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ABSTRACT

In this paper, we consider the problem of determining a cy@r loop) scheduler that allocates slots to flows as
periodically as possible. We use the second moment of tlkee-&iibcation distance for each flow as its periodicity
metric. We establish the optimality of a Weighted-Round iRakith spreading WRRsp2) scheduler for a two-flow
scenario.

We consider a class-based scheduling scenario where fleagr@auped according to their relative bandwidth de-
mands. We propose @-class scheduler that recursively performs inter-clabeduling using the correspondirig 1
class scheduler, prior to intra-class scheduling. Opttgnad achieved forC = 2 with the WRRsp- as the inter-class
scheduler.

Through numerical results, we show that the recursive sdbedchieves the best periodicity performance at the
expense of intra-class fairness, which is desirable f@setmsed scheduling. Thereby, we expose a trade-off betwee
periodicity and fairness performance in the design of ladpedulers.

Keywords: Loop Scheduler, Periodicity, Recursive, Class-based @ding

1 Introduction The best possible schedule is one where the allocated

shares are exactly the requested shares (perfect fairness)
Consider a system that comprises an indivisible re- and where each floyis scheduled exactly evety time

source (time-slot) and clients (or flows) share it by  slots (perfectly-periodic schedule). In this study, we-con

means of time multiplexing: in any given time, a differ- sider the design of perfectly-fair schedulers that maxi-

ent flow may use the resource. Many applications require mize smoothness; the design of perfectly-periodic sched-

that flows are served at some prescribed rate, and this ratellers can be foundin [1, 2, 3, 4, 5].

should be as smooth as possible even in small time win-

dows. The allocation of time slots to flows is governed

by a scheduling algorithm. In other words, given a set of

requested shares={z’ }le, the goal of the scheduling 1.1 Related Work

algorithm is to produce an assignment of time slots (or a

schedule) to flows, while trying to optimize two different

measures:

In [6], the authors considered anlinevariant of the
scheduling problem. Given that the arrival process of
packets to each flow is independent and identically dis-
tributed (i.i.d), the goal is to determine a scheduler that
optimizes some performance criteria under the perfect-
fairness constraint.

In [7], the author deduced that for throughput op-
Smoothness : A schedule is said to have good smooth- timality for K=2 and unit buffer size per input-flow,
ness if the time slots allocated to each flow are as the schedule must bepen-loop(or de-centralized) and
evenly spaced as possible. conflict-free This work was extended in [8] to the case of

Fairness : A schedule is said to have good fairness if
the fraction of time slots allocated to each flow is
close to its requested share.

*On leave from the Technion, Israel Institute of Technology.



K>2. It was also verified that an optimal schedule always 2.1 Perfectly-Fair Loop Schedulers
exists and is stationary amgclic (or loop), i.e., there ex-

ists anR such that for all, the flow allocated to sldtis Let F= denote the class oK-flow perfectly-fair
also allocated to slg#R. loop schedulers, i.e., schedulers that satisfy the perfect

This red the problem to afflineone. where th fairness constraint over any interval Bfslots, whereR
s reduces the problem (o alfineone, Where the ;¢ 4, loop size. This implies that (for any finikd, the

Oblif]tévg L:,htgrdetre(;m(;n:;\;ogp())lzcer:]egl;tgoofsfz;gév?; thateIements ofc are rational. We can then defifReandr7,
z. uthors propos ! u 1< j < K, as follows:

achieves a nearly-optimal throughput under online con- = —
ditions. In [6], the authors considered the case where the R = LCD(z)
buffer size per input-flow is unlimited. Itis shown that the i R_
mean queue size (or equivalently, the mean packet delay) o=

is minimized with a perfectly-periodic schedule, which
is not always feasible. Although the golden ratio sched-
uler is not perfectly periodic, it performs extremely well
compared to lower bounds for expected packet delay.

wherer’ is the number of slots allocated to flgwover
any interval ofR slots and LCD¢) is the lowest common
divisor of the elements of.

If nZ (m) denotes the duration between the — 1)*"
andm!" allocation to flowj under a scheduler, then we
have the following property:

