IS703: Decision Support and Optimization

Week 3: Dynamic Programming & Greedy Method

Lau Hoong Chuin
School of Information Systems
Dynamic Programming

- Richard Bellman coined the term **dynamic programming** in 1957

- Solves problems by **combining** the solutions to sub-problems that contain common sub-sub-problems.

- **Difference between DP and Divide-and-Conquer:**
 - Using *Divide and Conquer* to solve these problems is **inefficient** as the same common sub-sub-problems have to be solved many times.
 - DP will solve each of them **once** and their answers are stored in a **table** for future reference.
Intuitive Explanation

- **Optimization Problem**
 - Many solutions, each solution has a (objective) value
 - The goal is to find a solution with the *optimal* value
 - Minimization problems: e.g. Shortest path
 - Maximization problems: e.g. Tour planning

- **Given a problem P, obtain a sequence of problems** Q_0, Q_1, \ldots, Q_m, where:
 - You have a solution to Q_0
 - The solution to a problem $Q_j, j > 0$, can be obtained from solutions to problems $Q_k, k < j$, that appear earlier in the “sequence”.
Intuitive Explanation

You know how to compute solution to Q_0.

Find a way to compute the solution to Q_j from the solutions to Q_k ($k < j$).

You know how to compute solution to Q_0.
Elements of Dynamic Programming

DP is used to solve problems with the following characteristics:

- **Optimal sub-structure** (Principle of Optimality)
 - an optimal solution to the problem contains within it *optimal* solutions to sub-problems.
- **Overlapping subproblems**
 - there exist some places where we solve the same subproblem more than once
Optimal Sub-structure

Bellman’s optimality principle

Q_m

Q_i

Q_j

Pick optimal

Discard others

The discarded solutions for the smaller problem remain discarded because the optimal solution dominates them.
Steps to Designing a Dynamic Programming Algorithm

1. Characterize **optimal sub-structure**
2. Recursively define the value of an optimal solution
3. Compute the value **bottom up**
4. (if needed) **Construct** an optimal solution
Matrix-Multiply(A,B):
1 if columns[A] != rows[B] then
2 error "incompatible dimensions"
3 else for i = 1 to rows[A] do
4 for j = 1 to columns[B] do
5 \[C[i,j] = 0 \]
6 for k = 1 to columns[A] do
7 \[C[i,j] = C[i,j]+A[i,k]*B[k,j] \]
8 return C

Time complexity = O(pqr), where |A|=pxq and |B|=qxr
Matrix Chain Multiplication (MCM) Problem

Input: Matrices A_1, A_2, \ldots, A_n, each A_i of size $p_{i-1} \times p_i$.

Output: Fully parenthesised product $A_1A_2\ldots A_n$ that minimizes the number of scalar multiplications.

A product of matrices is fully parenthesised if it is either

a) a single matrix, or

b) the product of 2 fully parenthesised matrix products surrounded by parentheses.

Example: $A_1A_2A_3A_4$ can be fully parenthesised as:

1. $(A_1(A_2(A_3A_4)))$
2. $(A_1((A_2A_3)A_4))$
3. $(((A_1A_2)A_3)A_4)$
4. $((A_1(A_2A_3))A_4)$
5. $(((A_1A_2)A_3)A_4)$

Note: Matrix multiplication is associative.
Matrix Chain Multiplication Problem

Example: 3 matrices:

\[A_1 : 10 \times 100 \]
\[A_2 : 100 \times 5 \]
\[A_3 : 5 \times 50 \]

Q: What is the cost of multiplying matrices of these sizes?

For \((A_1A_2)A_3\),
\[
\text{number of multiplications} = 10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500
\]

For \((A_1(A_2A_3))\), it is 75000
Matrix Chain Multiplication Problem

Let the number of different parenthesizations be $P(n)$. Then

$$P(n) = \begin{cases} 1 & \text{if } n = 1 \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \geq 2 \end{cases}$$

Using generating function, we have

$P(n) = C(n-1)$, the $n-1^{th}$ Catalan number where

$$C(n) = \frac{1}{n+1}C_n^{2n} = \Omega\left(\frac{4^n}{n^{3/2}}\right)$$

Exhaustively checking all possible parenthesizations take exponential time!
If we multiply these matrices first the cost is $2N^3$ (N^3 multiplications and N^3 additions).
Parenthesization

Cost of multiplication is N^2.

Thus, total cost is proportional to $N^3 + N^2 + N$ if we parenthesize the expression in this way.
Different Ordering

Cost is proportional to N^2
The Ordering Matters!

