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Crowdsourcing can be modeled as a principal-agent problem in which the principal (crowdsourcer) desires to solicit maximal contri-
bution from a group of agents (participants) while agents are only motivated to act to their own respective advantages. To reconcile
this tension, we propose an all-pay auction approach to incentivize agents to act in the principal’s interest, i.e., maximizing profit,
while allowing agents to reap strictly positive utility. Our rationale for advocating all-pay auctions is based on two merits that we
identify, namely all-pay auctions (i) compress the common, two-stage “bid-contribute” crowdsourcing process into a single “bid-cum-
contribute” stage, and (ii) eliminate the risk of task non-fulfillment. In our proposed approach, we enhance all-pay auctions with two
additional features: an adaptive prize and a general crowdsourcing environment. The prize or reward adapts itself as per a function
of the unknown winning agent’s contribution, and the environment or setting generally accommodates incomplete and asymmetric
information, risk-averse as well as risk-neutral agents, and stochastic as well as deterministic population. We analytically derive
this all-pay auction based mechanism, and extensively evaluate it in comparison to classic and optimized mechanisms. The results
demonstrate that our proposed approach remarkably outperforms its counterparts in terms of principal’s profit, agent’s utility and
social welfare.

CCS Concepts: rInformation systems→ Incentive schemes; rApplied computing→ Economics; Online auctions; rTheory of
computation → Quality of equilibria; rHuman-centered computing → Ubiquitous and mobile computing theory, concepts and
paradigms; Smartphones;

Additional Key Words and Phrases: Mobile crowd sensing, participatory sensing, incomplete information, risk aversion, Bayesian
Nash equilibrium, shading effect

1. INTRODUCTION
Crowdsourcing as a new data-collection and problem-solving model has been widely used in place of the
traditional outsourcing paradigm to tackle real-world challenges by leveraging the “power of crowds”. In
addition to first-generation crowdsourcing platforms such as Wikipedia, Mechanical Turk [2005], Crowd-
Flower [2007] and TaskRabbit [2008], the recent global proliferation of smartphones has spurred a new
paradigm called mobile crowdsensing [Ganti et al. 2011; Zhang et al. 2014] or otherwise known as partic-
ipatory sensing [Guo et al. 2015; Guo et al. 2014], which ushered in a large number of projects such as
Waze [2009], NoiseTube [2010], ParkNet [Mathur et al. 2010], and WiFi-Scout [2014], some of which are
illustrated in Fig. 1. While motivated by participatory sensing, the approach proposed in this paper can be
applied to crowdsourcing in general.

The viability of crowdsourcing critically depends on how well participants are motivated to contribute
to such activities. While there are a variety of possible motives such as reputation [Zhang and van der
Schaar 2012], social engagement [Kaufmann et al. 2011] and personal enjoyment [Han et al. 2011], mon-
etary reward is more generally applicable. This paper pursues along this line, and in particular uses auc-
tions [Krishna 2009] as the framework to allocate such reward. Auction is an excellent tool for incentive
mechanism design because it allows buyers and sellers to mutually agree on the price of some “commodity”
(e.g., goods, time or effort) that is otherwise hard to price by any third party. In fact, many prior studies [Lee
and Hoh 2010; Yang et al. 2012; Koutsopoulos 2013; Feng et al. 2014; Zhao et al. 2014] were carried out
in this regard too. What is common in these prior studies is that they all adopt winner-pay auctions where
the bidders who bid (offer to contribute) higher than other bidders or a threshold, win the auction (receive
reward) and shall pay for their bids (by making corresponding contributions). Indeed, winner-pay auctions
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(a) Network quality monitoring. (b) Transportation planning. (c) Environmental noise measurement.

Fig. 1. Example mobile crowdsourcing applications. Smartphone users contribute (a) WiFi signal qualities [Wu and Luo 2014; WiFi-
Scout 2014], (b) GPS readings [Waze 2009], or (c) noise measures [NoiseTube 2010], through their phones to a cloud service for data
analytics and visualization.

represent the majority of auctions, with first-price (Dutch) and second-price (English) auctions being their
well-known classic examples.

In this paper, by contrast, we take an all-pay auction approach to design incentive mechanisms for crowd-
sourcing. All-pay auctions are distinct from the winner-pay genre in that every bidder must pay for her bid
regardless of whether she wins or loses the auction. This appears to be rather peculiar, but we identify two
important merits that motivated us to explore this auction mechanism. First, all-pay auctions compress
the common two-stage “bid-contribute” crowdsourcing process into a single “bid-cum-contribute” stage. In
the two-stage pattern, as commonly used in the literature such as [Lee and Hoh 2010; Yang et al. 2012;
Koutsopoulos 2013; Feng et al. 2014; Zhao et al. 2014], all participants first need to enter a bidding stage
to declare (i.e., bid) how much they would like to contribute or to be paid. The highest or lowest bidders
will be selected as winners and then enter the second, contribution stage, where the actual crowdsourcing
activity takes place (e.g., performing a sensing task). On the other hand, all-pay auctions do not require
two stages but a single step: participants directly contribute to the crowdsourcing activity in which their
respective contributions are their respective bids. Not only does this remarkably simplify the process of
crowdsourcing, but it also represents a very natural model for crowdsourcing because any contribution
being crowdsourced is essentially human effort or some information, which is irrevocable once submitted
(effort sunk or information disclosed).

The second advantage of all-pay auctions is that they eliminate the risk of task non-fulfillment. In winner-
pay auction based mechanisms such as [Lee and Hoh 2010; Yang et al. 2012; Koutsopoulos 2013; Feng
et al. 2014; Zhao et al. 2014], winners are selected based on their declared bids (promised contributions
or desired payments) to perform a task. However, the winners may not fulfill the task with the quality or
quantity in accord with their bids, either intentionally or unintentionally. The consequence is typically that
the crowdsourcer suffers from task delay, failure, or financial loss. In traditional auctions such as selling
goods, one could stipulate regulations or rely on laws to enforce fulfilling the bids, but this is difficult to
implement in crowdsourcing activities which are often ad hoc. On the other hand, all-pay auctions offer a
good remedy by basing the winner selection on the actual, rather than “promised”, user contributions.

Therefore in this paper, we take all-pay auctions as our framework, and furthermore, propose an approach
with two enhancement features: (i) an adaptive prize which incentivizes participants (agents) to contribute
insofar as the crowdsourcer (principal) reaps the maximum profit,1 and (ii) a general crowdsourcing envi-

1Henceforth we use the terminology of “principal” and “agent” by framing crowdsourcing into a principal-agent problem on the basis
that the crowdsourcer and the participants have asymmetric interests (maximizing their own, usually conflicting, utilities).
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ronment which accommodates incomplete and asymmetric information, risk-averse agents, and stochastic
population, for the purpose of modeling more realistic scenarios.

1) Adaptive prize. We equip the principal with an adaptive prize as the reward, which scales as per a
function of the unknown winner’s contribution. This is in contrast to all conventional auctions (regardless
of winner-pay or all-pay, including their variants) in which the item on sale or the reward is fixed ex-ante
[Moldovanu and Sela 2001; Klemperer 2004; Krishna 2009; Archak and Sundararajan 2009; DiPalantino
and Vojnovic 2009; Chawla et al. 2012].

Using an adaptive prize represents a new dimension of optimal incentive mechanism design. The opti-
mality is traditionally defined as maximizing revenue [Myerson 1981] (e.g., the total contribution) for the
principal, but in our case it is redefined as maximizing profit because the cost (prize) now is no longer a
constant but a function. This also shows that our case subsumes the traditional goal as a special case.

In addition, we subject our mechanism to the constraint of strict individual rationality (SIR), or in other
words the mechanism must be such that agents will receive strictly higher utility by participating than
otherwise.

2) General crowdsourcing environment. This setting comprises three key elements.
2.1) Incomplete and asymmetric information. As crowdsourcing typically involves a large and distributed

group of people who are strangers to one another, we assume that each agent does not know any other
agent’s type, i.e., private information (such as ability or cost), except her own (thus “incomplete”). On the
other hand, the principal does not know any agent’s type (thus “asymmetric”). The principal and agents
only have distributional knowledge about agent types.

