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ABSTRACT

In this paper, we consider the problem of determining a cyclic (or loop) scheduler that allocates slots to flows as
periodically as possible. We use the second moment of the inter-allocation distance for each flow as its periodicity
metric. We establish the optimality of a Weighted-Round Robin with spreading (WRR-sp2) scheduler for a two-flow
scenario.

We consider a class-based scheduling scenario where flows are grouped according to their relative bandwidth de-
mands. We propose aC-class scheduler that recursively performs inter-class scheduling using the correspondingC-1
class scheduler, prior to intra-class scheduling. Optimality is achieved forC = 2 with theWRR-sp2 as the inter-class
scheduler.

Through numerical results, we show that the recursive scheduler achieves the best periodicity performance at the
expense of intra-class fairness, which is desirable for class-based scheduling. Thereby, we expose a trade-off between
periodicity and fairness performance in the design of loop schedulers.

Keywords: Loop Scheduler, Periodicity, Recursive, Class-based Scheduling

1 Introduction

Consider a system that comprises an indivisible re-
source (time-slot) andK clients (or flows) share it by
means of time multiplexing: in any given time, a differ-
ent flow may use the resource. Many applications require
that flows are served at some prescribed rate, and this rate
should be as smooth as possible even in small time win-
dows. The allocation of time slots to flows is governed
by a scheduling algorithm. In other words, given a set of
requested shares,x={xj}K

j=1, the goal of the scheduling
algorithm is to produce an assignment of time slots (or a
schedule) to flows, while trying to optimize two different
measures:

Fairness : A schedule is said to have good fairness if
the fraction of time slots allocated to each flow is
close to its requested share.

Smoothness : A schedule is said to have good smooth-
ness if the time slots allocated to each flow are as
evenly spaced as possible.

The best possible schedule is one where the allocated
shares are exactly the requested shares (perfect fairness)
and where each flowj is scheduled exactly everyζj time
slots (perfectly-periodic schedule). In this study, we con-
sider the design of perfectly-fair schedulers that maxi-
mize smoothness; the design of perfectly-periodic sched-
ulers can be found in [1, 2, 3, 4, 5].

1.1 Related Work

In [6], the authors considered anonlinevariant of the
scheduling problem. Given that the arrival process of
packets to each flow is independent and identically dis-
tributed (i.i.d), the goal is to determine a scheduler that
optimizes some performance criteria under the perfect-
fairness constraint.

In [7], the author deduced that for throughput op-
timality for K=2 and unit buffer size per input-flow,
the schedule must beopen-loop(or de-centralized) and
conflict-free. This work was extended in [8] to the case of
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K>2. It was also verified that an optimal schedule always
exists and is stationary andcyclic (or loop), i.e., there ex-
ists anR such that for alli, the flow allocated to sloti is
also allocated to sloti+R.

This reduces the problem to anofflineone, where the
objective is to determine a loop schedule of sizeR, given
x. The authors proposed a Golden Ratio Scheduler that
achieves a nearly-optimal throughput under online con-
ditions. In [6], the authors considered the case where the
buffer size per input-flow is unlimited. It is shown that the
mean queue size (or equivalently, the mean packet delay)
is minimized with a perfectly-periodic schedule, which
is not always feasible. Although the golden ratio sched-
uler is not perfectly periodic, it performs extremely well
compared to lower bounds for expected packet delay.

1.2 Contribution of This Paper

Although loop schedulers that ensure perfect-fairness
(denoted perfectly-fair loop schedulers) have been pro-
posed in the literature, we are not aware of any work that
analyzed and evaluated the extent of non-periodicity in
these schedulers. In this paper, we propose a periodicity
metric and compute the bounds for the metric over the
class of perfectly-fair loop schedulers. By analyzing the
periodicity properties of various loop schedulers, we pro-
pose a recursive loop scheduler for a class-based schedul-
ing scenario. We demonstrate the gain in periodicity per-
formance achieved by the recursive scheduler over known
loop schedulers.

The paper is organized as follows: We define our
scheduling problem, where we consider the design of
perfectly-fair loop schedulers to maximize allocation
smoothness while maintaining intra-class fairness in a
class-based scheduling scenario, in Section 2. Then, we
consider the requirements for optimal per-flow periodic-
ity and establish the lower bound for the periodicity met-
ric in Section 3. We describe the mechanism and peri-
odicity properties of several loop schedulers in Section 4.
In Section 5, we propose a recursive loop scheduler that
achieves good periodicity performance in a class-based
scheduling scenario. In Section 6, we compare the per-
formance of various loop schedulers in terms of numeri-
cal results. We describe two applications of perfectly-fair
loop schedulers in wireless networks in Section 7 and fi-
nally, some concluding remarks are given in Section 8.

2 Problem Definition

Given a set of requested shares,x, we consider the de-
sign of perfectly-fair loop schedulers to maximize alloca-
tion smoothness while maintaining intra-class fairness in
a class-based scheduling scenario. Lety denote a vector
of elementsy, wherey(i) is theith element ofy.