1.2 Contribution of This Paper ,
Property 1 If w € FZ, then for K j <K,

Although loop schedulers that ensure perfect-fairness

(denoted perfectly-fair loop schedulers) have been pro- n%(rj +m) = nz(m)

posed in the literature, we are not aware of any work that kil

analyzed and evaluated the extent of non-periodicity in ny(m) = R, foranyk >0
these schedulers. In this paper, we propose a periodicity m=k

metric and computg the bounds for the metric over the Hence, each schedulercan be uniquely characterized
clas_s c_)f_perfectly—f_alr loop s_chedulers. By analyzing the by the elementsin (m) :2:1 (which we denote by ).
periodicity properties of various loop schedulers, we pro-

pose a recursive loop scheduler for a class-based schedul-

ing scenario. We demonstrate the gain in periodicity per- 2 2 Class-based Scheduling Scenario

formance achieved by the recursive scheduler over known

loop schedulers. A class-based scheduling framework [9] is based on
The paper is organized as follows: We define our the paradigm of service classes, where flows with a com-

scheduling problem, where we consider the design of Mon characteristic are g_rouped tqgether. By considering
perfectly-fair loop schedulers to maximize allocation & Class-aware’ scheduling paradigm that allocates slots
smoothness while maintaining intra-class fairness in atp flows within each_clasmdependen_tly)f other clas_ses
class-based scheduling scenario, in Section 2. Then, wdntra-class scheduling) and theombineshe allocation

consider the requirements for optimal per-flow periodic- VECtOrs obtained in an optimal wainfer-class schedul-
ity and establish the lower bound for the periodicity met- IN9). we may achieve a gainin performance and reduction

fic in Section 3. We describe the mechanism and peri- N Complexity over ‘class-unaware’ schedulers. We pro-

odicity properties of several loop schedulers in Section 4, POS€ a recursive implementation of such a scheduler in
In Section 5, we propose a recursive loop scheduler that>€ction 5. _ . _

achieves good periodicity performance in a class-based ~We consider aC-class scheduling scenario where
scheduling scenario. In Section 6, we compare the per_each class comprises:© flows whose indices are defined
formance of various loop schedulers in terms of numeri- by C*, where

cal results. We describe two applications of perfectly-fai o1 o1 .

loop schedulers in vylreless networks in Sephon 7 and fi- cc — {Z ey Z W2 ’Z )

nally, some concluding remarks are given in Section 8. = ot o

andz’ = z*F < jk e C°for any I 4, k < K. We define
o the notationj¢, wherey € {z,r}, such thatyc=y’ if j
2 Problem Definition ece.

Given a set of requested shareswe consider the de-
sign of perfectly-fair loop schedulers to maximize alloca-
tion smoothness while maintaining intra-class fairnessin  We define the following criteria to evaluate the perfor-
a class-based scheduling scenario. g eenote a vector  mance of perfectly-fair loop schedulers in a class-based
of elementy, wherey(i) is thei*" element ofy. scheduling scenario:

2.3 Performance Criteria



2.3.1 Allocation Smoothness (Periodicity)

Per-flow periodicity : A suitable metric to evaluate the
periodicity of allocation with respect to floyis
the variance ofi/., Var[nl] = E[nl]? - (E[nl])?,
where

> [nd (m)]

rd

E[nl]”

However, according to Property 1, we have the fol-
lowing:

J .
Z:u:l TL%. (m)

E[nf] pv

—T

% independent ofr

Hence, the periodicity measure for any scheduler
with respect to flowj can be evaluated in terms of
E[nZ]?: a smaller value of?[n/]? implies a more
periodic slot allocation to flowand vice versa. We
note that the order of the elementsyif is unim-
portant for the evaluation df[n/ ]2, and hence, we
can considen/. as a set of’/ elements.

Ensemble periodicity : We define the weighted covari-
ance of{ﬁg'r}le, wcov,, as follows:

K .
rd
R

j=1

Elni]” — (Elng))*
(E[nr])?

WCOV,

The metricwcov,, reflects the periodicity over the
ensemble of all flows. With perfect periodicity,
weov, =0 sincen, = E[n/]. Hence, a value close
to zero is an indication of good periodicity perfor-
mance over the ensemble of flows.

2.3.2 Intra-class Fairness

To assess the size of the problem,Aet {a, : 7 €
FZ£}. Then, we have the following:

R!

Hf=1 !

We note that a large number af € A are equivalent
since they are identical under rotation with respect to
E[nJ])%. However, even after eliminating these, the re-
sultant space is still non-tractable for laige

A dynamic programming approach to derive an opti-
mal scheduler requires the definition of an additive objec-
tive function, i.e., one which is computed incrementally.
However, the periodicity metric is a cumulative quantity,
which renders the approach unsuitable.

Therefore, our approach is to evaluate the periodic-
ity performance of various known loop schedulers. By
comparing against a lower bound (See Section 3), we can
determine the ‘best’ scheduler that maintains intra-class
fairness and also quantify its deviation from the optimal
scheduler.