2.2) Risk-averse agents. One common, yet often tacit, assumption in the mechanism design and game
theory literature, is that agents are risk neutral. Loosely speaking, it means that agents are indifferent
between a sure-win $50 reward and an uncertain $100 on condition of tossing a fair coin. However, in
reality, most people would prefer the guaranteed $50 rather than the risky $100 as they are risk averse, i.e.,
have stronger reluctance to lose than willingness to win. Therefore, we face our mechanism design problem
with risk-averse agents, which also subsume risk-neutral agents as a special case.

However, a significant challenge is thus created: the most celebrated revenue equivalence theorem (RET)2

[Myerson 1981] which is a powerful tool for analyzing many auction-related problems, breaks under the
assumption of risk aversion. We tackle this challenge by employing perturbation analysis introduced by
[Fibich and Gavious 2003].

2.3) Stochastic population. Another common assumption adopted by prior art is that the number of agents
is known a priori. But in reality, this is often difficult to achieve due to the scale of crowdsourcing, and even
if the number of signed-up agents can be retrieved from a database, it does not tell how many of them are
actually contributing.

Therefore, we assume a stochastic population where the number of agents is uncertain. Notably, this
endows our mechanism with another advantage: in other mechanisms of crowdsourcing, users have to de-
clare their participation (like RSVP) in advance so that the number is known before crowdsourcing actually
starts; but our assumption of a stochastic population gives the flexibility to permit ad hoc user entry, where
an agent can enter a crowdsourcing activity to contribute at any time. Moreover, it subsumes deterministic
population where the number is known, and thus again lends us more generality.

1.1. Summary of contributions
— We propose to use all-pay auctions as a framework to design incentive mechanisms for crowdsourcing, by

identifying two of its merits: it (i) compresses the two-stage “bid-contribute” crowdsourcing process into
a single “bid-cum-contribute” stage, and (ii) eliminates the risk of task non-fulfillment.

— We explore a new dimension of optimal incentive mechanism design, by instrumenting an adaptive prize
which scales as per a function of unknown winner’s contribution. We show that this new method results
in superior performance.

— We cast our mechanism in a general crowdsourcing environment, which comprises incomplete and asym-
metric information, risk averse agents, and stochastic population. This allows for a more realistic model
and a wider range of applications.

— Despite the daunting all-pay nature (everyone has to pay regardless of winning or losing), our proposed
mechanism satisfies strict individual rationality which ensures that rational agents strictly have incen-
tive to participate. (In fact, our evaluations demonstrate that agent utilities are well bounded away from
zero which corresponds to non-participating.)

2RET states that any auction that satisfies a set of standard assumptions yields the same amount of expected revenue.
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1.2. Paper organization
The rest of the paper proceeds as follows. Section 2 reviews the literature and Section 3 describes our model.
Section 4 derives our optimal incentive mechanism, with its three special cases presented in Section 5.
Then, an alternative approach to optimal incentive mechanism design is explored in Section 6, which is
then compared with our proposed approach as well as a standard counterpart mechanism in Section 7.
Finally, Section 8 discusses some interesting findings and Section 9 concludes this paper.

2. RELATED WORK
The original idea appeared in [Luo et al. 2014]. Since then, we have re-positioned the problem in a broader
scope, significantly augmented the technical content, as well as restructured and rewritten the entire paper.
Moreover, as this paper reports a completely new and much more extensive set of performance evaluations,
we also make the full package of our Mathematica source code available upon request.

In the following, we review both auction- and non-auction related work, and for the former, cover both
standard and non-standard settings.

2.1. Winner-pay auctions
Using a reverse auction to sell participatory sensing data was proposed in [Lee and Hoh 2010]. It in-
centivizes participation with virtual credits using a heuristic to minimize cost and retain users. From a
theoretical perspective, incentive mechanism design was investigated using auction theory in [Yang et al.
2012; Koutsopoulos 2013; Feng et al. 2014; Zhao et al. 2014]. Yang et al. [2012] studied a user-centric model
and designed a truthful auction in which users bid their true costs for the crowdsourcer to select winners
to perform a task set and pay them no lower than their bids. But as a tradeoff, the payoff or profit of the
crowdsourcer cannot be maximized due to NP-hardness. Koutsopoulos [2013] designed another truthful
auction subject to a certain QoS requirement. But in addition to determining user payments like in [Yang
et al. 2012], the crowdsourcer also determines each user’s participation level (e.g., data sampling rate) on
users’ behalf, which is more prone to task non-fulfillment. Feng et al. [2014] took location information into
account when assigning mobile crowdsourcing tasks to users. Besides ensuring truthful cost bidding, sim-
ilar to the above, they also proposed an approximate algorithm to find the near-optimal winning bids in
polynomial time. Zhao et al. [2014] proposed two auction mechanisms to handle an online scenario where
bidders only stay in the system for a (short) period of time and the crowdsourcer has to select a subset of
bidders by a certain deadline to perform a task. All the above auctions need an extra bidding stage.

2.2. All-pay auctions
In the relatively much smaller regime of all-pay auctions, Baye et al. [1996] were probably the first to
analyze all-pay auctions with complete information, where all the bidders’ types (valuations of the auc-
tioned item) are common knowledge. On the other hand, all-pay auctions with incomplete information were
studied by Moldovanu et al. [2001] and Archak et al. [2009], but the aim was to examine whether allo-
cating a single prize or dividing it into multiple prizes is optimal in terms of maximizing the total quality
[Moldovanu and Sela 2001] or the highest k qualities [Archak and Sundararajan 2009]. Along a similar
line, Chawla et al. [2012] showed that the highest bid is at least half the sum of all the bids. Under the
same (standard) model, Kaplan et al. [2002] and Cohen et al. [2008] explored optimal contest design with
multiplicative or additive value functions when the revenue is defined as the total bids or the highest bid.
DiPalantino et al. [2009] studied a crowdsourcing platform that offers multiple tasks each with a fixed re-
ward. Using a standard all-pay auction model with a deterministic population of risk-neutral users, they
found a logarithmic relationship between incentives and user participation levels.

All these prior studies assume standard settings which are amicable to analysis but, on the other hand,
leave the need for more realistic models.

2.3. Non-standard auction settings
With non-standard assumptions, analysis generally becomes more challenging or even intractable. For
winner-pay auctions, McAfee and McMillan [1987] and Levin and Ozdenoren [2004] compared the revenue
when the number of bidders is only known to the auctioneer but not to the bidders, with the revenue when
the number is known to all players. Both studies still assume risk-neutral bidders. Harstad et al. [1990] and
Krishna [2009] characterized the equilibrium bidding strategies for an uncertain number of bidders, but a
common and crucial vehicle used by both studies is RET because the bidders are assumed to be risk neutral.
In the genre of all-pay auctions, Fibich et al. [2006] compared all-pay auctions with first-price auctions in
terms of bids and revenue, with a known number of risk-averse players. The case of an unknown number
of (risk-neutral) bidders was recently studied by [Haviv and Milchtaich 2012], but to trade for tractability,
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it assumes identical bidders where all the types are equal, which is clearly not the case in the context of
crowdsourcing. In addition, all the above assumes a constant auctioned item or reward.