2.1 Perfectly-Fair Loop Schedulers

Let Fx denote the class ofK-flow perfectly-fair
loop schedulers, i.e., schedulers that satisfy the perfect-
fairness constraint over any interval ofR slots, whereR
is the loop size. This implies that (for any finiteK), the
elements ofx are rational. We can then defineR andrj ,
1≤ j ≤ K, as follows:

R = LCD(x)

rj = xj · R

whererj is the number of slots allocated to flowj over
any interval ofRslots and LCD(x) is the lowest common
divisor of the elements ofx.

If nj
π(m) denotes the duration between the(m−1)th

andmth allocation to flowj under a schedulerπ, then we
have the following property:

Property 1 If π ∈ Fx, then for 1≤ j ≤ K,

nj
π(rj + m) = nj

π(m)

k+rj−1∑

m=k

nj
π(m) = R, for anyk > 0

Hence, each schedulerπ can be uniquely characterized
by the elements,{nj

π(m)}rj

m=1 (which we denote bynj
π).

2.2 Class-based Scheduling Scenario

A class-based scheduling framework [9] is based on
the paradigm of service classes, where flows with a com-
mon characteristic are grouped together. By considering
a ‘class-aware’ scheduling paradigm that allocates slots
to flows within each classindependentlyof other classes
(intra-class scheduling) and thencombinesthe allocation
vectors obtained in an optimal way (inter-class schedul-
ing), we may achieve a gain in performance and reduction
in complexity over ‘class-unaware’ schedulers. We pro-
pose a recursive implementation of such a scheduler in
Section 5.

We consider aC-class scheduling scenario where
each classc comprisesκc flows whose indices are defined
by Cc, where

Cc = {

c−1∑

y=1

κy + 1,

c−1∑

y=1

κy + 2, · · · ,

c∑

y=1

κy}

andxj = xk ⇔ j,k ∈ Cc for any 1≤ j, k ≤ K. We define
the notationỹc, wherey ∈ {x, r}, such that̃yc=yj if j
∈ Cc.

2.3 Performance Criteria

We define the following criteria to evaluate the perfor-
mance of perfectly-fair loop schedulers in a class-based
scheduling scenario:



2.3.1 Allocation Smoothness (Periodicity)

Per-flow periodicity : A suitable metric to evaluate the
periodicity of allocation with respect to flowj is
the variance ofnj

π, V ar[nj
π] = E[nj

π]2 - (E[nj
π])2,

where

E[nj
π]x =

∑rj

m=1[n
j
π(m)]x

rj

However, according to Property 1, we have the fol-
lowing:

E[nj
π] =

∑rj

m=1 nj
π(m)

rj

=
R

rj
independent ofπ

Hence, the periodicity measure for any schedulerπ

with respect to flowj can be evaluated in terms of
E[nj

π]2: a smaller value ofE[nj
π]2 implies a more

periodic slot allocation to flowj and vice versa. We
note that the order of the elements innj

π is unim-
portant for the evaluation ofE[nj

π ]2, and hence, we
can considernj

π as a set ofrj elements.

Ensemble periodicity : We define the weighted covari-
ance of{nj

π}
K
j=1, wcovπ , as follows:

wcovπ =

K∑

j=1

rj

R
·
E[nj

π]2 − (E[nj
π])2

(E[nj
π])2

The metric,wcovπ , reflects the periodicity over the
ensemble of all flows. With perfect periodicity,
wcovπ=0 sincenπ = E[nj

π]. Hence, a value close
to zero is an indication of good periodicity perfor-
mance over the ensemble of flows.

2.3.2 Intra-class Fairness

A desirable characteristic in class-based scheduling is
the notion of intra-class fairness, i.e., all flows from the
same class should possess the same periodicity character-
istics.

2.4 Problem Formulation

If aπ denotes the allocation vector (of lengthR) ac-
cording to schedulerπ, then our scheduling problem can
be formulated as follows:

K-flow Loop Scheduling Problem

Determine the allocation vectoraπ∗ such that
for 1≤ j ≤ K

E[nj
π∗ ]2 = min

π∈Fx
E[nj

π]2

and∀ j,k ∈ Cc for 1≤ c ≤ C
E[nj

π∗ ]2 = E[nk
π∗ ]2 .

To assess the size of the problem, letA = {aπ : π ∈
Fx}. Then, we have the following:

|A| =
R!

∏K

j=1 rj !

We note that a large number ofaπ ∈ A are equivalent
since they are identical under rotation with respect to
E[nj

π]2. However, even after eliminating these, the re-
sultant space is still non-tractable for largeR.

A dynamic programming approach to derive an opti-
mal scheduler requires the definition of an additive objec-
tive function, i.e., one which is computed incrementally.
However, the periodicity metric is a cumulative quantity,
which renders the approach unsuitable.

Therefore, our approach is to evaluate the periodic-
ity performance of various known loop schedulers. By
comparing against a lower bound (See Section 3), we can
determine the ‘best’ scheduler that maintains intra-class
fairness and also quantify its deviation from the optimal
scheduler.

