakeup slots for the same duty cycle; hence the probabil-
ity of successfully obtaining a non-conflicting receiving
wakeup slot is lower.

Ultimately, the packet delivery ratio and end-to-end delay
results (see Figs. 9c and 9d) show that using a smaller duty cy-
cle duration provides better performance. The poor perfor-
mance obtained when large T is used is due to the effect of
slow convergence time. Especially in conditions where duty
cycles are highly dynamic, slow convergence may result in
the forwarding of packets through sub-optimal paths.

Maximum retry limit L. The maximum retry limit L deter-
mines the level of reliability provided by the forwarding
Fig. 9. Effect of duty
scheme. The packet delivery ratio results (see Fig. 10a)
demonstrate the positive effect of allowing higher number
of retransmissions. The delivery ratio improves signifi-
cantly when L is increased from 0 to 1; thereafter, the
improvement is marginal. The downside of allowing higher
retransmissions is increased end-to-end delay (see
Fig. 10b). The increase is more dramatic in the cloudy sce-
nario; this is due to the fact that every packet retransmis-
sion incurs a higher latency because of the lower node duty
cycles in the cloudy scenario, in which the receive slots are
generally spaced further apart.

Receive slot discount factor a. The receive slot discount
factor a in the proposed forwarding scheme is used to
estimate the number of receiving wakeup slots of a
neighbor node u when node v fails to receive an update
from u. A value of a = 0 implies that whenever node v
fails to receive an update from node u, the number of re-
ceive slots of u is set to 0 immediately while a = 1 means
that the number of receive slots of u is retained without
any change. We can see that these values are extreme
and as shown by the results (see Fig. 11), using either 0
or 1 does not provide the best performance. The optimal
performance can be obtained when a is around 0.8–0.9
for both the sunny and cloudy scenarios. Using a value
less than the optimal value underestimates the number
of receive slots of u which unnecessarily increases the
sleep latency. Likewise, using a value greater than the
optimal value overestimates the number of receive slots
cycle duration.

Fig. 10. Effect of maximum retry limit.

Fig. 11. Effect of slot discount factor.

1216 A.C. Valera et al. / Ad Hoc Networks 11 (2013) 1202–1220
of u which increases the scheduling errors thereby
increasing the latency due to retransmission.
Table 4
Comparison between BRPS and ESC (adjust and shuffle).

Criteria BRPS ESC-
adjust

ESC-
shuffle

Storage overhead per neighbor Oð1Þ OðnÞ OðnÞ
Communication overhead Oð1Þ OðnÞ OðnÞ
Schedule computation complexity Oð1Þ OðmÞ OðmÞ
Robustness Yes Yes No
7.1. Scheduling performance comparison

We now compare the performance of the proposed
wakeup scheduling scheme (bit-reversal permutation se-
quence based scheduling or BRPS) with the energy-
synchronized communication (ESC) scheme [7]. ESC is
one of the first schemes proposed for EPWSN and repre-
sents the state-of-the-art in dynamic wakeup scheduling.
We implemented a simulation model of ESC as described
in [7] with the following notable features: (i) To reduce
storage and communication overhead, we represented
the wakeup schedules as a bitmap instead of an integer ar-
ray. Hence, a cycle with 512 slots only requires 512/8 = 64
bytes regardless of the number of active slots. Using inte-
gers, a cycle with n active slots requires 2n bytes. In the bit-
map representation, a bit 1 at position i implies that slot i is
active whereas a bit 0 implies that slot i is inactive. (ii) To
further reduce communication overhead, schedule updates
are piggybacked in neighbor updates. (iii) In ESC, every
node requires the packet ready times at its predecessor
nodes. As this is difficult to obtain a priori, we used the
receiving wakeup slots of these predecessor nodes for this
purpose. This is reasonable because packets are most likely
to become ready for transmission after a node wakes up in
its receiving wakeup slot. (iv) We implemented both the
adjustment-based approach and the shuffle-based ap-
proach. Note that the former satisfies the properties of
robustness while the latter does not. Table 4 provides a
brief comparison of BRPS and the two variants of ESC.
The variable n denotes the number of active slots while
m denotes the sum of the active slots of a node’s successors
and the number of packets sent by its predecessors. The
scheduling computation complexity of BRPS is O(1) be-
cause it only requires knowledge of the number of active
slots. Whereas, ESC requires OðmÞ as it computes the opti-
mal wakeup slot positions by considering all the individual
active slots of a node’s successors and the packet ready
times at its predecessors.