Al

3 Conditions for Optimal Per-flow
Periodicity for Perfectly-Fair
Loop Schedulers

In this section, we determine the conditions for opti-
mal allocation periodicity for some flojv This can be
expressed as a requirement@hin the following theo-
rem:

Theorem 1 If n/ is defined as follows:
rd L%j+rj7R

7L£Jﬂ ’VE—Ia

i g

{1

rJ

rJ
R—ri| 2]
then we have the following:

Elwl)? min Fln;|?
meFE

A desirable characteristic in class-based scheduling is
the notion of intra-class fairness, i.e., all flows from the Proof. We consider the following cases:
same class should possess the same periodicity characte

istics.

2.4 Problem Formulation

If a, denotes the allocation vector (of lend® ac-
cording to scheduler, then our scheduling problem can
be formulated as follows:

K-flow Loop Scheduling Problem

Determine the allocation vectar.. such that
forl<j <K
E[n;-]* = min En]]?

TeEFZ
andv j,k € C° fpr 1<e<C
E[ﬂj ]2 :E[Qk ]2 .

T T

ﬁzO(moduloN’): Perfect allocation periodicity is
achieved for flowj when the inter-allocation in-
terval is constant, i.epi(k) = nl(m). This is

achieved if and only i (k) = £ for 1< k < 17,

R =y (modulor?), 1<y < 7-1: In this case, a con-
stant inter-allocation interval for floy cannot be
achieved. The best one can achieve is the follow-
ing for 1< k < ¢J:

ni(k) € {N,N+1}, wherel <N <R—1J.

For 1< m < rJ-1, let us assume the following:

—_———
{NavNaN+1a7N+1}

n?

ri—m



Then, sincez’,;j=1 nl (k) =
ing:

R, we have the follow-

m-N+ @ —m)-(N+1) = R

from which we have

ri N 4

m = -R

However, since & m < r7-1, we have the follow-
ing constraints oMN:

R 1
——1+—<N<E——
rJ rJ rJ

(1)

1

Since[£]-1< £ -1+ Land[£]> £ - L,

the only integeN that can satlsfy Eq. (1) bl =
L]
O

The corresponding value fdt[n/]? can be used as a
lower bound for allr € FZ and is given as follows:

R(2N +1) =/ N(N +1)

Eln])” —

4 Description of

Schedulers

K-flow Loop

In this section, we describe the mechanism as well as

the periodicity and intra-class fairness characterigifcs
several loop schedulers. Without loss of generality, we
will assume that’ < r* for j<k andr? > 2. The case

of ri=1 is trivial sincen’ = Rfor = € FZ, i.e., perfect-
periodicity is always achieved for flojv We denote by
ns{® (m) the cumulative number of slots allocated to
flow k up to them?!” allocation to flowj by schedulerr.

4.1 K-flow Deficit Round Robin Scheduler
(DRRk)

Fair-queueing schedulers (e.g., Weighted-Fair Queue-

ing (WFQ)) achieve nearly-perfect fairness, but they are
usually expensive to implemenD R Ry [10]is an online
scheduler that is an approximation to fair-queueing which

The periodicity performance of thBRR is given
by the following theorem:

Theorem 2 Although the DRRy ensures intra-class
fairness, it exhibits the worst periodicity amongst FZ,
i.e., forl< j < K,

max E[nJ ]2
TeEFZ

E[QJDRRK ] 2

Proof. According to Eq. (2), the periodicity metric for
flow j is a function ofr/ only and hence, thd RRx
scheduler ensures intra-class fairness.

Let us consider an arbitrary schedutee FZ with n/.
given as follows:

ri—1
A4z 1, R—r+1— Z Zy}
y=1

n, {142,

wherez, € Z*, 1< y < r7-1. We note that for, =0,
1<y <r’-1,7 = DRR.

Using Eq. (2),E[n]* can be expressed in terms of
Eln} g, |? as follows:

E[ﬂgr]Q = E[E%RRK]Q (3
ri—1 ri—1 ri—1
oz alt—2(R-17) Z Zy
y=1 y=1

+ -
rJ

Since n/. corresponds to inter-allocation intervals, we
have the following constraint:

ri—1

R—7r1+1- Zzy
y=1

In addition, according to the triangular inequality, we
have:

ri—1

2

y=1

ri—1
< [Z Zy]2
y=1

is simple to implement and yet achieves good fairness and

can also be implemented as a loop scheduler. Within the

scope of our scheduling problem, theR Rx scheduler
reduces to a Weighted Round Robin (WRR) policy, which
simply allocates a block of* slots to flow 1 followed by

a block ofr? slots to flow 2 and so on. Hence, each flow
j is allocated slots in blocks of siz€, with an interval

of R-r7 slots between successive blocks. Therefore, we
have the following:

{1, 1,R—77+1} (2

4+ (R—17)2+2(R—17)
I

J
NDRRy

E[E%RRK ] 2

Substituting into Eg. (3), we have the following:

E[”J] < E[”%RB’ ]2
ri—1 ri—1 ri_1
" Z =1 Z2+[Zy=l Zy]2*2[2y=1 zy)?
7
ri—1 2 ri—1 2
= NpRRE i
< E[E%RRK]Q



4.2 K-flow Credit Round Robin Scheduler that class is allocated exactly once and the order within

(CRRg) each block is constant. Hence, the periodicity character-
o ) istics for flows belonging to the same class are identical,
The motivation to design th€ RRx scheduler [11] e intra-class fairness is maintained.

was to reduce the latency of tHeRR scheduler. As
with the DRRx scheduler, th€ RR scheduler can be

implemented as a loop scheduler, and the pseudo-code iﬁ 3 K-flow Weighted Round Robin with
i follows: ' i i
given as tollows WFQ-like spreading Scheduler (WVRR-

K-flow Credit Round Robin Scheduler (CRRk) )
oy . 4 rd .
In|t|_al|ze v'=m s i< K TheWRRspk scheduler [12] is a variant of the stan-
Set'z.l’ SP=K, count0 dard WRR scheduler, in which the service order amongst
wh|le! =R the flows is identical to WFQ. The algorithm for the
i F:ount< K WRRspg scheduler is described as follows:
if 457 < 1
count= count+ 1 K-flow WRR with spreading Scheduler WRR-spx)
elzeCRR )= sP Let the arrayy contain the sequence
SP = SP .1 i=i _ <™ ji>me{l, -, 1}, 1<j <K
y>r =y ,i=1+1,count=0 r

sorted in lexicographic order.
The vectolay, pr_,,. IS constructed as follows:

awRR—spy (1) =] if y(i) =< 5,5 >

SP=SP- 1 (moduloK)
elsey’ =yJ + IV j, count=0

The CRRy scheduler possesses the following prop-

erty for 1< j < K-1: The WRRspg scheduler possesses the following

property for K j < K-1:
Property 2 Them!" allocation of flow j always occurs
mr¥ h mr th i th : H
between the ™5~ “* and ["5—1 - 1 ** allocation of Property 4 Them!'" allocation of flow j always occurs

flow K, I< m< 1/, i.e., between thé”j%f} th and ("j—zk] - 1" allocation of flow
K k, where k-j, 1< m< 77, i.e.,
(4,K) _ mr
nsCRRK(m) = | v 1-1
_ _ _ (G k) _ et
Proof. With the CRRy scheduler, the first slot is al- MW RR-spi (M) = [—5-1—

ways allocated to flonk. We can consider subsequent
allocations in blocks, where each block terminates with Proof. According to the algorithm, the:” allocation to

the next flowK allocation, as illustrated in Fig. 1, where flow j is characterized by the paramet&r If y denotes

i K . X 7

nsgan, (m) is the number of slots allocated to fld  the cumulative number of slots allocated to flawp to

up to them!” allocation to flowj. themt" allocation of flowj and;j < k, theny must satisfy
According to the transmission heuristics given by the the following conditions:

pseudo—codemsg}QK (m) has to satisfy the following

conditions: Y - ™ and
(.K) : T‘k "
nsy) m) + 1|r? +1 m
[ CRRik (K ) ] > m and Y . >
r r TJ
(J,K) j

NSERR,. (M) -1 L

— kK < m Hence, we obtains{y/y),_,, (m) =y=[22"]-10

Property 4 can be generalized for a class-based sce-

Hence, we obtaims(cj’}g%n (m) = (ﬂ] -10 nario as follows:

rd

Property 2 can be generalized for a class-based sce-

nario as follows: Property 5 For the WRRspx scheduler, flows within

Property 3 For the CRR: scheduler, flows within each each class are allocated in blocks, where the order within

H u—1 u—1 u
class are allocated in blocks, where the order within class €188SC" 182,y K™ +1,50, _y K742, -+, 3,y &
C%is ZU—I PP | Z’U—l KM+ ... ZU k™ for for 1§ u < C.In addltlon, themth block of C* will re-
m=1 ’ m=1 ’ ’ m=1

side between the”=" %" and [ %] — 1" block ofCY,

1< u < C. In addition, them!” block ofC* will reside
where y>u and 1< m < 7.

between the 221t and [2<2Z] — 1t block of C7,

where K m < 7¥,

As with the CRRk scheduler, we can deduce from
We note from Property 3 that flows within each class Property 5 that intra-class fairness is maintained for the
are always transmitted in blocks, where each flow from WRRspx scheduler.



|K| K Kl j K| K| i K

Block | I 2 3 nstR()+1  ns0R(1)+2 ns0X (m)+1
v Z 2r 3¥ [nsOR()+1]F [ns0R(1)+2]r nstX(m)+1
K K K K K K

Figure 1:lllustration of allocation to flow K relative to allocation to flow j with the CRRy scheduler.