3 Conditions for Optimal Per-flow
Periodicity for Perfectly-Fair
Loop Schedulers

In this section, we determine the conditions for opti-
mal allocation periodicity for some flowj. This can be
expressed as a requirement onnj

π in the following theo-
rem:

Theorem 1 If n
j
∗ is defined as follows:

nj
∗ = {

rjb R

rj c+rj−R

︷ ︸︸ ︷

b
R

rj
c, · · · , b

R

rj
c, d

R

rj
e, · · · , d

R

rj
e

︸ ︷︷ ︸

R−rjb R

rj c

}

then we have the following:

E[nj
∗]

2 = min
π∈Fx

E[nj
π]2

Proof. We consider the following cases:

R ≡ 0 (modulorj ) : Perfect allocation periodicity is
achieved for flowj when the inter-allocation in-
terval is constant, i.e.,nj

∗(k) = n
j
∗(m). This is

achieved if and only ifnj
∗(k) = R

rj for 1≤ k ≤ rj .

R ≡ y (modulo rj), 1≤ y ≤ rj -1 : In this case, a con-
stant inter-allocation interval for flowj cannot be
achieved. The best one can achieve is the follow-
ing for 1≤ k ≤ rj :

nj
∗(k) ∈ {N, N + 1}, where1 ≤ N ≤ R − rj .

For 1≤ m ≤ rj-1, let us assume the following:

nj
∗ = {

m
︷ ︸︸ ︷

N, · · · , N, N + 1, · · · , N + 1
︸ ︷︷ ︸

rj−m

}



Then, since
∑rj

k=1 nj(k) = R, we have the follow-
ing:

m · N + (rj − m) · (N + 1) = R

from which we have

m = rj · N + rj − R

However, since 1≤ m ≤ rj -1, we have the follow-
ing constraints onN:

R

rj
− 1 +

1

rj
≤ N ≤

R

rj
−

1

rj
(1)

Sinceb R
rj c -1 < R

rj − 1 + 1
rj andd R

rj e > R
rj − 1

rj ,
the only integerN that can satisfy Eq. (1) isN =
b R

rj c.

�

The corresponding value forE[nj
∗]

2 can be used as a
lower bound for allπ ∈ Fx and is given as follows:

E[nj
∗]

2 =
R(2N + 1) − rjN(N + 1)

rj

4 Description of K-flow Loop
Schedulers

In this section, we describe the mechanism as well as
the periodicity and intra-class fairness characteristicsof
several loop schedulers. Without loss of generality, we
will assume thatrj ≤ rk for j<k andrj ≥ 2. The case
of rj=1 is trivial sincenj

π = R for π ∈ Fx, i.e., perfect-
periodicity is always achieved for flowj. We denote by
ns

(j,k)
π (m) the cumulative number of slots allocated to

flow k up to themth allocation to flowj by schedulerπ.

4.1 K-flow Deficit Round Robin Scheduler
(DRRK)

Fair-queueing schedulers (e.g., Weighted-Fair Queue-
ing (WFQ)) achieve nearly-perfect fairness, but they are
usually expensive to implement.DRRK [10] is an online
scheduler that is an approximation to fair-queueing which
is simple to implement and yet achieves good fairness and
can also be implemented as a loop scheduler. Within the
scope of our scheduling problem, theDRRK scheduler
reduces to a Weighted Round Robin (WRR) policy, which
simply allocates a block ofr1 slots to flow 1 followed by
a block ofr2 slots to flow 2 and so on. Hence, each flow
j is allocated slots in blocks of sizerj , with an interval
of R-rj slots between successive blocks. Therefore, we
have the following:

n
j
DRRK

= {1, · · · , 1, R − rj + 1} (2)

E[nj
DRRK

]2 =
rj + (R − rj)2 + 2(R − rj)

rj

The periodicity performance of theDRRK is given
by the following theorem:

Theorem 2 Although theDRRK ensures intra-class
fairness, it exhibits the worst periodicity amongstπ ∈ Fx,
i.e., for 1≤ j ≤ K,

E[nj
DRRK

]2 = max
π∈Fx

E[nj
π]2

Proof. According to Eq. (2), the periodicity metric for
flow j is a function ofrj only and hence, theDRRK

scheduler ensures intra-class fairness.

Let us consider an arbitrary schedulerπ ∈ Fx with nj
π

given as follows:

nj
π = {1 + z1, · · · , 1 + zrj−1, R − rj + 1 −

rj−1∑

y=1

zy}

wherezy ∈ Z+, 1≤ y ≤ rj -1. We note that forzy=0,
1≤ y ≤ rj -1,π = DRRK .

Using Eq. (2),E[nj
π]2 can be expressed in terms of

E[nj
DRRK

]2 as follows:

E[nj
π]2 = E[nj

DRRK
]2 (3)

+

rj−1∑

y=1
z2

y + [
rj−1∑

y=1
zy]

2 − 2(R − rj)
rj−1∑

y=1
zy

rj

Since nj
π corresponds to inter-allocation intervals, we

have the following constraint:

R − rj + 1 −

rj−1∑

y=1

zy ≥ 1

In addition, according to the triangular inequality, we
have:

rj−1∑

y=1

z2
y ≤ [

rj−1∑

y=1

zy]2

Substituting into Eq. (3), we have the following:

E[nj
π]2 ≤ E[nj

DRRK
]2

+

∑rj−1
y=1 z2

y + [
∑rj−1

y=1 zy]
2 − 2[

∑rj−1
y=1 zy]