One ordering costs $O(N^3)$

The other ordering costs $O(N^2)$

Cost depends on parameters of the operands.

How to parenthesize to minimize total cost?
Step 1: Characterize Optimal Sub-structure

Let $A_{i..j}$ ($i<j$) denote the result of multiplying $A_iA_{i+1}...A_j$.

$A_{i..j}$ can be obtained by splitting it into $A_{i..k}$ and $A_{k+1..j}$ and then multiplying the sub-products.

There are $j-i$ possible splits (i.e. $k=i,..., j-1$)
Step 1: Characterize Optimal Sub-structure

Let $A_{i..j}$ ($i<j$) denote the result of multiplying $A_i A_{i+1} \ldots A_j$.

$A_{i..j}$ can be obtained by splitting it into $A_{i..k}$ and $A_{k+1..j}$ and then multiplying the sub-products.

There are $j-i$ possible splits (i.e. $k=i, \ldots, j-1$)
Step 1: Characterize Optimal Sub-structure

Let $A_{i..j}$ ($i<j$) denote the result of multiplying $A_i A_{i+1} \ldots A_j$.

$A_{i..j}$ can be obtained by splitting it into $A_{i..k}$ and $A_{k+1..j}$ and then multiplying the sub-products.

There are $j-i$ possible splits (i.e. $k=i, \ldots, j-1$)
Step 1: Characterize Optimal Sub-structure

Within the optimal parenthesization of $A_{i..j}$,

(a) the parenthesization of $A_{i..k}$ must be optimal
(b) the parenthesization of $A_{k+1..j}$ must be optimal

Why?
Step 2: Recursive (Recurrence) Formulation

Need to find $A_{1..n}$

Let $m[i,j] = \min \# \text{ of scalar multiplications needed to compute } A_{i..j}$

Since $A_{i..j}$ can be obtained by breaking it into $A_{i..k} A_{k+1..j}$, we have

$$m[i,j] = \begin{cases}
0 & \text{if } i = j \\
\min_{i \leq k < j} \{ m[i,k] + m[k+1,j] + p_{i-1} p_k p_j \} & \text{if } i < j
\end{cases}$$

Note: The sizes of $A_{i..k}$ is $p_{i-1} p_k$, $A_{k+1..j}$ is $p_k p_j$, and $A_{i..k} A_{k+1..j}$ is $p_{i-1} p_j$ after $p_{i-1} p_k p_j$ scalar multiplications.

Let $s[i,j]$ be the value k where the optimal split occurs.
Step 3: Computing the Optimal Costs

depends on

$A_{1,1}$ $A_{2,2}$ $A_{3,3}$ $A_{4,4}$

$A_{1,2}$ $A_{2,3}$ $A_{3,4}$

$A_{1,3}$ $A_{2,4}$

depends on

Q_0 Q_m
Step 3: Computing the Optimal Costs

Matrix-Chain-Order(p)

1 \(n = \text{length}[p]-1 \) // \(p \) is the array of matrix sizes
2 for \(i = 1 \) to \(n \) do
3 \(m[i,i] = 0 \) // no multiplication for 1 matrix
4 for \(\text{len} = 2 \) to \(n \) do // \(\text{len} \) is length of sub-chain
5 for \(i = 1 \) to \(n-\text{len}+1 \) do // \(i \): start of sub-chain
6 \(j = i+\text{len}-1 \) // \(j \): end of sub-chain
7 \(m[i,j] = \infty \)
8 for \(k = i \) to \(j-1 \) do
9 \(q = m[i,k]+m[k+1,j]+p_{i-1}p_kp_j \)
10 if \(q < m[i,j] \) then
11 \(m[i,j] = q \)
12 \(s[i,j] = k \)
13 return \(m \) and \(s \)

Time complexity = \(O(n^3) \)
Example

Solve the following MCM instance:

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>30x35</td>
</tr>
<tr>
<td>A_2</td>
<td>35x15</td>
</tr>
<tr>
<td>A_3</td>
<td>15x5</td>
</tr>
<tr>
<td>A_4</td>
<td>5x10</td>
</tr>
<tr>
<td>A_5</td>
<td>10x20</td>
</tr>
<tr>
<td>A_6</td>
<td>20x25</td>
</tr>
</tbody>
</table>

p=[30,35,15,5,10,20,25]

See CLRS Figure 15.3
Figure 15.3 The m and s tables computed by MATRIX-CHAIN-ORDER for $n = 6$ and the following matrix dimensions:

