

Dr. Hwee-Pink Tan http://www.cs.tcd.ie/HweePink.Tan

Lecture material was abstracted from "Communication Systems" by Simon Haykin.

Outline

o Day 1

- Angle Modulation
- Frequency Modulation (FM)
 - Narrowband and Wideband FM
 - o Transmission bandwidth
 - o FM Stereo Mix
- o Day 2
 - Phase-locked Loop (PLL)
 - Non-linear effects in FM receivers
 - Summary
- o Day 3
 - Tutorial

Recall...What is modulation?

- s(t) obtained by varying *characteristic* of c(t) according to m(t)
 - Amplitude A(t) <-> Amplitude Modulation
 - Angle \u03c6(t) <-> Angle Modulation

Recall...Amplitude Modulation

$$o s(t) = A_c[1+k_am(t)]cos 2\pi f_c t$$

_____.

 Envelope of s(t) has same shape as m(t) provided:

- $|k_a m(t)| < 1$
- $f_c >> W$

Easy and cheap to generate s(t) and reverse

Recall...Amplitude Modulation

- Drawbacks of AM
 - wasteful of power
 - o transmission of carrier
 - wasteful of bandwidth
 - \circ transmission bandwidth, $B_T = 2W$
- Improved resource utilization (power or bandwidth) traded-off with increased system complexity
- Angle modulation offers practical means of trading-off between power and bandwidth

Angle modulation

•
$$s(t) = A_c \cos[\theta_i(t)], \quad f_i(t) = \frac{1}{2\pi} \frac{d\theta_i(t)}{dt}$$

• Phase Modulation (PM)
 $\theta_i(t) = 2\pi f_c t + k_p m(t)$
 $\Rightarrow \quad s(t) = A_c \cos[2\pi f_c t + k_p m(t)]$

• Frequency Modulation (FM) $f_i(t) = f_c + k_f m(t)$

$$\Rightarrow \quad s(t) = A_c \cos[2\pi f_c t + 2\pi k_f \int m(t) dt]$$

0

Frequency modulation

- FM signal: $s(t) = A_c \cos[2\pi f_c t + 2\pi k_f \int m(t)dt]$ Non-linear function of m(t)
- Consider single tone signal: $m(t) = A_m \cos 2\pi f_m t$

•
$$f_{i}(t) = f_{c} + k_{f}m(t)$$

$$= f_{c} + k_{f}A_{m}\cos[2\pi f_{m}t]$$

$$= f_{c} + \Delta f\cos[2\pi f_{m}t]$$
Frequency deviation
$$\theta_{i}(t) = 2\pi \int_{0}^{t} f_{i}(t)dt$$

$$= 2\pi f_{c}t + \frac{\Delta f}{f_{m}}\sin[2\pi f_{m}t]$$

$$= 2\pi f_{c}t + \beta \sin[2\pi f_{m}t]$$
Modulation index

•
$$s(t) = A_c \cos[2\pi f_c t + \beta \sin(2\pi f_m t)]$$

Comparison with AM

AM Signal Upper side-frequency carrier Lower side-frequency

Example - fixed A_m, variable f_m

$$m(t) = A_m \cos[2\pi f_m t], \ \Delta f = k_f A_m, \ \beta = \frac{\Delta f}{f_m}$$
$$S(f) = A_c J_0(\beta) \delta(f - f_c) + \frac{A_c}{2} J_{\pm 1}(\beta) \delta(f - f_c \mp f_m) + \frac{A_c}{2} J_{\pm 2}(\beta) \delta(f - f_c \mp 2f_m) + \dots$$

$$\downarrow f_m \Leftrightarrow \uparrow \beta$$

As $\beta \uparrow$, number of spectral lines within $f_c - \Delta f < |f| < f_c + \Delta f \uparrow$

As $\beta \to \infty$, the bandwidth of s(t) approaches the limiting value of $2\Delta f!!$ [Note: For $\beta \ll 1$, bandwidth of $s(t) \approx 2f_m$ (As in AM)] $\approx \mathbf{C} \ \mathbf{U} \ \mathbf{V} \ \mathbf{\Gamma}$

Transmission bandwidth

$$S(f) = \frac{A_c}{2} \sum_{n=-\infty}^{\infty} J_n(\beta) [\delta(f - f_c - nf_m) + \delta(f + f_c + nf_m)]$$

$$\Rightarrow \text{ transmission bandwidth} = \infty !!!$$

But, effectively, *finite* number of side frequencies are significant

Transmission bandwidth

$$S(f) = \frac{A_c}{2} \sum_{n=-\infty}^{\infty} J_n(\beta) [\delta(f - f_c - nf_m) + \delta(f + f_c + nf_m)]$$

 \Rightarrow transmission bandwidth = ∞ !!!