2

rj

= E[nj
DRRK

]2 +

∑rj−1
y=1 z2

y − [
∑rj−1

y=1 zy]2

rj

≤ E[nj
DRRK

]2

�



4.2 K-flow Credit Round Robin Scheduler
(CRRK)

The motivation to design theCRRK scheduler [11]
was to reduce the latency of theDRRK scheduler. As
with theDRRK scheduler, theCRRK scheduler can be
implemented as a loop scheduler, and the pseudo-code is
given as follows:

K-flow Credit Round Robin Scheduler (CRRK)

Initialize yj = rj

rK , 1≤ j ≤ K

Seti=1, SP=K, count=0
while i ≤ R

if count< K
if ySP < 1

count= count+ 1
else

aCRRK
(i) = SP,

ySP = ySP - 1, i = i + 1, count= 0
SP= SP- 1 (moduloK)

elseyj = yj + rj

rK ∀ j, count= 0

TheCRRK scheduler possesses the following prop-
erty for 1≤ j ≤ K-1:

Property 2 Themth allocation of flow j always occurs
between thedmrK

rj e th and dmrK

rj e - 1 th allocation of
flow K, 1≤ m≤ rj , i.e.,

ns
(j,K)
CRRK

(m) = d
mrK

rj
e − 1

Proof. With the CRRK scheduler, the first slot is al-
ways allocated to flowK. We can consider subsequent
allocations in blocks, where each block terminates with
the next flowK allocation, as illustrated in Fig. 1, where
ns

(j,K)
CRRK

(m) is the number of slots allocated to flowK
up to themth allocation to flowj.

According to the transmission heuristics given by the
pseudo-code,ns

(j,K)
CRRK

(m) has to satisfy the following
conditions:

[ns
(j,K)
CRRK

(m) + 1]rj

rK
≥ m and

ns
(j,K)
CRRK

(m) · rj

rK
< m

Hence, we obtainns
(j,K)
CRRn

(m) = dmrK

rj e -1 �

Property 2 can be generalized for a class-based sce-
nario as follows:

Property 3 For the CRRK scheduler, flows within each
class are allocated in blocks, where the order within class
Cu is

∑u−1
m=1 κm + 1,

∑u−1
m=1 κm+2, · · · ,

∑u

m=1 κm for
1≤ u ≤ C. In addition, themth block ofCu will reside
between thedm·r̃C

r̃u eth and dm·r̃C

r̃u e − 1th block of CC ,
where 1≤ m ≤ r̃u.

We note from Property 3 that flows within each class
are always transmitted in blocks, where each flow from

that class is allocated exactly once and the order within
each block is constant. Hence, the periodicity character-
istics for flows belonging to the same class are identical,
i.e., intra-class fairness is maintained.

4.3 K-flow Weighted Round Robin with
WFQ-like spreading Scheduler (WRR-
spK)

TheWRR-spK scheduler [12] is a variant of the stan-
dard WRR scheduler, in which the service order amongst
the flows is identical to WFQ. The algorithm for the
WRR-spK scheduler is described as follows:

K-flow WRR with spreading Scheduler (WRR-spK)

Let the arrayy contain the sequence
< m

rj , j >: m ∈ {1, · · · , rj}, 1≤ j ≤ K

sorted in lexicographic order.
The vectoraWRR−spK

is constructed as follows:
aWRR−spK

(i) = j if y(i) =< m
rj , j >

The WRR-spK scheduler possesses the following
property for 1≤ j ≤ K-1:

Property 4 Themth allocation of flow j always occurs
between thedmrk

rj e th anddmrk

rj e - 1 th allocation of flow
k, where k>j, 1≤ m≤ rj , i.e.,

ns
(j,k)
WRR−spK

(m) = d
mrk

rj
e − 1

Proof. According to the algorithm, themth allocation to
flow j is characterized by the parameterm

rj . If y denotes
the cumulative number of slots allocated to flowk up to
themth allocation of flowj andj < k, theny must satisfy
the following conditions:

y

rk
<

m

rj
and

y + 1

rk
≥

m

rj

Hence, we obtainns
(j,k)
WRR−spK

(m) = y = dmrk

rj e -1 �

Property 4 can be generalized for a class-based sce-
nario as follows:

Property 5 For the WRR-spK scheduler, flows within
each class are allocated in blocks, where the order within
classCu is

∑u−1
m=1 κm+1,

∑u−1
m=1 κm+2, · · · ,

∑u

m=1 κm

for 1≤ u ≤ C. In addition, themth block ofCu will re-
side between thedm·r̃y

r̃u eth anddm·r̃y

r̃u e−1th block ofCy,
where y>u and 1≤ m ≤ r̃u.

As with theCRRK scheduler, we can deduce from
Property 5 that intra-class fairness is maintained for the
WRR-spK scheduler.
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Figure 1:Illustration of allocation to flow K relative to allocation to flow j with the CRRK scheduler.

n
j
WRR−spK

=







{

r̃1d r̃2

r̃1
e−r̃2

︷ ︸︸ ︷

κ1 + κ2b
r̃2

r̃1
c, · · · , κ1 + κ2b

r̃2

r̃1
c, κ1 + κ2d

r̃2

r̃1
e · · ·κ1 + κ2d

r̃2

r̃1
e

︸ ︷︷ ︸

r̃2−(d r̃2

r̃1
e−1)r̃1

}, j ∈ C1;

{

r̃2K−R

κ1

︷ ︸︸ ︷

κ2, · · · , κ2, K, · · · , K
︸ ︷︷ ︸

R−κ2 r̃2

κ1

}, j ∈ C2.