2.4. Non-auction incentives
Without using auctions, Luo et al. [2012] and Tham et al. [2014] took a resource-allocation approach to
incentivize user participation by allocating service quota (where service is produced from user contributed
data) to users based on their contribution levels and, particularly, their service demands. Two incentive
schemes, called IDF and ITF, were proposed to maximize fairness and social welfare, respectively. [Restuc-
cia and Das 2014] proposes a trust-based incentive framework that takes data reliability into account to
reward reliable users. The framework relies on the concept of mobile security agents and is shown to be
resistant to a set of GPS-based attacks. The joint issue of incentive and trust is also addressed in [Luo
et al. 2014a], but it takes a socio-economic approach to link participants, via a relationship called endorse-
ment, into a social network overlaid by economic incentives. The endorsement relationship is based on three
factors: social trust, financial return, and a new social notion called nepotism. Ghosh and McAfee [2011]
studied the problem of incentivizing high-quality user generated content (UGC), using a game-theoretical
model with the solution concept of a free-entry Nash equilibrium. The authors designed an elimination
mechanism which subjects contributions to ratings and eliminates contributions that do not receive good
ratings. [Xia et al. 2014] also studies a UGC problem but considers heterogeneous users in the sense that
they can produce different best qualities (types).3 The work focuses on proving the existence of pure Nash
equilibria in various UGC mechanisms under different information settings. Quality of contribution is also
a central concept in Tham et al. [2013; 2015], but the authors expanded it to an aggregate notion called
quality of contributed service (QCS), which characterizes the overall service produced from individual user
contributions. Under a market-based model, they show that QCS can converge to a good market equilibrium
starting from purely random behaviors.

3. THE MODEL
A principal launches a crowdsourcing campaign to an uncertain population of agents to solicit their contri-
butions to perform a task, such as collecting sensory data, producing creative work, or solving a problem.
The campaign is flexible in the sense that agents can join and contribute at any time (due to the advantage
of “ad hoc user entry”; cf. Section 1), and each agent can either submit a single contribution or multiple
contributions (a specific campaign may choose, e.g., the best or the sum, as the valid submission).

The number of agents is unknown, denoted by ñ which is a random variable following a probability mass
function Pr(ñ = n) = pn, n ≥ 2. An arbitrary agent i makes a (valid total) contribution of zi, which can be
a simple measure of quantity or quality alone, or a compound measure of both quantity and quality (Tham
et al. [2013; 2015]). The strategy of an agent i is to determine how much zi to contribute.

To provide incentive, the principal instruments a monetary prize to reward, at the end of the campaign or
periodically, the agent who makes the highest contribution maxi∈[1..ñ] zi, which we denote by z(ñ)

(1) following
the notational convention from order statistics. The prize is adaptive as per a functionM(·) of the (unknown)
winning agent’s contribution, i.e., M(z

(ñ)
(1) ). The function M(·) is known to all while z(ñ)

(1) is unknown.
Each agent is uniquely characterized by her type si, representing her marginal cost of participation, or

in other words, her total cost is sih(zi). Here, h(·) is a modulator function which allows for more generality,
rather than being limited to the commonly used linear cost model si × zi. We assume that h(0) = 0 and h(·)
is monotone increasing and continuously differentiable. Our model is depicted in Fig. 2.

Information is incomplete, i.e., each agent only knows her own type si but not any other’s. On the other
hand, it is common knowledge that all the agent types are independently drawn from [s, s̄] according
to a continuously differentiable c.d.f. F (s). Such a setting is called an independent-private-value (IPV)
model [Krishna 2009] with a common Bayesian belief F (s).4

Agents are risk averse, characterized by a von Neumann-Morgenstern (vNM) utility function u(·), i.e., an
agent derives a utility of u(x) from a net gain of x (can be negative which indicates a net loss). For example,
u(x) = x is the most common utility formulation which assumes risk-neutral agents. The function u(·) is
twice differentiable and satisfies u(0) = 0, u′ > 0, u′′ ≤ 0 (i.e., diminishing marginal gain or increasing
marginal loss).

3A more general definition, and in standard auction terms, of heterogeneous users is that not only user types are different, but the
beliefs (distributional knowledge; assuming incomplete information) about their respective types are also different. This constitutes
an asymmetric auction and the corresponding mechanism design is addressed in [Luo et al. 2014b; 2015a].
4If, otherwise, the belief about each agent is different, i.e., there is Fi(si) for each i and Fi(si) 6= Fj(sj), this constitutes an asymmetric
model and a solution can be found in [Luo et al. 2014b; 2015a].
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Fig. 2. Our all-pay auction based crowdsourcing model. Each participant (agent) bids cum contributes zi, incurring a cost sih(zi),
and the agent who makes the highest contribution z(ñ)

(1)
will win a prize which is adaptive as per a function M(·). The crowdsourcer

(principal) seeks to maximize profit which is the total contribution
∑ñ
i=1 zi subtracted by the prize M(z

(ñ)
(1)

).

Now we explain how our model can be realized in practice. The contribution zi can be measured by
the agent’s personal device (e.g., smartphone, PC, wearable widget) or by the principal using a computing
facility, or evaluated by an expert committee (e.g., in the case of creative work). The belief or c.d.f. F (s)
can be constructed empirically from historical contribution records or, in the absence of historical data, by
adopting the uniform distribution, as similarly discussed in [Koutsopoulos 2013].

Utility formulation. Each agent’s utility is defined as

π̃i(si, z) :=

{
u (M(zi)− sih(zi)) , if zi > zj ,∀j 6= i,

u(−sih(zi)), otherwise
(1)

where z := {z1, z2, . . . zñ}. Her expected utility is

πi(si, z) := E
z−i

[π̃i] (2)

where z−i := z \ {zi}. In (1), the event of forming a tie (zi = zj) happens with probability zero because (i)
F (s) is continuously differentiable and hence the p.d.f. is atomless, and (ii) bidding strategy z is a strictly
monotone function of type s in the Bayesian game induced by such an IPV model [Krishna 2009].

The principal’s utility or profit Ω is defined as the total contribution solicited from all the agents less the
adaptive prize, i.e.,

Ω(ñ, z) :=

ñ∑
i=1

zi −M(z
(ñ)
(1) ). (3)

Problem statement. Our objective is to design an incentive mechanism that, at equilibrium (if exists),
a) maximizes the expected profit of the principal, i.e., it solves

arg max
M(·)

Ω∗

where
Ω∗ := Ẽ

n
[Ω(ñ, z∗)]. (4)

Throughout, we use “*” to indicate variables at equilibrium.
b) satisfies strict individual rationality (SIR) for each agent, i.e., the expected utility of each agent is

strictly positive if and only if she contributes;5 formally,

π∗i := πi(si, z
∗) > 0 iff z∗i > 0, (5)

where, as a common practice, the outside option (not participating) is assumed to receive zero utility. Com-
pared to the canonical individual rationality (IR) which is defined as π∗i ≥ 0, SIR implies a stronger moti-
vation to participants.

Remark: Incentive-compatibility or truthfulness is often a mechanism design objective such as in [Yang
et al. 2012; Koutsopoulos 2013; Feng et al. 2014; Zhao et al. 2014]. However, this is technically irrelevant

5We use “expected” utility because of the incomplete-information setting. In standard game-theoretical terms, it corresponds to the
“interim” stage (which is the most natural case) as opposed to the ex-ante and ex-post stages. Hence our definition of SIR (5) can also
be more precisely referred to as interim SIR.
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to—or inherently resolved by—our all-pay auction model. This is because our model does not require agents
to report their types but rather bases winner selection on agents’ actual (and observable) contributions
which already endogenize their respective (true) types and cannot be lied about. In fact, distinct from most
prior work, this paper represents an example of indirect mechanism design (as opposed to direct-revelation
mechanisms).

4. OPTIMAL INCENTIVE MECHANISM DESIGN
We derive the optimal mechanism in two steps. First, we characterize in Section 4.1 the Bayesian Nash
equilibrium (BNE) by assuming that the adaptive prize is given. Then in Section 4.2, we optimize the BNE
by solving for the profit-maximizing prize function M(·), where we employ perturbation analysis.

4.1. Equilibrium contribution strategy
Our incomplete-information setting induces a Bayesian game and thereby requires an extended notion of
Nash Equilibrium as follows.

DEFINITION 1 (BAYESIAN NASH EQUILIBRIUM [HARSANYI 1968]). A (pure strategy) Bayesian Nash
equilibrium is a strategy profile z∗ := (z∗1 , z

∗
2 , ...) that satisfies,

πi(si, z
∗;F−i(s)) ≥ πi(si, zi, z∗−i;F−i(s)), ∀i,∀zi,

where F−i(s) is i’s belief (a joint probability distribution) of all the types other than si.