I -7
=92 ~2 =2 ~2
1 27 1 o T 1 or” 1 or” . 1.
{k" +k Lﬁj,---,m + K \_f—lj,li +K [ﬁ]f@ + K (f—l]}, jeC;
ﬂ?/VRR*SpK = = ;‘2_((%}_1);‘1 (4)
T I,:lfﬂ
—_——
{KQ,U'7"<‘27K)"'7K}7 j€C2
——
R—r272
R=r2i2

, R—1(n1+ =22 ))
J = 1.1 " 5
e P2 (k24 S5 )42 R ®)

1~1 1~1 11 1~1
2 KT 2 KT 2 KT 2 KT . 2
{H+L,FQ Ja"'7H+L7~;—2JaH+{,};2 —|7"'7’$+{7~;2 —I}a ]EC-
R—72(k2+ |5 |)
4.3.1 Optimal WRR-spk-based SchedulerC=2) Optimal Two-Class Scheduler O PT5)

Setr =[k! -7, k272, K=g! + K2

For a two-class scheduling scenario, using Property 5 L )

and Theorem luj, 5 ., @ndni are given in Eq. (4)

and Eq. (5) respectively. Comparing these equations, we DefineC! = [1,2,--+ k", 1,2, k' oo,
note thaty p_,, # n: for 1< j < K and hence, the r

WRRspr scheduler is not optimal in terms of per-flow | 7 o ... 1]

periodicity. However, we note that whert=1 (x'=K- DefineC? = [x! + 1,k! +2,--- K, ---

1), theWRRspx scheduler offers optimal periodicity for
flows inC? (C'). However, if' =1, then optimal (worst-
case) periodicity is achieved for flows @' (C?). ~

Furthermore, we observe that for the special case of Computeny pp_sp, = WRRspa(r)
K=2, sincex'=1=K-1, theWRRsp, scheduler offersop- | fory=1:2
timal periodicity forall flows. Hence, if we define a two- index = find@y, g g op, ==Y)
class schedulelQ) P15, that employs thdV RR — sp, aopr,(index) =CY
as a class-aware scheduler (Section 2.2), then it can be
shown thatug, pp, = ni as givenin Eq. (5) for& j <
K. Hence, theD PT; scheduler is optimal for two-class
scheduling, and the pseudo-code is given below, assum#-3:2 Enhancement to WRRsp Scheduler
ing k! - 71 < k2 - 72 (the corresponding scheduler for
k! -7 > k2 .72 can be obtained by interchanging the
indices 1 and 2):

1
k'L RN 2, K]

ForC = 2, according to Section 4.3.1), tiéRRspx
scheduler results in worst-case periodicity @&t flows

whenk!=K-1 and#!=1. This is due to the default lexico-



graphic ordering in the scheduling mechanism, which can| K-flow Short-term Fair Scheduler (ST Fx)
be circumvented by introducing a parametgrl< o < - , .
K, to the WRRspx scheduler (denote?RRspx (o). Initialize 7 (0) = 0, 1< j < K
With the WRRsp (o) scheduler, the ordering priority in | T I=lR '

the event of a tie in the elemen{tg: }7,_, for 1< j < K Y@=y (i-1),1<j< K

is given by p,o+1,0+2, - ,K,1,2; - -,0-1]. We note that sdi(i)=2 - W 1< j < K
the scheduler reduces to the origiféRRsp scheduler asTr (i) = arg max sd’ (i)
wheno = 1. ysTrx () (4) = yasTr () ()41
We define an optimalW RR — spx scheduler (de- _ ] _
noted WRR — sp’), where WRR — sp, = WRR This scheduler was first suggested in [8], where the

authors conjectured, based on numerical calculations,
that it is a promising scheduler. However, no analysis of

the scheduler was provided in terms of periodicity prop-

erties.

spk (0*) such thaip* = arg 1<H;i<nK WEOVW RR—spi (o)