But, effectively, *finite* number of side frequencies are significant \Rightarrow retain up to n_{\max} side frequencies s.t. $J_{n_{\max}}(\beta) \ge \varepsilon J_0(\beta)$ $\Rightarrow B_T = 2n_{\max} f_m$

 $B_{T,1\%} = 1$ % bandwidth with $\varepsilon = 0.01$

1 percent bandwidth of FM wave

Table 3.1Number of Significant Side Frequenciesof a Wide-band FM Signal for Varying Modulation Index

Modulation Index eta	Number of Significant Side Frequencies $2n_{max}$
0.1	2
0.3	4
0.5	4
1.0	6
2.0	8
5.0	16
10.0	28
20.0	50
30.0	70

1 percent bandwidth of FM wave

Small values of β more extravagant in B_T than larger β !! Practically, $B_{T,Carson} \leq B_T \leq B_{T,1\%}$

FM Stereo

- Transmit two separate signals via *same* carrier
 - 2 different sections of orchestra, e.g., vocalist and accompanist, to give spatial dimension to its perception
- Requirements
 - Must operate within allocated FM broadcast channels
 - Must be compatible with monophonic radio receivers

FM Stereo Mux

FM Stereo Demux

Phase Locked Loop (PLL)

- o PLL for freq. demod
 - If s(t) is FM wave, obtain m(t) from v(t)
 - Require $\phi_1 \approx \phi_2 + 90^\circ < = >$ Phase lock!

• Dynamic behavior of PLL

•
$$\frac{d\phi_e(t)}{dt} = \frac{d\phi_1(t)}{dt} - 2\pi K_o \int_{-\infty}^{\infty} \sin[\phi_e(\tau)]h(t-\tau)d\tau,$$
$$K_o = k_m k_v A_c A_v$$

Non-linear PLL model

- Dynamic behavior of PLL
 - $\frac{d\phi_e(t)}{dt} = \frac{d\phi_1(t)}{dt} 2\pi K_o \int_{-\infty}^{\infty} \sin[\phi_e(\tau)]h(t-\tau)d\tau,$

 $K_o = k_m k_v A_c A_v$

Non-linear PLL model

Linearized behavior of PLL

 $K_o = k_m k_v A_c A_v$

 $\frac{d\phi_e(t)}{dt} = \frac{d\phi_1(t)}{dt} - 2\pi K_o \int_{0}^{\infty} \phi_e(\tau)h(t-\tau)d\tau,$

FT can be applied!

Xctvr

Linear PLL model

Phase-locked Linear PLL

 $2\pi K_0$ $\phi_e(t)$ $\phi_1(t)$ h(t)v(t)tan per ander ja myr 행과 신물문 $\phi_2(t)$ $\int_0^t dt$ $V(f) = \frac{(jf/k_v)L(f)}{1+L(f)}\Phi_1(f)$ $\Phi_e(f) = \frac{1}{1+L(f)} \Phi_1(f)$ $\left|L(f)\right| \gg 1$ $V(f) \simeq \frac{jf}{k_v} \Phi_1(f)$ $\Phi_e(f) \rightarrow 0 \Leftrightarrow \text{Phase lock}!!!$ $\Rightarrow v(t) = \frac{1}{2\pi k_v} \frac{d\phi_1(t)}{dt}$

Phase locked linear PLL as frequency demodulator

• If |L(f)| >> 1

- Linearized PLL model
- Phase lock satisfied $[\phi_e \approx 0]$

$$v(t) = \frac{1}{2\pi k_v} \frac{d\psi_1(t)}{dt}$$

Determines complexity of PLL

Bandwidth of s(t) >> bandwidth of H(f) [m(t)]

Design of H(f)

First order

- H(f) = 1
- $|L(f)| = K_o/f$

o Drawback

• K_o controls both loop bandwidth and hold-in frequency range, f_H

Second-order PLL

• With appropriate choice of (ζ, f_n) , we can maintain ϕ_e small

Linear PLL model

- Rule of thumb:
 - Loop should remain locked if $\phi_{e0}(f_m = f_n) < 90^\circ$

Non-linear effects in FM systems

- Assume $v_i(t)$ is FM signal
 - $\Delta f = frequency deviation$
 - W = highest freq. comp. of m(t)

Non-linear effects in FM systems

Non-linear effects in FM systems

• To separate out desired FM signal

- $f_c + \Delta f + W < 2f_c W 2\Delta f$
- $=>f_c > 3\Delta f + 2W$
- Apply bandpass filter $[f_c-\Delta f-W, f_c+\Delta f+W]$

$$v_{o}'(t) = (a_{1} + \frac{3}{4}a_{3}A_{c}^{2})v_{i}(t)$$

• Unlike AM, FM *not* affected by distortion due to channel with amp. non-linearities

Summary

- Unlike AM, FM is non-linear modulation process
 - Spectral analysis is more difficult
 - Developed insight by studying single-tone FM
- Carson's rule for transmission bandwidth
 - $B_T = 2\Delta f(1+1/\beta)$
- Phase-Locked Loop for frequency demodulation