In words, each agent plays a strategy z∗i that maximizes her expected utility πi given her belief about other
agents’ types and that other agents also play their respective equilibrium strategies z∗−i.

LEMMA 1 (EXISTENCE AND MONOTONICITY). Our model admits a pure strategy Bayesian Nash equi-
librium in which each agent’s strategy is a monotone decreasing function of her type.

Proof. Due to space constraint, most proofs in this paper are contained in the Appendix available in the
ACM Digital Library (http://dl.acm.org).

In our case, the Bayesian Nash equilibrium is symmetric, i.e., all the agents adopt the same strategy
(function), because of the homogeneous belief F (·) (see [Luo et al. 2014b; 2015a] for the heterogeneous case).
To solve it, we first need to express the expected utility of each agent in terms of her winning probability.
However, the stochastic population size presents a challenge. One possible solution is to use contingent
bidding proposed in [Harstad et al. 1990], where each bidder submits a list of bids in the form of “I bid
z1 if there are n1 bidders, z2 if n2, ...” Then after collecting all the lists, the auctioneer knows the exact
number of bidders, say nk, and thus can use the corresponding zk ’s to determine the winner. However,
this contingent bidding method does not apply to our all-pay auction case because each bid represents
irrevocable contribution of effort or information. Therefore, we use a conditional winning probability:

Pr
(
z∗i (si) > z∗j (sj)|ñ = n

)
= (1− F (si))

n−1, n = 2, 3, . . . ,∀i 6= j

where 1−F (si) is due to the decreasing monotonicity of the equilibrium (Lemma 1). By taking the expected
value, we obtain the winning probability for an agent of arbitrary type s, as

P (s) =

∞∑
n=2

pn(1− F (s))n−1. (6)

This may lure one to hypothesize that the equilibrium contribution strategy could simply be a weighted
sum z∗(s) =

∑
n pnz

∗
dp(s|n), where z∗dp(s|n) is the strategy under a deterministic population size n. This is

not true, because z∗ is not an affine optimizer of the utility π∗ (optimizer in the sense that z∗ is the best-
response strategy to maximize π∗), which is analogous to Jensen’s inequality. In fact, such a weighted sum
is not the case even when bidders are risk-neutral [Krishna 2009].

Given P (s), we can now express the expected utility of an agent of type s, based on (1), as

π(s, z∗) = u (M(z∗)− h(z∗)s)P (s) + u (−h(z∗)s) (1− P (s))

≡ P (s)
[
u(α∗)− u(−β∗)

]
+ u(−β∗), (7)

where α∗ := M(z∗)− h(z∗)s, β∗ := h(z∗)s.

LEMMA 2 (EQUILIBRIUM STRATEGY). In an all-pay auction with incomplete information and a stochas-
tic population of risk-averse agents, given an adaptive prize M(z), the equilibrium strategy z∗(s) is deter-
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mined by ∫ s̄

s

[P (s1) (u′(α∗)− u′(−β∗)) + u′(−β∗)]h(z∗(s1)) ds1 = P (s) [u(α∗)− u(−β∗)] + u(−β∗). (8)

Remark: In general, there is no closed-form expression of z∗(s) when agents are risk-averse or prize is
not constant. However, when agents are risk neutral and the prize is constant, we can obtain an explicit
solution using Lemma 2, as will be demonstrated later by Corollary 2 (26).

4.2. Optimal mechanism
We first derive the profit at equilibrium for a given prize, and then maximize the profit by finding the
optimal adaptive prize function using perturbation analysis.

LEMMA 3 (PROFIT AT EQUILIBRIUM). The profit of the principal at equilibrium is given by

Ω∗ =
∑
n

npn

∫ s̄

s

[
z∗(s)−M(z∗)(1− F )n−1

]
dF. (9)

Next, to maximize the profit Ω∗, we need an explicit expression of M(z∗). However, directly solving it from
(8) where M(z∗) is embedded in α∗, will be of no avail because of the reason remarked below Lemma 2. To
tackle this challenge, we employ the Perturbation Analysis introduced by Fibich and Gavious [2003].

Perturbation Analysis. This method applies to the case of weak risk aversion. Intuitively speaking,
although a weakly risk-averse agent still prefers $50 for certain to $100 with half chance, she will, however,
take that “risky” $100 rather than guaranteed but mere $20 or $30. Weak risk aversion is most common in
reality and is not a restrictive assumption.

Formally, we say an agent is weakly risk-averse if, for any net payment x (possibly negative) she receives,
her vNM utility function u(x) satisfies u(x) ≈ x. In general, the utility function can be written (e.g. using
Taylor series expansion) as

u(x) = x+ εu1(x) +O(ε2), 0 < ε� 1,

where ε is called the risk aversion parameter and ε � 1 indicates weak risk aversion. The function u1

satisfies u1(0) = 0, u′′1 ≤ 0 and u′1 > − 1
ε (u′1 can be either positive or negative), in order for u′ > 0 and u′′ ≤ 0.

For example, u(x) = [1− e−εx]/ε is a constant absolute risk averse (CARA)utility function, and u(x) = x1−ε

is a constant relative risk averse (CRRA) utility function.6
Now, revisiting Lemma 2, we write the following using the perturbation method:

u(α∗) = α∗ + εu1(α∗) +O(ε2) = α∗ + εu1(α∗rn) +O(ε2),

u(−β∗) = −β∗ + εu1(−β∗) +O(ε2) = −β∗ + εu1(−β∗rn) +O(ε2),

u′(α∗) = 1 + εu′1(α∗rn) +O(ε2),

u′(−β∗) = 1 + εu′1(−β∗rn) +O(ε2),

(10)

where the subscript rn indicates the risk-neutral case, i.e.,

α∗rn = Mrn(z∗rn)− h(z∗rn)s, β∗rn = h(z∗rn)s. (11)

THEOREM 1 (Optimal prize and Maximum profit). In an all-pay auction with incomplete informa-
tion and a stochastic population of weakly risk-averse agents, the optimal adaptive prize that maximizes
profit for the principal is given by

M̊(z) =
1

P (̊s(z))

[̊
s(z)h(z)− Å(̊s(z))−

∫ z

z̊(s̄)

B̊(̊s(z1))h(z1) d̊s(z1)
]
, (12)

where s̊(z) is the inverse function of z̊(s) which is the equilibrium strategy induced by M̊(z) and is given by

z̊(s) = (h′)−1

(
aF ′(s)

G′(s)s+G(s)B̊(s)

)
, (13)

6CARA means that the Arrow-Pratt measure of absolute risk-aversion, which is defined as −u′′(x)/u′(x), is a constant. CRRA means
that the Arrow-Pratt-De Finetti measure of relative risk-aversion, which is defined as −xu′′(x)/u′(x), is a constant.
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where (h′)−1(·) is the inverse function of h′(·), h′′ > 0, and a =
∑
n npn. The resultant maximum profit is

given by

Ω̊ =

∫ s̄

s

[
az̊F ′ − h(̊z)

(
sG′ + B̊(s)G

)
+ Å(s)G′

]
ds. (14)

In the above,

G(s) =

∫ s

s

F ′(s1)

∑
n npn(1− F (s1))n−1∑
n pn(1− F (s1))n−1

ds1,

Å(s) = εP (s)[u1(α̊rn)− u1(−β̊rn)] + εu1(−β̊rn),

B̊(s) = εP (s)[u′1(α̊rn)− u′1(−β̊rn)] + εu′1(−β̊rn) + 1.
(15)

Remark on Notation: Henceforth, we use the overhead circle “◦” to indicate the optimal (i.e., profit-
maximizing) equilibrium quantities (prize, contribution strategy, profit, agent utility), while the superscript
“*”, as commonly used, indicates general equilibrium quantities.