<table>
<thead>
<tr>
<th>matrix</th>
<th>dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>30×35</td>
</tr>
<tr>
<td>A_2</td>
<td>35×15</td>
</tr>
<tr>
<td>A_3</td>
<td>15×5</td>
</tr>
<tr>
<td>A_4</td>
<td>5×10</td>
</tr>
<tr>
<td>A_5</td>
<td>10×20</td>
</tr>
<tr>
<td>A_6</td>
<td>20×25</td>
</tr>
</tbody>
</table>

The tables are rotated so that the main diagonal runs horizontally. Only the main diagonal and upper triangle are used in the m table, and only the upper triangle is used in the s table. The minimum number of scalar multiplications to multiply the 6 matrices is $m[1, 6] = 15,125$. Of the darker entries, the pairs that have the same shading are taken together in line 9 when computing

\[
\begin{align*}
 m[2, 2] + m[3, 5] + p_1 p_2 p_5 &= 0 + 2500 + 35 \cdot 15 \cdot 20 = 13000, \\
m[2, 5] &= \min \left\{ m[2, 3] + m[4, 5] + p_1 p_3 p_5, m[2, 4] + m[5, 5] + p_1 p_4 p_5 \right\} \\
&= \min \left\{ 2625 + 1000 + 35 \cdot 5 \cdot 20, 4375 + 0 + 35 \cdot 10 \cdot 20 \right\} = 7125, \\
&= 7125. \\
\therefore s[2, 5] &= 3
\end{align*}
\]
Step 4: Constructing an Optimal Solution

To get the optimal solution $A_{1..6}$, $s[]$ is used as follows:

$$A_{1..6}$$

$$= (A_{1..3} A_{4..6}) \quad \text{since } s[1,6] = 3$$

$$= ((A_{1..1} A_{2..3})(A_{4..5} A_{6..6})) \quad \text{since } s[1,3] = 1 \text{ and } s[4,6] = 5$$

$$= (((A_1 (A_2 A_3))((A_4 A_5)A_6)))$$

MCM can be solved in $O(n^3)$ time
Recap: Elements of Dynamic Programming

DP is used to solve problems with the following characteristics:

- **Optimal substructure** (Principle of Optimality)
 - Example. In MCM, $A_{1..6} = A_{1..3} A_{4..6}$

- **Overlapping subproblems**
 - there exist some places where we solve the same subproblem more than once
 - Example. In MCM, $A_{2..3}$ is common to the subproblems $A_{1..3}$ and $A_{2..4}$
 - Effort wasted in solving common sub-problems repeatedly
Recursive-Matrix-Chain(p,i,j)

1 if i = j
2 then return 0
3 m[i,j] = ∞
4 for k = i to j-1 do
5 q = Recursive-Matrix-Chain(p,i,k)+Recursive-Matrix-Chain(p,k,j)+p_{i-1}p_kp_j
6 if q < m[i,j]
7 then m[i,j] = q
8 return m[i,j]

See CLRS Figure 15.5
Figure 15.5 The recursion tree for the computation of \textsc{Recursive-Matrix-Chain}(p, 1, 4). Each node contains the parameters i and j. The computations performed in a shaded subtree are replaced by a single table lookup in \textsc{Memoized-Matrix-Chain}(p, 1, 4).
Overlapping Subproblems

Let $T(n)$ be the time complexity of $\text{Recursive-Matrix-Chain}(p,1,n)$

For $n > 1$, we have

$$T(n)= 1 + \sum_{k=1}^{n-1} (T(k) + T(n-k) + 1)$$

a) 1 is used to cover the cost of lines 1-3, and 8
b) 1 is used to cover the cost of lines 6-7

Using substitution, we can show that $T(n) \geq 2^{n-1}$

Hence $T(n) = \Omega(2^n)$
Memoization

• *Memoization* is one way to deal with overlapping subproblems
 – After computing the solution to a subproblem, store it in a table
 – Subsequent calls just do a table lookup
• Can modify recursive algo to use memoization
Memoization

Memoized-Matrix-Chain(p) // Compare with Matrix-Chain-Order
1 n = length[p] - 1
2 for i = 1 to n do
3 for j = i to n do
4 m[i,j] = ∞
5 return Lookup-Chain(p,1,n)

Lookup-Chain(p,i,j)
1 if m[i,j]<∞ // m[i,j] has been computed
2 then return m[i,j]
3 if i = j // only one matrix
4 then m[i,j] = 0
5 else for k = i to j - 1 do
6 q = Lookup-Chain(p,i,k) +
 Lookup-Chain(p,k+1,j) + p_{i-1}p_kp_j
7 if q < m[i,j]
8 then m[i,j] = q
9 return m[i,j]

Time complexity: O(n³) Why?
Example: Traveling Salesman Problem

Given: A set of n cities $V = \{x_1, x_2, \ldots, x_n\}$ and distance matrix c, containing cost to travel between cities, find a minimum-cost tour.