(4)

nj
∗ =







{

r̃1(κ1+bκ2 r̃2

r̃1
c)+r̃1−R

︷ ︸︸ ︷

κ1 + b
κ2r̃2

r̃1
c, · · · , κ1 + b

κ2r̃2

r̃1
c, κ1 + d

κ2r̃2

r̃1
e, · · · , κ1 + d

κ2r̃2

r̃1
e

︸ ︷︷ ︸

R−r̃1(κ1+bκ2 r̃2

r̃1
c)

}, j ∈ C1;

{

r̃2(κ2+bκ1 r̃1

r̃2
c)+r̃2−R

︷ ︸︸ ︷

κ2 + b
κ1r̃1

r̃2
c, · · · , κ2 + b

κ1r̃1

r̃2
c, κ2 + d

κ1r̃1

r̃2
e, · · · , κ2 + d

κ1r̃1

r̃2
e

︸ ︷︷ ︸

R−r̃2(κ2+bκ1 r̃1

r̃2
c)

}, j ∈ C2.

(5)

4.3.1 OptimalWRR-spK-based Scheduler (C=2)

For a two-class scheduling scenario, using Property 5
and Theorem 1,nj

WRR−spK
andn

j
∗ are given in Eq. (4)

and Eq. (5) respectively. Comparing these equations, we
note thatnj

WRR−spK
6= n

j
∗ for 1≤ j ≤ K and hence, the

WRR-spK scheduler is not optimal in terms of per-flow
periodicity. However, we note that whenκ1=1 (κ1=K-
1), theWRR-spK scheduler offers optimal periodicity for
flows inC2 (C1). However, ifr̃1=1, then optimal (worst-
case) periodicity is achieved for flows inC1 (C2).

Furthermore, we observe that for the special case of
K=2, sinceκ1=1 =K-1, theWRR-sp2 scheduler offers op-
timal periodicity forall flows. Hence, if we define a two-
class scheduler,OPT2, that employs theWRR − sp2

as a class-aware scheduler (Section 2.2), then it can be
shown thatnj

OPT2
= n

j
∗ as given in Eq. (5) for 1≤ j ≤

K. Hence, theOPT2 scheduler is optimal for two-class
scheduling, and the pseudo-code is given below, assum-
ing κ1 · r̃1 ≤ κ2 · r̃2 (the corresponding scheduler for
κ1 · r̃1 > κ2 · r̃2 can be obtained by interchanging the
indices 1 and 2):

Optimal Two-Class Scheduler (OPT2)

Setr = [κ1 · r̃1, κ2 · r̃2], K = κ1 + κ2

DefineC1 = [

1
︷ ︸︸ ︷

1, 2, · · · , κ1,

2
︷ ︸︸ ︷

1, 2, · · · , κ1, · · · , · · · ,
r̃1

︷ ︸︸ ︷

1, 2, · · · , κ1]

DefineC2 = [κ1 + 1, κ1 + 2, · · · , K
︸ ︷︷ ︸

1

, · · · , · · · ,

κ1 + 1, κ1 + 2, · · · , K
︸ ︷︷ ︸

r̃2

]

ComputeaWRR−sp2
= WRR-sp2(r)

for y = 1:2
index = find(aWRR−sp2

==y)
aOPT2

(index) =Cy

4.3.2 Enhancement to WRR-spK Scheduler

ForC = 2, according to Section 4.3.1), theWRR-spK

scheduler results in worst-case periodicity forC2 flows
whenκ1=K-1 andr̃1=1. This is due to the default lexico-



graphic ordering in the scheduling mechanism, which can
be circumvented by introducing a parameter,%, 1≤ % ≤
K, to the WRR-spK scheduler (denotedWRR-spK(%)).
With theWRR-spK(%) scheduler, the ordering priority in
the event of a tie in the elements{m

rj }
rj

m=1 for 1≤ j ≤ K

is given by [%,%+1,%+2,· · · ,K,1,2,· · · ,%-1]. We note that
the scheduler reduces to the originalWRR-spK scheduler
when% = 1.

We define an optimalWRR − spK scheduler (de-
noted WRR − sp∗K), where WRR − sp∗K = WRR-
spK(%∗) such that%∗ = arg min

1≤%≤K
wcovWRR−spK (%).

4.4 K-flow Golden Ratio (GRK) Scheduler

The Golden Ratio Scheduler was proposed in [8] and
is described as follows:

K-flow Golden Ratio Scheduler (GRK)

Let z = 0.6180339887 andw(m) = frac(m · z)
wherefrac(y) = y − byc
Let the arrayy contain the sequencew(m),
0≤ m ≤ R-1, sorted in ascending order.
The vectoraGRK

is constructed as follows:
aGRK

(i) = j
if

∑j−1
k=1 xk ≤ y(i) ≤

∑j

k=1 xk, 1≤ j ≤ K

It was established in [6] that ifR is a Fibonacci num-
ber, thennj

GRK
comprises at most three values for each

j; otherwise, more values are generated.