Remark on Complexity: Albeit looking complex, Theorem 1 captures a very general crowdsourcing
environment. Furthermore, it can be easily simplified to special cases which are presented in Section 5,
and intuitive insights can also be drawn which are presented in Section 7 and 8.

Let us recall the second objective in our problem statement.

THEOREM 2 (Strict individual rationality (SIR)). The mechanism specified by Theorem 1 satisfies
strict individual rationality for both risk-neutral and weakly risk-averse agents. That is, any such agent
expects strictly positive utility at equilibrium.

5. SPECIAL CASES
In this section, we show how our main result (Theorem 1) which accommodates a general setting can be
easily simplified to three special, and representative, cases: risk-neutral agents (Section 5.1), deterministic
population (Section 5.2), and the intersection of them (Section 5.3). These results will also be used by our
evaluation in Section 7.

5.1. Risk-neutral agents
When agents are risk neutral, ε = 0 and it immediately follows from (15) that

Å(s) = 0, B̊(s) = 1. (16)
COROLLARY 1 (RN). In an all-pay auction with incomplete information and a stochastic population of

risk-neutral agents, the optimal adaptive prize that maximizes profit for the principal is given by

M̊rn(z) =
s̊rn(z)h(z)−

∫ z
z̊rn(s̄)

h(z1) d̊srn(z1)

P (̊srn(z))
, (17)

where s̊rn(z) is the inverse function of z̊rn(s) which is the equilibrium strategy induced by M̊rn(z) and is
given by

z̊rn(s) = (h′)−1
( aF ′(s)

G′(s)s+G(s)

)
(18)

where (h′)−1(·) is the inverse function of h′(·), h′′ > 0, and a =
∑
n npn. The resultant maximum profit is

given by

Ω̊rn =

∫ s̄

s

[
az̊rnF

′ − h(̊zrn)
(
G′(s)s+G(s)

)]
ds. (19)

PROOF. Substituting (16) into Theorem 1 yields the result.

5.2. Deterministic population
When the number of agents is known as n, we have the following simplified expressions:

a = n, P (s) = (1− F (s))n−1,

G(s) = nF (s), G′(s) = nF ′(s).
(20)

Thus we obtain the result for this DP case similarly as Section 5.1. We omit the details for brevity.
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5.3. Risk neutral & Deterministic population
This is the most common setting in the literature.

COROLLARY 2 (RN-DP). In an all-pay auction with incomplete information and a deterministic pop-
ulation of n risk-neutral agents, the optimal adaptive prize that maximizes profit for the principal is given
by

M̊rn,dp(z) =
s̊rn,dp(z)h(z)−

∫ z
z̊rn,dp(s̄)

h(z1) d̊srn,dp(z1)

(1− F (̊srn,dp(z))
n−1 (21)

where s̊rn,dp(z) is the inverse function of z̊rn,dp(s) which is the equilibrium strategy induced by M̊rn,dp(z) and
is given by

z̊rn,dp(s) = (h′)−1
( F ′

sF ′ + F

)
(22)

where (h′)−1(·) is the inverse function of h′(·), and h′′ > 0. The resultant maximum profit is given by

Ω̊rn,dp = n

∫ s̄

s

[
z̊rn,dp − h(̊zrn,dp)

(
s+

F

F ′

)]
dF. (23)

PROOF. Substituting (20) into Corollary 1 proves the result.

6. ALTERNATIVE OPTIMAL INCENTIVE MECHANISM DESIGN
Our proposed approach represents a new way of optimal incentive mechanism design. Alternatively, we
could explore another, and perhaps more intuitive, way by optimizing the (constant) auction prize value by
exploiting all the information available to the principal.

This section pursues this idea under two cases: (i) general case - a stochastic population of risk-averse
agents, which corresponds to our environment; (ii) special case - a deterministic population of risk-neutral
agents.

6.1. General case
To state the problem, a principal needs to determine, over all possible prizes M0 to offer, an optimal one to
maximize its profit. The profit can be written using (A.3) or (9) as

Ω∗con =
∑
n

npn

∫ s̄

s

z∗con dF −M0, (24)

where the equilibrium strategy z∗con is given below.

PROPOSITION 1 (CON: EQUILIBRIUM STRATEGY). In an all-pay auction with incomplete information
and a stochastic population of weakly risk-averse agents, given a constant prize M0, the equilibrium strat-
egy z∗con is given by

dh(z∗con)

ds
+

1−B∗(s)
s

h(z∗con) = M0
P ′(s)

s
+
A∗′(s)

s
. (25)

where A∗(s) and B∗(s) are defined in (A.6).

PROOF. Substituting M0 for M(z∗) in (A.5) (cf. proof of Theorem 1) and differentiating (A.5) with respect
to s proves the result.

In (25), A∗(s) and B∗(s) depend on z∗rn,con which is given below.

PROPOSITION 2 (RN-CON: EQUILIBRIUM STRATEGY). In an all-pay auction with incomplete informa-
tion and a stochastic population of risk-neutral agents, given a constant prize M0, the equilibrium strat-
egy is given by

z∗rn,con = h−1

(
−M0

∫ s̄

s

P ′(s1)

s1
ds1

)
(26)

Optimization procedure: Given the parameters for a specific application, first obtain z∗rn,con using
Proposition 2, and then solve for z∗con using Proposition 1. Next, substitute z∗con together with other given
parameters into (24), which explicitly spells out the optimization problem maxM0 Ω∗con, and solve it (subject
to M0 ≥ 0) using traditional optimization techniques such as Kuhn-Tucker conditions.
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6.2. Special case
In this case, the problem remains the same, while the profit at equilibrium follows from (3) to be

Ω∗0 = n

∫ s̄

s

z∗0 dF −M0 (27)

where z∗0 is given below.

COROLLARY 3 (RN-DP-CON: EQUILIBRIUM STRATEGY). In an all-pay auction with incomplete infor-
mation and a deterministic population of n risk-neutral agents, given a constant prize M0, the equi-
librium strategy is given by

z∗0 = h−1
(

(n− 1)M0

∫ s̄

s

(1− F )n−2F
′

s1
ds1

)
. (28)

PROOF. Substituting P (s) = (1− F )n−1 into (26) proves the result.

The result (28) coincides with the one in Moldovanu and Sela [2001] but we use a different method.
Optimization procedure: Given the parameters (in particular the c.d.f. F (·) and the modulator function

h(·)) for a specific application, first obtain an explicit expression of z∗0 using (28). Then plug it into (27) and
we can express the optimization problem maxM0 Ω∗0, which can be solved similarly as in the general case
above.

7. EVALUATION
Not only does this section evaluate the performance of our mechanism (as specified by Theorem 1) in com-
parison to two other incentive mechanisms, but equally importantly, it also demonstrates how to apply
our analytical results, step by step, to obtain concrete mechanisms for various cases. The three incentive
mechanisms are:

— Standard Prize: An all-pay auction with a normalized prize, which is the standard version and can be
found in any auction textbook such as [Krishna 2009; Klemperer 2004];

— Optimal Prize: An all-pay auction with an optimized (constant) prize as solved in Section 6;
— Adaptive Prize: This is our proposed mechanism, presented in Section 4 and sec:extension.

For each comparison, we consider both the general case and the special case specified by Section 6, and
evaluate three performance metrics for each case:

— Maximum Profit (Ω): the total agent contribution minus the reward expense.
— Agent Utility (π): the expected utility of an agent of arbitrary type, then averaged over all the types, i.e.,

Es[π(s)] where π is expressed in (7).
— Social Welfare (W ): the aggregate utility of all the players, namely the principal and agents.

Moreover, we also examine the prizes allocated by the three mechanisms in the special case to shed light
on how the respective performances are achieved.

7.1. Simulation setup
For a more concrete understanding, let us revisit the crowdsourcing applications in Fig. 1, where smart-
phone users contribute WiFi signal qualities, GPS readings, or noise measurements to a crowdsourcer. A
software agent runs on each participant’s phone to compute the best contribution strategy and ensure the
execution of the strategy.7 At the end of the crowdsourcing campaign or periodically (e.g., every month), the
crowdsourcer selects the top contributor as the winner and rewards her with a prize that is adapted to her
contribution level.