- **David Applegate, Robert Bixby, Vašek Chvátal, William Cook** (http://www.math.princeton.edu/tsp/)

- **Exhaustive search:**
 - Find optimal tour by systematically examining all tours
 - enumerate all permutations of the cities and evaluate tour (given by particular vertex order)
 - Keep track of shortest tour
 - $(n-1)!$ permutations, each takes $O(n)$ time to evaluate
 - Don’t look at all n permutations, since we don’t care about starting point of tour: $A,B,C,(A)$ is same tour as $C,A,B,(C)$
 - Unacceptable for large $n
TSP

- Let $S = \{x_1, x_2, \ldots, x_k\}$ be a subset of the vertices in V
- A path P from v to w covers S if $P = [v, x_1, x_2, \ldots, x_k, w]$, where x_i may appear in any order but each must appear exactly once
- Example, path from a to a, covering $\{c, d, f, e, b\}$
Dynamic Programming

- Let $d(v, w, S)$ be cost of shortest path from v to w covering S
- Need to find $d(v, v, V\setminus\{v\})$
- Recurrence relation:
 $$d(v, w, S) = \begin{cases}
 c(v, w) & \text{if } S=\{} \\
 \min \forall x \left(c(v, x) + d(x, w, S\setminus\{x\}) \right) & \text{otherwise}
 \end{cases}$$
- Solve all subproblems where $|S|=0$, $|S|=1$, etc.
- How many subproblems $d(x, y, S)$ are there? $(n-1)2^{n-1}$
 - S could be any of the 2^{n-1} distinct subsets of $n-1$ vertices
- Takes $O(n)$ time to compute each $d(v, w, S)$
Dynamic Programming

• Total time $O(n^22^{n-1})$
• Much faster than $O(n!)$
• Example:
 – $n=1$, algorithm takes 1 micro sec.
 – $n=20$, running time about 3 minutes (vs. 1 million years)
Summary

- DP is suitable for problems with:
 - **Optimal substructure**: optimal solution to problem consists of optimal solutions to subproblems
 - **Overlapping subproblems**: few subproblems in total, many recurring instances of each
- Solve **bottom-up**, building a **table** of solved subproblems that are used to solve larger ones
- Dynamic Programming applications
Exercise (Knapsack Problem)

- You are the ops manager of an equipment which can be used to process one job at a time
- There are a set of jobs, each incurs a processing cost (weight) and reaps an associated profit (value), all numbers are non-negative integers
- Jobs may be processed in any order
- Your equipment has a processing capacity
- Question: What jobs should you take to maximize the profit?
Exercise (Knapsack Problem)

Design a dynamic programming algorithm to solve the Knapsack Problem.

Your algorithm should run in $O(nW)$ time, where n is the number of jobs and W is the processing capacity.
Greedy Algorithms

Reference:
• CLRS Chapters 16.1-16.3, 23

Objectives:
• To learn the Greedy algorithmic paradigm
• To apply Greedy methods to solve several optimization problems
• To analyse the correctness of Greedy algorithms
Greedy Algorithms

• Key idea: Makes the choice that looks best at the moment
 – The hope: a locally optimal choice will lead to a globally optimal solution

• Everyday examples:
 – Driving
 – Shopping
Applications of Greedy Algorithms

• Scheduling
 – Activity Selection (Chap 16.1)
 – Scheduling of unit-time tasks with deadlines on single processor (Chap. 16.5)

• Graph Algorithms
 – Minimum Spanning Trees (Chap 23)
 – Dijkstra’s (shortest path) Algorithm (Chap 24)

• Other Combinatorial Optimization Problems
 – Knapsack (Chap 16.2)
 – Traveling Salesman (Chap 35.2)
 – Set-covering (Chap 35.3)
Greedy vs Dynamic

- **Dynamic Programming**
 - Bottom up (while Greedy is top-down)

- Dynamic programming can be overkill; greedy algorithms tend to be easier to code
Real-World Applications

• Get your $$ worth out of a carnival
 – Buy a passport that lets you onto any ride
 – Lots of rides, each starting and ending at different times
 – Your goal: ride as many rides as possible