4.5 K-flow Short-term Fair Scheduler
(STFK)

We can characterize thefairnessperformance of any
loop scheduler in terms of thecumulative service-deficit,
sdj(i), which measures the discrepancy between the re-
quested and allocated share for flowj up to sloti, 1≤ i ≤
R. If yj(i) denote the cumulative number of slots allo-
cated to flowj up to and including sloti, then we have the
following:

sdj(i) = xj −
yj(i)

i

A positive(negative) value ofsdj(i) implies that flowj
has receivedless(more) than its requested share up to slot
i. Hence, we consider a scheduler that allocates each slot
to the flow with maximum instantaneous service-deficit
so as to achieve maximum fairness (Short-term Fair or
STFK scheduler). Whenever there is a tie, priority for
allocation is given to the flow with the highest flow in-
dex. The pseudo-code for theSTFK scheduler is given
as follows:

K-flow Short-term Fair Scheduler (STFK)

Initialize yj(0) = 0, 1≤ j ≤ K

for i=1:R
yj(i) = yj(i − 1), 1≤ j ≤ K

sdj(i) = rj

R
- yj(i)

i
, 1≤ j ≤ K

aSTFK
(i) = arg max

1≤j≤K
sdj(i)

yaSTFK
(i)(i) = yaSTFK

(i)(i)+1

This scheduler was first suggested in [8], where the
authors conjectured, based on numerical calculations,
that it is a promising scheduler. However, no analysis of
the scheduler was provided in terms of periodicity prop-
erties.

4.6 K-flow Random (RNDK) Scheduler

The loop schedulers considered so far aredetermin-
istic since the allocation vectoraπ ∈ A is fixed. In this
section, we define arandomscheduler,RNDK , whose
allocation vector,aRNDK

, is uniformlyselected fromA.
We note thatRNDK ∈ Fx because the selectedaRNDK

is used for allocation in each loop.
Let us refer to an allocation sequence based on the

RNDK scheduler, and consider a particular loop that be-
gins with the(m− 1)th allocation to flowj, as illustrated
in Fig. 2. Sincerj slots must be allocated to flowj in
any loop, the total number of ways the{kth}m+rj−2

k=m al-
locations to flowj can occur withinR-1 slots is

(
R−1
rj−1

)
.

However, the corresponding expression that ensures that
n

j
RNDK

(m) = N is given by
(
R−N−1

rj−2

)
. Hence, for 1≤

N≤ R-rj+1,

Prob(nj
RNDK

(m) = N) =

(
R−N−1

rj−2

)

(
R−1
rj−1

)

The periodicity metric for each flowj is evaluated as fol-
lows:

E[nj
RNDK

]2 =

R−rj+1∑

N=1

Prob(nj
RNDK

(m) = N) · N2

=
R(2R − rj + 1)

rj(rj + 1)
(6)

By comparing Eq. (6) with Eq. (2), we have the following
theorem:

Theorem 3 The periodicity of theRNDK scheduler is
lower-bounded by that of theDRRK scheduler, i.e., for
1≤ j ≤ K,

E[nj
RNDK

]2 ≤ E[nj
DRRK

]2

We note that unlike theDRRK , CRRK andWRR-
spK schedulers, theGRK , STFK andRNDK sched-
ulers do not ensure intra-class fairness in a class-based
scheduling scenario.
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Figure 2:Evaluation of Prob(nj

RNDK
(m)=N) for the random scheduler.

5 A Recursive Class-aware
Perfectly-Fair Loop Scheduler

In this section, we propose a class-aware recur-
sive scheduler (denotedREC(C), whereC={1,2,· · · ,C})
that achieves good periodicity performance in aC-class
scheduling scenario.

The mechanism of theREC(C) scheduler comprises
partitioning the problem intoC-2 levels of sub-problems
(Forward), solving each levelC-2 sub-problem (Solution)
and substituting the solutions in the return path (Return)
to obtain the required allocation vector forREC(C). We
describe each of the 3 components as follows:

Forward : We begin by partitioning theREC(C)
scheduler (level 0 problem) into sub-problems. At
the first level, we obtainC level 1 sub-problems,
REC(I1), REC(z1), ∀ z1 ∈ C and I1=C\z1.
In the same manner, each level 1 sub-problem is
further partitioned intoC-1 level 2 sub-problems,
REC(I2), REC(z2), where|I2|=C-2. This con-
tinues until the (C-2)th level, where we obtain level
C-2 sub-problems, REC(IC−2), REC(zC−2),
where|IC−2|=2.