The simulation setup is as follows. Each agent is characterized by her marginal cost s of making contri-
bution, which is private information known to herself only. The common belief is that all the marginal costs
are independently and uniformly drawn from [1, 2], i.e., F (s) = s−1. An agent i who makes a total contribu-
tion of zi will incur a total cost of sih(zi), where h(z) = zw, w > 1. This corresponds to a superlinear increase
of cumulative cost when contribution accrues, which is common in practice. For example, if z measures the
value of information (VoI) and h(z) is the time or effort spent on producing the VoI, then as long as the

7To ensure strategy execution, the software either takes over the task from the user (e.g., by periodically turning on sensors and
sending sensing data to a server), or prompts the user in such a way that she stops contributing when z∗i is reached (or simply
enforces it by turning off a component).
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production process exhibits diminishing marginal returns (which is a prevalent phenomenon in practice),
producing more VoI will consume increasingly more time or effort. For another example, suppose the pro-
duction process is linear instead, i.e., producing z consumes a proportional amount of time or effort. But as
the time/effort expense becomes higher, participating in the crowdsourcing activity interferes increasingly
more with the agent’s regular life and work, or she simply becomes increasingly more impatient, then the
same cost behavior arises as captured by h(z). For numeric computation, we take the quadratic form, i.e.,
w = 2.

Agents’ risk aversion profile is characterized by a vNM function u(x) = x − εx2, where 0 ≤ ε � 1 (ε = 0
indicating risk neutral). The stochastic population has an uncertain size that follows a probability mass
function pn = 1

N , n = 2, 3, ..., N+1. The upper bound, N+1, could be the total number of registered users,
which can be retrieved from the campaign database.

7.2. Evaluation for general case
7.2.1. Adaptive Prize.
Theorem 1 applies to this case.
Step 1 - Compute G(s) and G′(s):

G(s) =

∫ s

1

∑N+1
n=2 n(2− s1)n−1∑N+1
n=2 (2− s1)n−1

ds1 =

∫ s

1

−
[∑N+1

n=2 (2− s1)n
]′
s1∑N+1

n=2 (2− s1)n−1
ds1 =

∫ 1

2−s

[
t2(1−tN )

1−t

]′
t

t(1−tN )
1−t

dt (denote t := 2− s1)

=

∫ 1

2−s

[2t−(N+2)tN+1](1−t)+t2−tN+2

(1−t)2

t(1−tN )
1−t

dt =

∫ 1

2−s

[
(N + 1)− N

1− tN
+

1

1− t

]
dt.

This integral exists despite that the second and third terms in the integrand appear to be individually
unbounded at t = 1. To see this, check the limit

lim
t→1

(
− N

1−tN + 1
1−t

)
= lim
t→1

1−tN−N(1−t)
(1−t)(1−tN )

L’Hôpital’s rule
====== limt→1

N−NtN−1

2NtN−NtN−1−1
= 0.

Thus we can proceed to calculate, for example when N = 2 (n = 2, 3; pn = 1/2),

G(s) = 3(s− 1)− ln(1 + t)
∣∣1
2−s = 3s+ ln 3−s

2 − 3,

G′(s) = 3− 1
3−s .

Step 2 - Compute Å(s) and B̊(s):
First we solve for M̊rn(s) and z̊rn(s) using Corollary 1 (RN). So we rewrite (17) in terms of s (in place of z

as in z = z̊rn(s)):

M̊rn(s) =
[
sz̊2
rn(s) + π̊rn(s)

] /
P (s), (29)

where π̊rn(s) :=

∫ 2

s

z̊2
rn(s1) ds1. (30)

Then, using (6),

P (s) = 1
N

∑N+1
n=2 (2− s)n−1 = (2−s)[1−(2−s)N ]

(s−1)N (31)
= (2− s)(3− s)/2 (when N = 2).

For z̊rn(s), because a =
∑N+1
n=2 npn = N+3

2 and (h′)−1(x) = x/2, it follows from (18) that

z̊rn(s) = N+3
4

/
[G′(s)s+G(s)]

= 5/4

6s− 3
3−s +ln 3−s

2 −2
(when N = 2).

Thus, and using u1(x) = −x2, we can spell out (15) as

Å(s)=εP (s)
[
2M̊rn(s)h(̊zrn)s− M̊2

rn(s)
]
− εh2(̊zrn)s2 (32)

=− ε
P (s)

[̊
π2
rn − 2(1− P )̊πrnz̊

2
rns+ (1− P )̊z4

rns
2
]
,

B̊(s)=− 2εP (s)M̊rn(s) + 2εh(̊zrn)s+ 1 (33)
= 1− 2ε̊πrn.
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Step 3 - Compute Ω̊:
Now we apply Theorem 1 to obtain, first, the equilibrium strategy according to (13):

z̊(s) =
(N + 3)/4

G′(s)s+G(s)(1− 2ε̊πrn)
, (34)

and next, the maximum profit using (14):

Ω̊ =

∫ 2

1

[
(N+3)̊z

2 − z̊2 [sG′ + (1− 2ε̊πrn)G] + Å(s)G′
]

ds =

∫ 2

1

[
(N+3)2/16

G′(s)s+G(s)(1−2επ̊rn) + Å(s)G′
]

ds,

where π̊rn(s) can be computed according to (30) numerically (using, e.g., NIntegrate of Mathematica). Then,
we apply the following approximation to compute Ω̊ for different values of ε:

Ω̊ ≈
m−1∑
k=0

I(1 + k∆s) ·∆s

where I(s) denotes the integrand of Ω̊, and m = 1/∆s in which ∆s � 1. In our numerical computation, we
chose m = 200 because we found that, when ε = 0.1 for example, an increase of m from 50 to 100 improves
precision by 1% and from 100 to 200 improves by 0.7%.

Step 4 - Compute agent utility and social welfare:
The expected utility of an agent of arbitrary type s can be written using (12) as

π̊(s) = P (s)M̊(s)− h(̊z)s =

∫ 2

s

B̊(s1)h(̊z(s1)) ds1 − Å(s) (35)

where Å, B̊, z̊ have all been obtained in the above. Its mean value is given by

E
s
[̊π(s)] =

∫ 2

1

π̊(s) dF

which we compute using NIntegrate. The social welfare is then obtained as

W = Ω̊ +
N + 3

2
E
s
[̊π(s)].

7.2.2. Optimal Prize.

We follow the optimization procedure outlined in Section 6.1.
Step 1 - Obtain z∗rn,con using Proposition 2:
First calculate P ′(s) using (31):

P ′(s) = (2−s)N [N(s−1)+1]−1
N(s−1)2

= (2s− 5)/2 (when N = 2).

Then we obtain z∗rn,con using Proposition 2:

z∗rn,con =
√
−M0

∫ 2

s
P ′(s1)
s1

ds1

=
√[

5
2 ln 2

s − (2− s)
]
M0 (when N = 2).

Step 2 - Obtain z∗con using Proposition 1:
First, to solve for A∗(s), we take (32) as a shortcut:

A∗(s) = εP (s)
(

2M0z
∗
rn,con

2s−M2
0

)
− εz∗rn,con

4s2.

Hence, when N = 2,

A∗(s) = εM2
0

[
(2− s)(3− s)

(
s
[

5
2 ln 2

s − (2− s)
]
− 1

2

)
− s2

[
5
2 ln 2

s − (2− s)
]2 ]

,

A∗′(s) = −εM2
0

[
2sq2 − pq + (s− 5

2 )(1− p)
]
,

where q := 5
2 ln 2

s − (2− s) and p := (2− s)(3− s).
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(b) Fine-grained search (step size 0.01).

Fig. 3. Finding the maximum profit for Optimal Prize: the general case (Section 7.2.2, Step 3). ε = 0.1, N = 2.

To solve for B∗(s), we take (33) as a shortcut:

B∗(s) = −2εP (s)M0 + 2εz∗rn,con
2s+ 1.