4.4 K-flow Golden Ratio (GRx) Scheduler

. _ 4.6 K-flow Random (RN D) Scheduler
The Golden Ratio Scheduler was proposed in [8] and

is described as follows: The loop schedulers considered so far degermin-
K-flow Golden Ratio Scheduler GRy) istic since the allocation vectar, € A is fixed. In this
section, we define emndomschedulerRN Dy, whose
Letz=0.6180339887 and(m) = frac(m - z) allocation vectorar,  p, , is uniformly selected fromA.
wherefrac(y) =y — |y| We note thalR N D € F£ because the selecteg .
Let the arrayy contain the sequencee(m), is used for allocation in each loop.
0< m < R-1, sorted in ascending order. Let us refer to an allocation sequence based on the
The vectorgp, is constructed as follows: RN Dy scheduler, and consider a particular loop that be-
aGRy (1) =] 4 gins with the(m — 1) allocation to flowj, as illustrated
if Z{;ll b <y(i) <Y 2f 1< i< K in Fig. 2. Sincer’ slots must be allocated to flojvin
any loop, the total number of ways th&*"} ' =2 g|-

It was established in [6] that Ris a Fibonacci num-
ber, themy, , - comprises at most three values for each
j; otherwise, more values are generated.

locations to flowj can occur withinR-1 slots is(ﬁ.:ll).

However, the corresponding expression that ensures that
nhnp, (m) = N is given by ("7 V1), Hence, for K

rd—2
N< R-rI+1,
45 K-flow Sh Fair Schedul j ("%
. -flow ort-term Fair Scheduler Prob(nfy p,. (m) = N) = =2
(ST Fx) (1)
We can characterize tHaimessperformance of any ;I'he periodicity metric for each floyvis evaluated as fol-
loop scheduler in terms of thmumulative service-defigit ows:
sd’ (i), which measures the discrepancy between the re- R i1
guested and allocated share for flpup to sloti, 1< i < End 2 _ Prol(n’ m) = N) . N2
R. If yI(i) denote the cumulative number of slots allo- (hvp] szzl i () :
cated to flowj up to and including slat then we have the R(2R — 17 +1)
following: = W (6)
L () By comparing Eq. (6) with Eq. (2), we have the following
sd/ (i) = 2’ — theorem:

i

Theorem 3 The periodicity of theRN Dg scheduler is

A positive(negative) value ofd’ (i) implies that flowj lower-bounded by that of thB R R scheduler, i.e., for
has receivetbss(more) than its requested share up to slot < i< K K T

i. Hence, we consider a scheduler that allocates each slot — J
to the flow with maximum instantaneous service-deficit
so as to achieve maximum fairness (Short-term Fair or

ST Fx scheduler). Whenever there is a tie, priority for We note that unlike th®RRx, CRRx andWRR

3llocatir<])n is gi\(/jen todth? flogvith theh h(ijg?es.t floyv in- spi schedulers, th& Ry, STFx and RN Dy sched-
ex. The pseudo-code for t$&'Fic scheduler is given ulersdo notensure intra-class fairness in a class-based

as follows: scheduling scenario.

Elngnp,)? < EnprpJ



m™ allocation to flow j

7 slots must be allocated to flow j within these R slots (loop)

| m-2 | | m-1 | m | m+p-2 | m+p-1 |
. N slots /-2 slots must be allocated to flow j
within these R-N-1 slots
Figure 2:Evaluation of Prob(n%NDK (m)=N) for the random scheduler.
5 A Recursive Class-aware v so that successive elements ofare as

Perfectly-Fair Loop Scheduler

In this section, we propose a class-aware recur-
sive scheduler (denot&REQC), whereC={1,2; --,C})
that achieves good periodicity performance i€-&lass
scheduling scenario.

The mechanism of thR EC'(C) scheduler comprises
partitioning the problem int€-2 levels of sub-problems
(Forward), solving each level-2 sub-problem$olution
and substituting the solutions in the return pa®eturn
to obtain the required allocation vector fBBEC(C'). We
describe each of the 3 components as follows:

Forward: We begin by partitioning theREC(C)
scheduler (level O problem) into sub-problems. At
the first level, we obtairC level 1 sub-problems,
REC(1,),REC(z1), ¥ z1 € C and I,=C\z.

In the same manner, each level 1 sub-problem is
further partitioned intaC-1 level 2 sub-problems,
REC(1,), REC(z2), where|I,|=C-2. This con-
tinues until the C-2)" level, where we obtain level
C-2 sub-problems, REC(I._,), REC(zc—2),
where|L._,|=2.