Solution : For each levelC-2 sub-problem, we per-
form two-stage scheduling (intra-class schedul-
ing to obtain aREC(I

C−2
) and aREC(zC−2),

followed by inter-class scheduling to obtain
aREC(IC−2

),REC(zC−2). The respective functions,
intra-c() andinter-c(), are defined as follows:

intra-c(I, z) : This function allocates slots to
flows ∈ CI and flows∈ Cz independently
to obtainaREC(I) andaREC(z) respectively.
Since the flows∈ Cz are homogeneous with
respect to their requested shares, a simple RR
allocation is sufficient to obtainaREC(z). For
|I|=2, we can exploit the optimality property
of theOPT2 scheduler to obtainaREC(I).

inter-c(aREC(I), aREC(z)) : This function com-
bines aREC(I) and aREC(z) to obtain
aREC(I),REC(z).
Let v=aREC(z), w=aREC(I), assuming that
|aREC(z)| ≤ |aREC(I)|. Our approach is
to insert the elements ofw into the vector

v so that successive elements ofv are as
uniformly-spaced as possible in the combined
vector, i.e., we attempt to maximize alloca-
tion smoothness with respect tov. This is il-
lustrated in Fig 3, whereP = d |w|

|v| e andQ is
given as follows:

Q =

{
P, |w| = |v|;
P − 1, otherwise.

For the case where|aREC(z)| > |aREC(I)|,
we simply swap the definition ofv andw.

Return : Once we solve all the levelC-2 sub-problems,
we begin the return path. For each levelC-3
sub-problem,REC(IC−3), REC(zC−3), we de-
duce the ‘best’ allocation vector,a∗

REC(I
C−3

),

according to the ensemble periodicity metric
by considering the allocation vectors of all its
child sub-problems at levelC-2. We apply the
inter-class scheduling function,inter-c(), to ob-
tainaREC(IC−3

),REC(zC−3) from a∗
REC(IC−3

) and

aREC(zC−3). We repeat the procedure for level
C-4,C-5,· · · , and eventually, we will obtain the
allocation vector of the original level 0 problem
(REC(C)).

5.1 Illustration of Mechanism for REC(C)
(C=4)

We illustrate the mechanism ofREC(C) for the case
of C=4, where the original problem is partitioned into 2
levels as shown in Fig. 4.

Forward : At the first level, the REC(1,2,3,4)
scheduler is partitioned into 4 sub-problems
REC(C\z),REC(z), for eachz ∈ C. Let us con-
sider the level 1 sub-problem,REC(2,3,4),REC(1).
As with REC(1,2,3,4), REC(2,3,4) can be par-
titioned into 3 level 2 sub-problems, given
by REC(3,4),REC(2), REC(2,4),REC(3) and
REC(2,3),REC(4).

Solution : We consider the problemREC(3,4),REC(2).
We apply intra-c() to obtain aREC(3,4) and
aREC(2), and then apply inter-c() to com-
pute aREC(2,3),REC(4). The allocation vectors,
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Figure 3:Illustration of the inter-class scheduling mechanism of the REC(C) scheduler.
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Figure 4:Illustration of the mechanism of the REC(C) scheduler for C=4.

aREC(2,4),REC(3) and aREC(2,3),REC(4) are ob-
tained in a similar manner.

Return : Next, we determine the ‘best’ alloca-
tion vector (denoted a∗REC(2,3,4)) amongst
aREC(2,3),REC(4), aREC(2,4),REC(3) and
aREC(2,3),REC(4) in terms of the ensemble peri-
odicity metric.

For the level 1 sub-problemREC(2,3,4),REC(1),
we obtain the corresponding allocation vector,
aREC(2,3,4),REC(1) from a∗

REC(2,3,4) andaREC(1)

usinginter-c(). In a similar manner, the allocation
vectors for the remaining level 1 sub-problems,
i.e., aREC(1,3,4),REC(2), aREC(1,2,4),REC(3) and
aREC(1,2,3),REC(4), can be computed. The final
step involves determining the ‘best’ allocation vec-
tor, a∗

REC(1,2,3,4), in the same way as for the level
1 sub-problemREC(2,3,4),REC(1).

5.2 Computational Requirement of
REC(C) scheduler

According to the description in Section 5.1, we re-
quire

(
C
2

)
runs ofintra-c() andC(2C−1-C) runs ofinter-

c() and computation of the ensemble periodicity metric to
obtainaREC(C). The fact thatC is usually small makes
the problem tractable in practical cases.

6 Numerical Results

We consider the following broadband applications
with the corresponding typical bandwidth requirements
in kbps [13]: Streaming Video (Internet Quality) (128),
Residential Voice (300), Video Telephony (400), In-
teractive Games (500) and Streaming video (Video-on-
Demand Quality) (3700). We define variousC-class
scheduling scenarios (where each class comprises flows
from a particular application) and comparewcovπ ob-
tained for each scenario for the perfectly-fair loop sched-
uler defined in Section 4 and 5. For example, if we con-
sider Residual Voice, Video Telephony and Interactive
Games, then we havẽr=[300,400,500]≡ [3,4,5]. We as-
sume that the flow composition is uniform, i.e.,κc = κ for
1 ≤ c ≤ C.

We compare the periodicity performance correspond-
ing to various schedulers for different flow configurations
andC=3 in Fig. 5. The corresponding results forC=4
and 5 are shown in Fig. 6. Numerical results for other
flow configurations can be found in [14].