Fig. 12. Packet delivery ratio of different scheduling schemes.

Fig. 13. Scheduling error ratio of different scheduling schemes.

Fig. 14. End-to-end delay of different scheduling schemes.

A.C. Valera et al. / Ad Hoc Networks 11 (2013) 1202–1220 1217
In the comparison, we paired the above scheduling
schemes with ETD. Note that using other routing metrics
(ETX or hop count) yielded inferior performance. (Section 7.2
provides a comparison of the different routing metrics.) We
fix the maximum retry limit L to 3 and the receive slot dis-
count factor a to 0.8. The results plotted in Figs. 12 and 13
are the averages of the sunny and cloudy scenarios.
In terms of packet delivery ratio (see Fig. 12), we can see
that BRPS outperforms ESC-SHUFFLE and ESC-ADJUST by
20% and 10%, respectively on the average. We did not
expect to see significant difference in the data delivery
performance because the schemes used the same routing
metric. The performance advantage of BRPS is due to its
robustness and the frequency of schedule updates. Note

Fig. 15. Packet delivery ratio of different path metrics (in tandem with BRPS).

(a) (b)
Fig. 16. End-to-end delay of different path metrics (in tandem with BRPS).

1218 A.C. Valera et al. / Ad Hoc Networks 11 (2013) 1202–1220
that the schedule information of BRPS (i.e., the number of
receiving wakeup slots) is always included in every neigh-
bor update. Because of the large overhead entailed by
exchanging entire schedules in ESC, schedule updates are
only transmitted when schedule changes have occurred.
The net effect is that both ESC variants have higher
scheduling error, as shown in Fig. 13. Between ESC-ADJUST
and ESC-SHUFFLE, we can see the significant benefit of
robustness as the former has significantly better
performance.

In terms of delay (see Fig. 14), we can see that the perfor-
mance of BRPS is well within the performance of the two ESC
variants. ESC-ADJUST shows the best performance while
ESC-SHUFFLE shows the worst performance. The higher de-
lay of the latter can be attributed to its non-robustness
which causes higher scheduling error ratio. A high schedul-
ing error ratio implies more packet retransmissions which
naturally leads to higher delay. Comparing BRPS and ESC-
ADJUST, we can see that at moderate harvesting efficiency
values and packet generation rates, BRPS can closely match
the performance of ESC-ADJUST. Given the high complexity
incurred by ESC in computing the optimal wakeup slot posi-
tions (it needs to consider the packet ready times of prede-
cessor nodes and wakeup slots of successor nodes), the
comparable performance of BRPS is a strong demonstration
of the validity of the theory behind its design.

7.2. Routing metric performance comparison

To complete our simulation studies, we compare the
performance of the proposed path metric (ETD) with ETX
[23] and hop count in tandem with BRPS. Note that the
relative performance of the three metrics remain the same
when they are respectively paired with ESC-SHUFFLE and
ESC-ADJUST. Likewise, the relative performance of the
scheduling schemes remain the same in each of the three
metrics.