• Tour planning
• Customer satisfaction planning
• Room scheduling
Application: Activity-Selection Problem

• Input: a list S of n activities $= \{a_1,a_2,\ldots,a_n\}$

 $s_i =$ start time of activity i

 $f_i =$ finish time of activity i

 S is sorted by finish time, i.e. $f_1 \leq f_2 \leq \ldots \leq f_n$

• Output: a subset A of compatible activities of maximum size

 – Activities are compatible if $[s_i,f_i) \cap [s_j,f_j)$ is null

How many possible solutions are there?
Greedy Algorithm

Greedy-Activity-Selection(s, f)

1. n := length[s]
2. A := {a₁}
3. j := 1
4. for k:=2 to n do
5. if s_k >= f_j /* compatible activity */
6. then A := A ∪ {a_k}
7. j := k
8. Return A
Example Run
When does Greedy Work?

• Two key ingredients:

 1. **Optimal sub-structure**

 An optimal solution to the entire problem contains within it optimal solutions to subproblems (this is also true of dynamic programming)

 2. **Greedy choice property**

• Greedy choice + Optimal sub-structure establish the **correctness** of the greedy algorithm
Optimal Sub-structure

Let A be an optimal solution to problem with input S. Let a_k be the activity in A with the earliest finish time. Then $A - \{a_k\}$ is an optimal solution to the subproblem with input $S' = \{i \in S: s_i \geq f_k\}$

– In other words: the optimal solution S contains within it an optimal solution for the sub-problem on activities that are compatible with a_k

Proof by Contradiction (Cut-and-Paste Argument):

Suppose $A - \{a_k\}$ is not optimal to S'.

Then, \exists optimal solution B to S' with $|B| > |A - \{a_k\}|$,

Clearly, $B \cup \{a_k\}$ is a solution for S.

But, $|B \cup \{a_k\}| > |A|$ (Contradiction)
Greedy Choice Property

• Locally optimal choice
 – Make best choice available at a given moment

• Locally optimal choice \Rightarrow globally optimal solution
 – In other words, the greedy choice is always safe
 – How to prove? Use Exchange Argument usually.

• Contrast with dynamic programming
 – Choice at a given step may depend on solutions to subproblems (bottom-up)
Greedy Choice Property

• Theorem: (paraphrased from CLRS Theorem 16.1)
 Let a_k be a compatible activity with the earliest finish time. Then, there exists an optimal solution that contains a_k.

• Proof by **Exchange Argument**:
 For any optimal solution B that does not contain a_k, we can always replace first activity in B with a_k (**Why?**). Same number of activities, thus optimal.
Application: Knapsack Problem

• Recall 0-1 Knapsack problem:
 – choose among n items, where the ith item worth v_i dollars and weighs w_i pounds
 – knapsack carries at most W pounds
 – maximize value
 • Note: assume v_i, w_i, and W are all integers
 • “0-1”, since each item must be taken or left in entirety
 – solved by Dynamic Programming

• A variant - Fractional Knapsack problem:
 – can take fractions of items
 – can be solved by a Greedy algorithm
Knapsack Problem

• The optimal solution to the fractional knapsack problem can be found with a greedy algorithm
 – How?

• The optimal solution to the 0-1 problem cannot be found with the same greedy strategy
 – Proof by a counter example
 – Greedy strategy: take in order of dollars/kg
 – Example: 3 items weighing 10, 20, and 30 kg, knapsack can hold 50 kg
 • Suppose item 2 is worth $100. Assign values to the other items so that the greedy strategy will fail
Knapsack Problem: Greedy vs Dynamic

• The fractional problem can be solved greedily
• The 0-1 problem cannot be solved with a greedy approach
 – It can, however, be solved with dynamic programming (recall previous lesson)
Summary

• Greedy algorithms works under:
 – Greedy choice property
 – Optimal sub-structure property

• Design of Greedy algorithms to solve:
 – Some scheduling problems
 – Fractional knapsack problem
Exercise (Traveling Salesman Problem)

Design a greedy algorithm to solve TSP.

Demonstrate that greedy fails by giving a counter example.
Exercise (Interval Coloring Problem)

Suppose that we have a set of activities to schedule among a large number of lecture halls. We wish to schedule all the activities using minimum number of lecture halls.

Give an efficient greedy algorithm to determine which activity should use which lecture hall.
Next Week

Read CLRS Chapters 22-26 (Graphs and Networks)

Do Assignment 2!