Hence, when N = 2, B∗(s) = 2εM0

(
sq − p

2

)
+ 1.

Therefore, Proposition 1 gives, when N = 2,

H ′ − 2εM0

(
q − p

2s

)
H = Q(s) (36)

where H(s) := z∗con
2(s), Q(s) := (1− 5

2s )M0− εM2
0

[
2q2 − pq

s + (1− 5
2s )(1− p)

]
, and the boundary condition is

H(2) = 0. Note that (36) is a first-order linear differential equation.
Step 3 - Solve maxM0 Ω∗con:
Rewrite (24) with pn = 1/N , as

Ω∗con =
N + 3

2

∫ 2

1

z∗con dF −M0. (37)

The typical way to solve maxM0
Ω∗con, if using Mathematica, is to first solve (36) using DSolve, next plug

z∗con (=
√
H) into (37), and then apply Maximize or NMaximize. In our case, however, DSolve does not yield a

result when the boundary condition is specified. Therefore, we use numerical search as follows. We assign
a sequence of values to M0 and apply NDSolve to (36) to obtain a corresponding sequence of z∗con. With this
sequence of z∗con, we compute a corresponding sequence of Ω∗con using (37), and the maximum Ω∗con is thus
found. Of course, the range of the sequence must be chosen such that it includes the maximum point.
Furthermore, for a fast and accurate search, we first perform a coarse-grained search to locate a narrower
range of the maximizer M̊0, and then, within that range, perform a fine-grained search to pinpoint the M̊0.
An illustration is given by Fig. 3, where the maximum Ω̊con = 0.337747 is found at M̊0 = 0.33.

Step 4 - Compute agent utility and social welfare:
The expected utility of an agent of arbitrary type s is

π̊con(s) = P (s)M̊0 − h(̊zcon)s

whose mean value is Es [̊πcon(s)] =
∫ 2

1
π̊con(s) dF . The social welfare is then obtained as W̊con = Ω̊con +

N+3
2 Es [̊πcon(s)].

7.2.3. Standard Prize.

In this case, the crowdsourcing campaign assumes a normalized prize M0 = 1. Substitute it into (36) to
compute z∗std (in place of z∗con) and (37) to compute Ω∗std (in place of Ω∗con).

The procedures of computing agent utility and social welfare are similar to the above and hence omitted.

7.2.4. Results.

We compare the three metrics, namely maximum profit, agent utility, and social welfare, for Adaptive
Prize, Optimal Prize and Standard Prize in Fig. 4. For profit as shown in Fig. 4a, Adaptive Prize constantly
outperforms both Optimal Prize and Standard Prize over the entire range of risk aversion parameter ε. Note
that ε cannot be too large for otherwise it violates the assumption of weakly risk aversion. We also see that
when ε increases (agents become more averse to risk), the profits of all the three incentive mechanisms
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Fig. 4. Comparison among three all-pay auction based incentive mechanisms: general case.

decrease. This conforms to our intuition, as risk-averse agents are more reluctant to lose than risk-neutral
agents, and therefore become more conservative in spending effort. Particularly, Standard Prize, which is
without optimization, decreases the fastest among the three mechanisms.

For agent utility as shown in Fig. 4b, Adaptive Prize is the clear winner (about 11.2 times of Optimal
Prize and 3.35 times of Standard Prize at ε = 0.1, for instance). Optimal Prize turns out to be lower than
Standard Prize because its optimization aims at maximizing principal’s profit rather than agent utility, and
this result tells that it has to slightly sacrifice agent utility (while still ensuring individual rationality) to
achieve the aim. Another observation is that, Standard Prize can be taken advantage of by agents (and not
the principal) who can gain slightly higher expected utility by being more and more risk averse. This is due
to their conservation of effort and leads to the lower profit for the principal (cf. Fig. 4a). On the other hand,
Adaptive Prize and Optimal Prize are much more resistant to risk aversion.

Lastly on social welfare as shown in Fig. 4c, Adaptive Prize again wins over the other mechanisms remark-
ably. We also see that Optimal Prize only outperforms Standard Prize by a small margin. This implies that
our exploration on the new dimension of optimal incentive mechanism design—instrumenting an adap-
tive prize as a function—is worthwhile as compared to the traditional optimization approach which is to
optimize the constant prize value.

7.3. Evaluation for special case
In the special case considered in this section, agents are risk neutral and the population size is known as n.

7.3.1. Adaptive Prize.

The equilibrium strategy follows from Corollary 2 (22) as z̊rn,dp = 1
4s−2 , or inversely, s̊rn,dp = 1

4z + 1
2 . The

optimal adaptive prize then follows from (21) as

M̊rn,dp(z) =

z
4 + z2

2 −
∫ z

1
6

(
− 1

4

)
dz1(

3
2 −

1
4z

)n−1 =
(4z)n(z + 1)

8(6z − 1)n−1
− 1

24

(
4z

6z − 1

)n−1

,

or equivalently, in terms of s, as

M̊rn,dp(s) =
4s− 1

8(2− s)n−1(2s− 1)2
− 1

24(2− s)n−1
. (38)

Thus, the maximum profit is obtained from (23) as

Ω̊rn,dp = n

∫ 2

1

ds

4(2s− 1)
=

ln 3

8
n (39)

The expected utility of an agent of arbitrary type s is

π̊rn,dp(s) = (1− F )n−1M̊rn,dp(s)− h(̊zrn,dp)s =
1

8(2s− 1)
− 1

24
,
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Fig. 5. Comparison among three all-pay auction based incentive mechanisms: special case.

whose mean value is

E
s
[̊πrn,dp(s)]=

∫ 2

1

π̊rn,dp(s) dF =
ln 3

16
− 1

24
(40)

The social welfare is thus

W̊rn,dp = Ω̊rn,dp + n E
s
[̊πrn,dp(s)] =

3 ln 3

16
n− 1

24
. (41)

7.3.2. Optimal Prize.

We follow the optimization procedure outlined in Section 6.2.
Step 1 - Compute equilibrium strategy:
First, Corollary 3 gives the equilibrium strategy

z∗0(s) =

√
(n− 1)M0

∫ 2

s

(2− s1)n−2

s1
ds1 =

√
(n− 1)2n

8

(
ln

4

s2
− 2H+ s(n− 2)G

)
M0.

where H stands for H(n− 2) which gives the (n− 2)th harmonic number8, G stands for G
(
1, 1, 3− n; 2, 2; s2

)
which is a generalized hypergeometric function9. For example, when n = 2, 3, 4,

z∗0(s) =


√

M0

2 ln 4
s2 , n = 2√

2
(
s− 2 + ln 4

s2

)
M0, n = 3√

6
(
2s(1− s

8 )− 3 + ln 4
s2

)
M0, n = 4.

Step 2 - Profit maximization:
The profit at equilibrium can be obtained using (27):

Ω∗0 = n

∫ 2

1

z∗0 dF −M0 (42)

=


2
√
M0

(√
π erf(

√
ln 2)−

√
ln 2
)
−M0, n = 2

3
∫ 2

1

√
2M0

(
s− 2 + ln 4

s2

)
ds−M0, n = 3

4
∫ 2

1

√
6M0

(
s
(
2− s

4

)
− 3 + ln 4

s2

)
ds−M0, n = 4

8H(0, 1, 2, 3, 4, 5, . . .) = 1, 3
2
, 11

6
, 25
12
, 137

60
, 49
20
, . . .

9G(1, 1, {1, 0,−1,−2, . . .}; 2, 2; 1) = π2

6
, 1, 3

4
, 11
18
, . . .
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from which we obtain the maximum profit Ω̊0 and the optimal prize (maximizer) M̊0, using NMaximize with
Mathematica.