As in the scheduling performance comparison, we also
fix the maximum retry limit L to 3 and the receive slot dis-
count factor a to 0.8. The results of the sunny and cloudy
scenarios are averaged to obtain the packet delivery ratio
and end-to-end delay results, which are shown in Figs. 15
and 16, respectively. We can see that in both performance
metrics, ETD shows the best performance. Because of its
awareness of both sleep latency and link quality, ETD con-
siderably outperforms ETX and hop count by 10% and 60%,
respectively, in most of the traffic conditions and harvest-
ing efficiency values.

A.C. Valera et al. / Ad Hoc Networks 11 (2013) 1202–1220 1219
The end-to-end delay results (see Fig. 16) also show the
significant advantage of ETD over ETX and hop count. Note
that ETD’s delay is less than 1/10 and 1/30 that of ETX and
hop count, respectively. These results demonstrate the sig-
nificant impact of both sleep latency and link quality on
end-to-end packet forwarding. Note that ETX, a metric that
considers link quality, performed much better than hop
count but still significantly behind ETD. These results
strongly suggest that blindness to sleep latency can cause
considerable delay degradation.
8. Conclusions and future work

In environmentally-powered wireless sensor networks,
low latency wakeup scheduling and packet forwarding is
challenging due to dynamic duty cycling which necessi-
tates the use of dynamic wakeup schedules and poses
time-varying sleep latencies.

We have shown analytically that the expected sleep la-
tency is affected by the variance of the intervals between
receiving wakeup slots: when the variance of the intervals
is low (high), the expected latency is low (high). This is be-
cause when the intervals between receiving wakeup slots
are highly uneven, it is more likely for a packet to become
ready for transmission at a larger interval than a shorter
interval. We therefore introduced a scheduling scheme
that aims to position receiving wakeup slots as evenly as
possible. To reduce storage and communication overhead,
the schedule of a node is represented compactly using an
integer sequence.

We analytically obtained the worst-case sleep latency
of a scheduling scheme that uses the bit-reversal permuta-
tion sequence (BRPS) and found it to be slightly worse than
the ideal scheme (scheduling scheme where the receiving
wakeup slots are equally-spaced) but better than schemes
where the receiving wakeup slots are spaced uniformly or
exponentially. But while the ideal scheme is not robust to
changes in the duty cycle, the BRPS is robust. We per-
formed simulations to compare the performance of BRPS
with ESC, a scheduling scheme that represents the state-
of-the art. Results show that BRPS provides low latency
and can closely match the performance of ESC. Further-
more, BRPS has a lower scheduling error ratio which trans-
lates to better packet delivery ratio. Aside from having a
lower storage and communication overhead, BRPS also
has a lower computational complexity compared with ESC.

A low sleep latency schedule does not necessarily lead
to low end-to-end latency paths because other factors such
as link quality play a significant role in the performance of
packet forwarding. We therefore formulated a metric
called expected transmission delay (ETD) which simulta-
neously considers sleep latency (due to duty cycling), and
wireless link quality. We showed that the metric is left-
monotonic and left-isotonic, proving that its use in distrib-
uted algorithms such as the distributed Bellman–Ford will
yield consistent, loop-free and optimal paths. Compared
with ETX and hop count and used in tandem with BRPS,
ETD provides the best performance in terms of packet
delivery ratio and delay.
In our future work, we intend to study the performance
of the scheduling and forwarding scheme using different
adaptive duty cycle control algorithms and other energy
harvesting source models.
References

[1] X. Jiang, J. Polastre, D. Culler, Perpetual environmentally powered
sensor networks, in: Proc. IEEE IPSN, 2005.

[2] J. Paradiso, T. Starner, Energy scavenging for mobile and wireless
electronics, IEEE Pervasive Computing 4 (1) (2005) 18–27.

[3] W. Seah, Z. Eu, H.-P. Tan, Wireless sensor networks powered by
ambient energy harvesting (wsn-heap) – survey and challenges, in:
Proc. Wireless VITAE, 2009.

[4] S. Sudevalayam, P. Kulkarni, Energy harvesting sensor nodes: survey
and implications, IEEE Communications Surveys Tutorials (99)
(2010) 1–19.