Solution: For each levelC-2 sub-problem, we per-
form two-stage scheduling (intra-class schedul-
ing to obtain appc. ) and appe(ae_y)
followed by inter-class scheduling to obtain
AREC(I,._,),REC(=c_s)- 1N€ respective functions,
intra-c() andinter-c(), are defined as follows:

intra-c(Z, z) : This function allocates slots to
flows € CL and flowse C* independently
to obtaina e () andagpe () respectively.
Since the flowss C* are homogeneous with
respect to their requested shares, a simple RR
allocation is sufficient to obtai, (). For
|Z|=2, we can exploit the optimality property
of the OPT; scheduler to obtait g g ().

inter-c(arpc(ry, @rec(=)) © This function com-

bines appcy and agpce(.) to obtain
AREC(I),REC(z)"
Let v=appc(.), W=arpc(r), assuming that
larpcy| < lagrscl- Our approach is

to insert the elements ab into the vector

uniformly-spaced as possible in the combined
vector, i.e., we attempt to maximize alloca-
tion smoothness with respectto This is il-

lustrated in Fig 3, wher® = [‘%"] andQ s
given as follows: N
o - | 7P lw| = [u];
P —1, otherwise

For the case whergzpo| > larpcmls
we simply swap the definition af andw.

Return: Once we solve all the levél-2 sub-problems,
we begin the return path. For each lev@l3
sub-problem,REC(L_3), REC(zc—3), we de-
duce the ‘best’ allocation vectorp ey, s
according to the ensemble periodicity metric
by considering the allocation vectors of all its
child sub-problems at leveC-2. We apply the
inter-class scheduling functionnter-c(), to ob-
tain@REC(gc,g,),REC(zc,g from QEEC(£073) and
ARpc(c_y)- e repeat the procedure for level
C-4,C-5, -+, and eventually, we will obtain the
allocation vector of the original level 0 problem

(REQQ)).

5.1 lllustration of Mechanism for REC(C)

(C=4)

We illustrate the mechanism &fEC(C) for the case
of C=4, where the original problem is partitioned into 2
levels as shown in Fig. 4.

Forward: At the first level, the RE(1,2,3,4)
scheduler is partitioned into 4 sub-problems
REQC\2),REQ?2), for eachz € C. Let us con-
sider the level 1 sub-probleREQ2,3,4)REQ1).

As with RE(Q1,2,3,4), REQ2,3,4) can be par-
titioned into 3 level 2 sub-problems, given
by REQ3,4)REQ2), REQ2,4)REQ3) and

REQ2,3)REQ4).

Solution: We consider the problefREQ3,4) REQ2).
We apply intra-c() to obtain apges4) and

and then applyinter-c() to com-

The allocation vectors,

AREC(2)
PUte arpc(2,3), REC(4)-



Return :

5.2

4 REC(),REC()

|...|z«"|1|2|

|j|j+l|j+2|

OEE

K

Slot allocated to flow j in C*

YRECEH)

- Slots allocated to flows in C!

Figure 3:lllustration of the inter-class scheduling mechanism of the REC(C) scheduler.

Original Problem

Level 1 Sub-problems REC(2,3,4), REC(1)

REC(2,4), REC(3)
Level 2 Sub-problems

REC(1,3,4), REC(2)

REC(1,3), REC(4)

REC(1,2,3,4)

REC(1,2,4), REC(3) REC(1,2,3), REC(4)

REC(1,4), REC(2)

Figure 4:lllustration of the mechanism of the REC/(C) scheduler for C=4.

ARrEC(2,4),REC(3) AN AREC(23) REC(1) @€ Ob-
tained in a similar manner.

Next, we determine the ‘best’ alloca-
tion vector (denoted appc(s54) amongst

QREC(2,3),REC(4)" QREC(2,4),REC(3) and _
AREc(2,3),REC(4) IN tErMs of the ensemble peri-
odicity metric.

For the level 1 sub-problerREQ2,3,4)RE(1),
we obtain the corresponding allocation vector,
AREC(2,3,4),REC(1) TOM AL g0 5 4) @NAAREC (1)
usinginter-c(). In a similar manner, the allocation
vectors for the remaining level 1 sub-problems,
I.€., ArEpC(1,3,4),REC(2), CREC(1,2,4),REC(3) and
AREc(1,2,3),REC(1), CaN be computed. The final
step involves determining the ‘best’ allocation vec-
tor, 4% e(1.2,3,4) IN the same way as for the level
1 sub-problenRE(2,3,4)REQ1).

Computational of

REC(C) scheduler

Requirement

6 Numerical Results

We consider the following broadband applications
with the corresponding typical bandwidth requirements
in kbps [13]: Streaming Video (Internet Quality) (128),
Residential Voice (300), Video Telephony (400), In-
teractive Games (500) and Streaming video (Video-on-
Demand Quality) (3700). We define vario@sclass
scheduling scenarios (where each class comprises flows
from a particular application) and compaaeov, ob-
tained for each scenario for the perfectly-fair loop sched-
uler defined in Section 4 and 5. For example, if we con-
sider Residual Voice, Video Telephony and Interactive
Games, then we have[300,400,500E [3,4,5]. We as-
sume that the flow composition is uniform, i.e¢,=  for
1<c<LC.