Step 3 - Agent utility and social welfare:
The expected utility of an agent of arbitrary type s is

π̊0(s) = (1− F )n−1M̊0 − h(̊z0)s = (2− s)n−1M̊0 − z̊2
0s (43)

=


0.266(2− s)− 0.133s ln 4

s2 , n = 2

0.368(2− s)2 − 0.738s(s− 2 + ln 4
s2 ), n = 3

0.445(2− s)3 − 2.673s
[
s(2− s

4 )− 3 + ln 4
s2

]
, n = 4.

Its mean value, and the social welfare, can then be determined similarly as in Section 7.3.1.

7.3.3. Standard Prize.

In this case, we plug M0 = 1 into (42) (43) to obtain the profit and agent utility, respectively. The mean of
agent utility and the social welfare are then obtained similarly as in Section 7.3.1.

7.3.4. Results.

The results are presented in Fig. 5. First on profit (Fig. 5a), Adaptive Prize is again the clear winner.
Notably, its profit increases linearly as the number of agents increases, while the profits of Optimal Prize and
Standard Prize exhibit diminishing marginal return and tend to saturate. This implies a highly desirable
scalability which is important to crowdsourcing systems, and gives a competitive edge to our approach.

Second, see agent utility in Fig. 5b. The foremost observation is that the agent utilities of both Standard
Prize and Optimal Prize decrease as n increases but that of Adaptive Prize remains constant. In addition,
Adaptive Prize maintains the highest agent utility among the three mechanisms except at n = 2, 3, 4. There-
fore, since n is much larger in typical crowdsourcing scenarios, this set of results show that our approach
provides a much stronger incentive to the agents. Moreover, since the agent utilities in all the three mech-
anisms are positive, it indicates that a properly designed all-pay auction can indeed incentivize agents to
participate.

Lastly, for social welfare as shown in Fig. 5c, we see a similar, yet more prominent trend as compared
to Fig. 5a. The similarity owes to the superposition of profit and n times agent utility (the multiplying
factor n counteracts the decreasing agent utility of Standard Prize and Optimal Prize shown in Fig. 5b). The
prominence can be illustrated by a comparison. For instance when n = 9, the profit of Adaptive Prize is about
2.0 and 1.9 times of Standard Prize and Optimal Prize, respectively, whereas its social welfare is about 2.6
times of the other two. We can also see that this difference will become larger and larger when n increases.
This set of results imply that the community as a whole can derive substantial benefit from our proposed
mechanism.

Investigating Prizes:
Naturally, one would wonder if Adaptive Prize has provisioned much higher prize in order to achieve the

superior performance. To this end, we evaluate its prize function (38) with respect to the winner’s type,
which is s + s̄−s

n+1 in expectation due to the uniform distribution of agent type. Then we plot the function
value with respect to n in Fig. 6, together with (i) Optimal Prize whose optimum M̊0 is obtained in Step 2 of
Section 7.3.2 and (ii) Standard Prize whose prize remains one.

Counter-intuitively, we see that Adaptive Prize gives out the lowest prize among all the mechanisms. The
insight to draw from this observation is that it is not necessary to provide a higher prize to incentivize
agents so as to be more profitable; what really matters is how the whole mechanism is designed such that
agents are incentivized to an “optimal” extent while the principal can live on a budget that is as small as
possible. This rationale is also reflected by Optimal Prize: although it has to offer slightly higher reward
than Adaptive Prize, it is still much more budget-friendly than Standard Prize.

Nonetheless, it may still be a little perplexing as to why a lower prize can actually achieve a higher
profit. Thus, diving deeper, we examine how the prize function of Adaptive Prize varies with agent type and
contribution, as plotted in Fig. 7 where we fix n = 6 for illustration. Fig. 7a reveals that, when agent type is
higher, the prize increases exponentially. This implies that Adaptive Prize “dares” to provide very high prize
to incentive those agents who are very reluctant to participate because of their high contribution costs,
while the other two mechanisms only provide constant prizes which do not appeal to those “weak” agents.
On the other hand, Fig. 7b surprisingly shows that making higher contribution actually wins a lower prize.
In fact, this unveils a sensible design principle: higher contributions are made by lower-cost agents, who
are already more willing to participate than others and do not need a high prize so as to be incentivized;
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Fig. 7. Investigating adaptive prize with respect to the winning agent; n = 6. Note that s = 1 corresponds to z = 0.5 and s = 1.5
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in other words, by contributing more, their benefit from increasing the winning odds outweighs their cost
increase. Therefore, this insight would allow a crowdsourcer to downsize its offered prize insofar as this
outweighing leverage is not negated, which results in substantial cost saving and eventually profit gain.

8. DISCUSSION
8.1. Population size indifference and Shading effect
It is interesting to note that, in the case of RN-DP (the most common case in the literature), Adaptive Prize
induces an agent contribution strategy (22) that is independent of the population size n. This is in contrast
to all well-known standard auctions, regardless of all-pay or winner-pay, in which the agent strategy always
depends on n (see, e.g., [Krishna 2009] and (28) herein). Indeed, this (coupling with n) conforms to our
intuition because when n increases, an auction becomes more competitive since one has to outbid all the
others in order to win, and hence an agent should accordingly adjust her strategy.

So why are agents oblivious to this number now (with our approach)?
To answer this question, let us first explain how n affects agent strategy in standard auctions. The

“bridge” between n and strategy is the winning probability. For example, in IPV model based all-pay auc-
tions, the winning probability is (1 − F (s))n−1 where agent type s denotes cost. Therefore, the chance of
winning drops if n increases, and thus any rational agent will shade her bid downward in order to mini-
mize the “more likely” loss. We refer to this as a shading effect.
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In our proposed approach, the principal is offered another degree of freedom to functionize the prize,
which is then subjected to optimization. As a result, the winning probability—which contains the shading
factor n—becomes part of the prize function (see (21) in the denominator). Thus, population size is no longer
a concern of agents but is taken care of by the principal, thereby overcoming the undesired shading effect.

8.2. Limitations and Applicable scenarios
The main challenge of applying all-pay auctions in general to practice is probably not technological but
psychological. This is because the all-pay nature requires everyone to pay for her bid (i.e., to actually con-
tribute) without any guaranteed reward. Although each person can anticipate a positive “expected ” utility
(by virtue of SIR), it still sounds lacking a sense of security or reassurance. Therefore, how to actually
run such mechanisms in practice may need extra assistance, where behavioral economics and marketing
strategies would play interesting roles.

On the other hand, a very recent study presents a user-friendly alternative called Tullock contests [Luo
et al. 2015b] which is complementary to all-pay auctions. The most distinctive feature of Tullock contests
is that “everyone has a chance to win” no matter how “weak” she is.

Regarding the general criticism on game theory that human rationality is often limited or bounded in
reality, we have overcome this limitation by equipping each user with a software agent to compute and
ensure execution of the optimal contribution strategy on each user’s behalf, rather than assuming that
users will do all the calculations themselves. This has been described in Section 7.

Other than these, our proposed approach can be generally applied to a broad range of crowdsourcing sys-
tems. Such systems could be traditional (problem-solving) crowdsourcing websites such as MTurk [2005],
CrowdFlower [2007] and TaskRabbit [2008], or new generation (data-centric) crowdsensing mobile plat-
forms such as Waze [2009] and NoiseTube [2010]. The application domain would generally cover trans-
portation, environmental, healthcare, communications and networking, and so forth.

9. CONCLUSION
This paper advocates using all-pay auctions to design incentive mechanisms for crowdsourcing, based on
their two merits that we identify: simplicity and risk-elimination. In this spirit, we propose a particular
all-pay auction approach that features an adaptive prize and a general crowdsourcing environment. We
show that this approach generates significantly higher (and scalable) profit for the crowdsourcer and offers
stronger incentive to participants, as well as provides much better social welfare to the whole community.

Our approach of using an adaptive prize or reward also represents a new dimension of optimal incentive
mechanism design. The accompanying general crowdsourcing environment provides a more realistic model
to permit a wider range of applications. Finally, the theoretical results for the special cases (as outlined in
Section 5) would allow for a convenient use by other future research.

APPENDIX
Available in the ACM Digital Library (http://dl.acm.org).
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