[5] J. Hsu, S. Zahedi, A. Kansal, M. Srivastava, V. Raghunathan, Adaptive
duty cycling for energy harvesting systems, in: Proc. ACM ISLPED,
2006.

[6] A. Kansal, J. Hsu, S. Zahedi, M.B. Srivastava, Power management in
energy harvesting sensor networks, ACM Transactions on Embedded
Computing Systems 6 (2007) 1–38.

[7] Y. Gu, T. Zhu, T. He, Esc: Energy synchronized communication in
sustainable sensor networks, in: Proc. IEEE ICNP, 2009.

[8] G. Anastasi, M. Conti, M.D. Francesco, A. Passarella, Energy
conservation in wireless sensor networks: a survey, Ad Hoc
Networks 9 (3) (2009) 537–568.

[9] C. Vigorito, D. Ganesan, A. Barto, Adaptive control of duty cycling in
energy-harvesting wireless sensor networks, in: Proc. IEEE SECON,
2007.

[10] T. Zhu, Z. Zhong, Y. Gu, T. He, Z.-L. Zhang, Leakage-aware energy
synchronization for wireless sensor networks, in: Proc. ACM
MobiSys, 2009.

[11] C.-F. Hsin, M. Liu, Randomly duty-cycled wireless sensor networks:
dynamics of coverage, IEEE Transactions on Wireless
Communications 5 (2006) 3182–3192.

[12] K.-W. Lee, V. Pappas, A. Tantawi, Enabling accurate node control in
randomized duty cycling networks, in: Proc. IEEE ICDCS, 2008, pp.
123–132.

[13] G. Ghidini, S. Das, An energy-efficient markov chain-based
randomized duty cycling scheme for wireless sensor networks, in:
Proc. IEEE ICDCS, 2011, pp. 67–76.

[14] G. Lu, N. Sadagopan, B. Krishnamachari, A. Goel, Delay efficient sleep
scheduling in wireless sensor networks, in: Proc. IEEE INFOCOM,
2005.

[15] S. Guha, C.-K. Chau, P. Basu, Green wave: Latency and capacity-
efficient sleep scheduling for wireless networks, in: Proc. IEEE
INFOCOM, 2010.

[16] W. Ye, J. Heidemann, D. Estrin, Medium access control with
coordinated adaptive sleeping for wireless sensor networks, in:
Proc. IEEE INFOCOM, 2002.

[17] Y. Gu, T. He, Data forwarding in extremely low duty-cycle sensor
networks with unreliable communication links, in: Proc. ACM
SenSys, 2007.

[18] K. Akkaya, M. Younis, A survey on routing protocols for wireless
sensor networks, Ad Hoc Networks 3 (3) (2005) 325–349.

[19] N. Sharma, J. Gummeson, D. Irwin, P. Shenoy, Cloudy computing:
Leveraging weather forecasts in energy harvesting sensor systems,
in: Proc. IEEE SECON, 2010, pp. 1–9.

[20] O. Jumira, R. Wolhuter, N. Mitton, Prediction model for solar energy
harvesting wireless sensors, in: Proc. IEEE AFRICOMM, 2012.

[21] R. Zheng, J.C. Hou, L. Sha, Asynchronous wakeup for ad hoc networks,
in: Proc. ACM MobiHoc, 2003.

[22] A. Keshavarzian, H. Lee, L. Venkatraman, Wakeup scheduling in
wireless sensor networks, in: Proc. ACM MobiHoc, 2006.

[23] D. De Couto, D. Aguayo, J. Bicket, R. Morris, A high-throughput path
metric for multi-hop wireless routing, in: Proc. ACM MobiCom,
2003.

[24] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S.
Burgess, T. Dawson, P. Buonadonna, D. Gay, W. Hong, A macroscope
in the redwoods, in: Proc. ACM SenSys, 2005, pp. 51–63.