We compare the periodicity performance correspond-
ing to various schedulers for different flow configurations
andC=3 in Fig. 5. The corresponding results o4
and 5 are shown in Fig. 6. Numerical results for other
flow configurations can be found in [14].

Although not depicted in the figures, we note that the
RN Dg scheduler performs significantly worse than the
deterministic schedulers (excluding ti#R Ry sched-
uler). In addition, the performance for each scheduler is
relatively invariant withx for x >1 for a givenr. Hence,

According to the description in Section 5.1, we re- we consider the following cases:
quire ($) runs ofintra-c() andC(2°~'-C) runs ofinter-

¢() and computation of the ensemble periodicity metricto x >1:

obtainap ey The fact thatC is usually small makes
the problem tractable in practical cases.

Between thaVRRspx andC RR i schedulers,
the CRRk performsworse In addition, an en-
hancement of th&VRRspx always exists and the
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Figure 5:Comparison of wcov, corresponding to various = € FZ for 7 = [3,4,5] (left) and [3,5,37] (right) in 3-class scheduling.
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Figure 6: Comparison of wecov, corresponding to various = € FZ for # = [32,100,125,925] (left) and [32,75,100,125,925] (right) in
4-class and 5-class scheduling.

k=1

gain in terms of the weighted covariance is signit- 7 Applications in Wireless Net-
icant. Amongst theREC(C), STFx andGRg works
schedulers, the relative performance is always ac-
cording to the above order, with thBEC(C)
scheduler achieving theestperformance. In fact,
weovsTr, and weovgpccy ~ 0 for scenarios Most wireless schedulers proposed recently can be
wheref¢ >> 7, 1< ¢ < C-1. mapped onto a Unified Wireless Fair Queuing Framework
(UWFQF) [15]. In this framework, a wireless scheduler
comprises a wireline scheduler as well as a wireless adap-
While the WRRspx, CRRyx and WRRspl tation scheme. While scheduling is performed using the
schedulers ensure intra-class fairness for any Wireline algorithm under error-free conditions, the wire-
scheduling scenario, it is not enforced by the less adaptation scheme takes over when these conditions
STFy and REC(C) schedulers for certain sce- N0 longer prevail. _ o
narios, and is never enforced by th&Rx sched- The perfectly-fair loop schedulers considered in this
uler for any scenario. Hence, there is a trade-off Study can be employed as the wireline algorithm in wire-
between achieving good periodicity performance €ss schedulers since they are simple to implement and
and ensuring intra-class fairness. If the latter needs@lso analytically tractable. We perform a Quality of Ser-
to be guaranteed for any class-scheduling scenario,vice (Q0S) analysis of this class of wireless schedulers in
then theWRRsp?, scheduler should be used; oth- [16]-
erwise, theREC(C) scheduler should be used.

7.1 Channel-aware Wireless Schedulers

7.2 Energy-efficient MAC Protocols

Energy efficiency is an important issue in wireless

networks, particularly in wireless sensor networks [17].

In such networks, most nodes are likely to be battery-

For an easier comparison of the periodicity per- powered, and it is difficult to change batteries due to
formance of the schedulers, we plot the results for the remote deployment under harsh environments of such
k=1in Fig. 7. TheST Fx andWRRsp}, sched- networks. Hence, one of the major design goals of most
ulers offer the best overall periodicity performance, wireless sensor networks is to prolong the lifetime of sen-

while the GRi and C RRy schedulers offer the  sor nodes by minimizing energy waste.

worst performance. We note that intra-class fair- The radio is a major energy consumer in any sensor
ness is irrelevant in this case. node platform, where the major sources of energy waste



-= WRR-sp* -+ CRR ~ STF - GR -»- REC(C) ‘ —— WRR-sp* —A&— CRR STF —— GR ——REC(C)

0.1700

0.1300

0.0900 -

weov,,

0.0500 -

0.0100

Figure 7:Comparison of wcov, for various = € FZ for K-flow scheduling where K=3 (left) and K=4,5 (right).

are collision and idle listening. Medium Access Control spx scheduler gives the best periodicity performance
(MAC) protocols determine when and how each node ac- amongst those schedulers that maintain intra-class fair-
cesses the wireless channel and can be broadly classifiedess. Hence, there is a trade-off between periodicity and
into two groups: scheduled and contention-based. Al- fairness performance in the design of loop schedulers.
though scheduled protocols have limited scalability and
adaptivity, they are energy-efficient since collisions are
avoided and nodes can go to sleep in intervals where theyR€ferences
are not allocated channel access.

In future work, we plan to investigate the trade-offs
amongst QoS, fairness and energy-efficiency by deploy-
ing perfectly-fair loop schedulers in wireless sensor net-
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