Although not depicted in the figures, we note that the
RNDK scheduler performs significantly worse than the
deterministic schedulers (excluding theDRRK sched-
uler). In addition, the performance for each scheduler is
relatively invariant withκ for κ >1 for a givenr̃. Hence,
we consider the following cases:

κ >1 : Between theWRR-spK andCRRK schedulers,
the CRRK performsworse. In addition, an en-
hancement of theWRR-spK always exists and the
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Figure 5:Comparison of wcovπ corresponding to various π ∈ Fx for r̃ = [3,4,5] (left) and [3,5,37] (right) in 3-class scheduling.
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Figure 6: Comparison of wcovπ corresponding to various π ∈ Fx for r̃ = [32,100,125,925] (left) and [32,75,100,125,925] (right) in

4-class and 5-class scheduling.

gain in terms of the weighted covariance is signif-
icant. Amongst theREC(C), STFK andGRK

schedulers, the relative performance is always ac-
cording to the above order, with theREC(C)
scheduler achieving thebestperformance. In fact,
wcovSTFK

and wcovREC(C) ≈ 0 for scenarios
wherer̃C >> r̃c, 1≤ c ≤ C-1.

While the WRR-spK , CRRK and WRR-sp∗K
schedulers ensure intra-class fairness for any
scheduling scenario, it is not enforced by the
STFK and REC(C) schedulers for certain sce-
narios, and is never enforced by theGRK sched-
uler for any scenario. Hence, there is a trade-off
between achieving good periodicity performance
and ensuring intra-class fairness. If the latter needs
to be guaranteed for any class-scheduling scenario,
then theWRR-sp∗K scheduler should be used; oth-
erwise, theREC(C) scheduler should be used.

κ=1 : For an easier comparison of the periodicity per-
formance of the schedulers, we plot the results for
κ=1 in Fig. 7. TheSTFK andWRR-sp∗K sched-
ulers offer the best overall periodicity performance,
while theGRK andCRRK schedulers offer the
worst performance. We note that intra-class fair-
ness is irrelevant in this case.

7 Applications in Wireless Net-
works

7.1 Channel-aware Wireless Schedulers

Most wireless schedulers proposed recently can be
mapped onto a Unified Wireless Fair Queuing Framework
(UWFQF) [15]. In this framework, a wireless scheduler
comprises a wireline scheduler as well as a wireless adap-
tation scheme. While scheduling is performed using the
wireline algorithm under error-free conditions, the wire-
less adaptation scheme takes over when these conditions
no longer prevail.

The perfectly-fair loop schedulers considered in this
study can be employed as the wireline algorithm in wire-
less schedulers since they are simple to implement and
also analytically tractable. We perform a Quality of Ser-
vice (QoS) analysis of this class of wireless schedulers in
[16].

7.2 Energy-efficient MAC Protocols

Energy efficiency is an important issue in wireless
networks, particularly in wireless sensor networks [17].
In such networks, most nodes are likely to be battery-
powered, and it is difficult to change batteries due to
the remote deployment under harsh environments of such
networks. Hence, one of the major design goals of most
wireless sensor networks is to prolong the lifetime of sen-
sor nodes by minimizing energy waste.

The radio is a major energy consumer in any sensor
node platform, where the major sources of energy waste
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Figure 7:Comparison of wcovπ for various π ∈ Fx for K -flow scheduling where K=3 (left) and K=4,5 (right).

are collision and idle listening. Medium Access Control
(MAC) protocols determine when and how each node ac-
cesses the wireless channel and can be broadly classified
into two groups: scheduled and contention-based. Al-
though scheduled protocols have limited scalability and
adaptivity, they are energy-efficient since collisions are
avoided and nodes can go to sleep in intervals where they
are not allocated channel access.

In future work, we plan to investigate the trade-offs
amongst QoS, fairness and energy-efficiency by deploy-
ing perfectly-fair loop schedulers in wireless sensor net-
works.

8 Conclusions

In this paper, we consider the problem of finding a
weighted time-division multiplexed loop scheduler forK
flows that minimizes the average packet delay. The op-
timization criteria translates to finding a loop scheduler
that allocates slots to flows as periodically as possible.
We use the second moment of the inter-allocation dis-
tance for a flowi as the periodicity metric of the scheduler
with respect to that flow. We derive the conditions for op-
timal per-flow periodicity for anyK-flow loop scheduler.

We consider a class-based scheduling scenario where
flows can be grouped according to their relative band-
width demands. We analyze the periodicity properties
of a weighted round robin with spreading (WRR-spK)
scheduler for a two-class scenario. Based on these prop-
erties, we establish an optimal scheduler that employs the
WRR-spK scheduler as an inter-class scheduler, and also
suggest an enhancement to theWRR-spK scheduler. We
then propose a recursive class-aware scheduler based on
the two-class optimal scheduler.

We define a metric that reflects the periodicity per-
formance over the ensemble of all flows. We then com-
pare the performance of the above schedulers in terms
of numerical results. Although the recursive scheduler
achieves the best periodicity performance, it fails to guar-
antee intra-class fairness, which is desirable for class-
based scheduling. On the other hand, the enhancedWRR-

spK scheduler gives the best periodicity performance
amongst those schedulers that maintain intra-class fair-
ness. Hence, there is a trade-off between periodicity and
fairness performance in the design of loop schedulers.
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