[25] IEEE 802.14.5-2006 Specific Requirements Part 15.4: Wireless
Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks
(WPANs), 2006.

1220 A.C. Valera et al. / Ad Hoc Networks 11 (2013) 1202–1220
[26] M.J. McGlynn, S.A. Borbash, Birthday protocols for low energy
deployment and flexible neighbor discovery in ad hoc wireless
networks, in: Proc. ACM MobiHoc, 2001.

[27] S. Ganeriwal, R. Kumar, M.B. Srivastava, Timing-sync protocol for
sensor networks, in: Proc. ACM SenSys, 2003.

[28] H. Dai, R. Han, Tsync: a lightweight bidirectional time synchronization
service for wireless sensor networks, SIGMOBILE Mobile Computing and
Communications Review 8 (2004) 125–139.

[29] M. Maróti, B. Kusy, G. Simon, A. Lédeczi, The flooding time
synchronization protocol, in: Proc. ACM SenSys, 2004.

[30] S. Ross, Introduction to Probability Models, ninth ed., Elsevier, 2007.
[31] E. Osuna, G. Newell, Control strategies for an idealized public

transportation system, Transportation Science 6 (1) (1972) 52–72.
[32] S. Ross, Stochastic Processes, Wiley and Sons, 1982.
[33] A. Karp, Bit reversal on uniprocessors, SIAM Review 38 (1) (1996) 1–26.
[34] Y. Yang, J. Wang, Design guidelines for routing metrics in multihop

wireless networks, in: Proc. IEEE INFOCOM, 2008, pp. 1615–1623.
[35] Q. Cao, T. He, L. Fang, T. Abdelzaher, J. Stankovic, S. Son, Efficiency

centric communication model for wireless sensor networks, in: Proc.
IEEE INFOCOM, 2006.

[36] V. Gungor, C. Sastry, Z. Song, R. Integlia, Resource-aware and link
quality based routing metric for wireless sensor and actor networks,
in: Proc. IEEE ICC, 2007.

[37] D.P. Bertsekas, Gallager, second ed., Data Networks, Prentice Hall,
1992.

[38] The Qualnet Simulator. <http://www.scalable-networks.com/
products/developer.php> (accessed 31.05.12).

[39] S. Kim, K.-S. No, P. Chou, Design and performance analysis of
supercapacitor charging circuits for wireless sensor nodes, IEEE
Journal on Emerging and Selected Topics in Circuits and Systems 1
(2) (2011).

[40] C.-Y. Chen, P. Chou, Duracap: a supercapacitor-based, power-
bootstrapping, maximum power point tracking energy-harvesting
system, in: Proc. ACM ISLPED, 2010.

[41] National Renewable Energy Laboratory. <http://www.nrel.gov>
(accessed 31.05.12).

[42] Waspmote Datasheet. <http://www.libelium.com//waspmote/
waspmote-datasheeteng.pdf> (accessed 31.05.12).

[43] XBee Datasheet. <http://www.sparkfun.com/datasheets/Wireless/
Zigbee/XBee-Datasheet.pdf> (accessed 31.05.12).

Alvin Valera obtained the Bachelor of Science
degree (computer engineering) from the Uni-
versity of the Philippines on 1998 and Master
of Science (computer science) from the
National University of Singapore in 2003. He
is currently with the Institute for Infocomm
Research (I2R), Singapore as a Senior Research
Engineer. He is also a Ph.D. candidate at the
National University of Singapore. His current
research interests include optimization and
control of wireless networks in general, and
on scheduling, routing, and medium access

control of energy-harvesting wireless sensor networks in particular.
Wee-Seng Soh received the B.Eng. (Hons) and
M.Eng. degrees in electrical engineering from
the National University of Singapore (NUS) in
1996 and 1998, respectively. In 1998, he was
awarded the Overseas Graduate Scholarship
by the National University of Singapore to
study at Carnegie Mellon University, Pitts-
burgh, PA, where he received the Ph.D. degree
in electrical and computer engineering in
2003. Since 2004, he has been with the
Department of Electrical and Computer Engi-
neering, National University of Singapore,

where he is currently an Assistant Professor. Prior to joining NUS, he was
a Postdoctoral Research Fellow in the Electrical Engineering and Com-
puter Science Department, University of Michigan. He has served on the

Technical Program Committees (TPC) of 20 conferences, and has also
served as a TPC co-chair for ICCS’08 and WUnderNet’11. He is currently
serving as an area editor of Computer Communications (Elsevier) journal.
His current research interests are in wireless networks, underwater net-
works, and indoor tracking/localization techniques.

Hwee-Pink Tan is currently a Senior Scientist
in the Institute for Infocomm Research, and is
also the AqSTAR SERC Programme Manager
for the ‘‘Sense and Sense-abilities’’ Pro-
gramme that focuses on developing integra-
tive technologies for data collection, transport
and intelligence in large scale and heteroge-
neous sensor networks, and validating them
via test-bedding based on sensing needs of
targeted government agencies. His research
has focused on the design, modeling and
performance evaluation of networking proto-

cols for wireless networks, and his past and current research interests
include underwater acoustic sensor networks, wireless sensor networks
powered by ambient energy harvesting and large scale and heteroge-

neous wireless sensor networks. He has been a PI for several research
collaboration projects on wireless sensor networks, and has published
more than 55 papers in peer-reviewed journals and conferences in the
area of wireless networks.

http://www.scalable-networks.com/products/developer.php
http://www.scalable-networks.com/products/developer.php
http://www.nrel.gov
http://www.libelium.com//waspmote/waspmote-datasheeteng.pdf
http://www.libelium.com//waspmote/waspmote-datasheeteng.pdf
http://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf
http://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf

	Energy-neutral scheduling and forwarding in environmentally-powered wireless sensor networks
	1 Introduction
	2 Related work and motivation
	2.1 Dynamic duty cycling
	2.2 Wakeup scheduling
	2.3 Energy neutral operation and its challenges
	2.3.1 Dynamic wakeup scheduling
	2.3.2 Low latency and reliable forwarding

	3 Models and assumptions
	3.1 Network model
	3.1.1 Application and traffic model
	3.1.2 Cross-layer implementation approach
	3.1.3 Slot synchronization
	3.1.4 Medium access control and link estimation
	3.1.5 Network initialization

	3.2 Energy-harvesting node model and duty cycle
	3.2.1 Energy-harvesting node model
	3.2.2 Duty cycle
	3.2.3 Transmit and receive slots allocation

	3.3 Wakeup schedule

	4 Dynamic wakeup scheduling
	4.1 Schedule robustness
	4.2 Sequence-based wakeup schedule
	4.3 Bit-reversal permutation sequence
	4.3.1 Expected waiting time
	4.3.2 Per node sequence
	4.3.3 Computational complexity
	4.3.4 Scheduling overhead

	5 Low latency and reliable forwarding
	5.1 Motivating example
	5.2 Expected transmission delay
	5.2.1 Expected transmission delay of a path
	5.2.2 Distributed calculation

	5.3 Protocol overview
	5.3.1 State variables and data structures
	5.3.2 Initial values
	5.3.3 Control update and node update slot
	5.3.4 Control update processing

	5.4 Path computation
	5.4.1 Infinite ETD to neighbor u
	5.4.2 Finite ETD to neighbor u
	5.4.3 Convergence

	5.5 Packet forwarding
	5.5.1 Slot search
	5.5.2 Packet transmission

	6 Simulation models
	6.1 Energy harvesting source model
	6.2 Duty cycle controller model
	6.3 Network parameters

	7 Simulation results
	7.1 Scheduling performance comparison
	7.2 Routing metric performance comparison

	8 Conclusions and future work
	References

