
Probabilistic Analysis of Local Search and
NP-Completeness Result for Constraint

Satisfaction
(Extended Abstract)

Hoong Chuin LAU

Dept. of Computer Science, Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo 152, Japan

email: hclau@cs.titech.ac.jp

1 Introduction

An instance of the binary Constraint Satisfaction Problem (CSP) is de-
fined by a set of variables, their associated value domains and a set of
binary constraints. The output is an assignment of variables to domain
values which satisfies all constraints simultaneously. Many problems in
Artificial Intelligence, Operations Research and Combinatorics can be
formulated as CSP, such as problems in scene labelling, temporal reason-
ing and resource allocation. CSP can be modelled as a graph where the
vertices and edges represent the variables and constraints. It is a gener-
alization of the well-known graph-coloring problem.

The CSP is known to be NP-hard in general. One research direction to
tackle NP-hard problems is to identify subclasses which are polynomial-
time solvable. Recently, van Beek and Dechter [8] proved that CSP is
polynomial-time solvable if the set of constraints are row-convex and path-
consistent with respect to the given graph.

Another direction is to design efficient algorithms to solve random in-
stances of the problem. Koutsoupias and Papadimitriou [3] proved that,
for random satisfiable 3CNF Boolean formulas, if the initial assignment
agrees with the satisfying assignment in more than half the number of
variables, then local search based on flipping succeeds with high proba-
bility. Alon and Kahale [1] proved that random 3-colorable graphs can be
colored efficiently with high probability when the edge probability is at
least polylog(n)/n. Minton et al. [4] considered CSP instances on regular
graphs. Under the assumption that instances have unique solutions and
constraints are consistent with a fixed probability, they proved that local
search performs well when the Hamming distance between the initial as-

signment and the solution is small. The Hamming distance refers to the
number of variables with different assigned values.

Local search is an appealing paradigm because it is conceptually sim-
ple and efficiently implementable. While a pervasive amount of experi-
mental results have been presented by AI researchers on applying local
search to solve CSP in general (e.g. see the Constraint Satisfaction section
in AAAI and IJCAI conference proceedings), little is known theoreti-
cally for restricted classes of CSP.

In this paper, we study the computational complexity of and local
search algorithms for restricted classes of CSP. Our contributions are as
follows.

1. We prove that the decision problem of CSP remains NP-complete even
if the constraint graph is a grid-graph having row-convex constraints.
This provides a theoretical limit to a result in [8].

2. We consider satisfiable CSP instances drawn randomly from a distri-
bution parameterized by the edge probability q and the probability λ
that a constraint is satisfied. We show that:

– If q ≥ log n
(1−λ)n and λ ≤ ln k

k , then almost every instance has only one
solution. Furthermore, if the initial assignment is ’good’, i.e. the
Hamming distance between the initial assignment and the solution
is less than half the number of variables, then our local search
algorithm finds the solution with high probability. Our analysis is
a refinement of [4] and an improvement of their result.

– For q ≥ log n/n and 0.43 ≤ λ ≤ 1, a solution can be found with
high probability after a polynomial number of local search itera-
tions having independent random initial assignments. Selman et al.
[6] proposed an iterative local search algorithm GSAT and showed
empirically that it works well for random satisfiable 3CNF for-
mulas. We mimic their algorithm and formalize its behavior on
CSP.

2 Preliminaries

The Constraint Satisfaction Problem (CSP) is defined by a triple (V,D,R),
where V is a set of n variables {1, 2, ..., n}, D is a set of domains {D1, D2, ..., Dn},
and R is a collection of binary constraints (or simply constraints). Each
domain Di is a finite set of values that can be assigned to variable i.
Unless otherwise specified, we will assume that all domains have a fixed
constant size k and are equal to the set K = {1, 2, . . . , k}. A constraint

R(i1, i2) is a relation on K × K specifying pairs of values which can be
assigned to variables i1 and i2 simultaneously. All value pairs in R(i1, i2)
are said to be consistent. Given an assignment σ : V −→ K, R(i1, i2) is
satisfied under σ if (σi1 , σi2) ∈ R(i1, i2). Otherwise, we say that i1 conflicts
with i2 under σ. A solution is an assignment which satisfies all constraints
simultaneously. An instance is satisfiable iff it has at least one solution.

A constraint R(i1, i2) is said to be row-convex from i1 to i2 iff there is
an ordering of the values in Di2 such that every value in Di1 is consistent
with only consecutive values of Di2 . For example, the constraint

{(1, 2), (2, 1), (2, 2), (3, 2), (3, 3)}

is row-convex while the ’not-equal’ constraint

{(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}

is not row-convex. A CSP instance is row-convex iff there exists an or-
dering of the variables and an ordering of the values in every domain
such that for all i1 ≤ i2, R(i1, i2) is row-convex from i1 to i2. Let rc-CSP
denote the decision problem whose input is a row-convex CSP instance
and output is whether the instance is satisfiable. Note that rc-CSP does
not include graph-coloring instances, because the constraints for graph
coloring are all ’not-equal’ constraints.

Let R-CSP denote a set of distributions on satisfiable CSP instances.
An element of R-CSP is a specific distribution parameterized by the edge
probability 0 ≤ q ≤ 1 and the consistency probability 0 ≤ λ ≤ 1, and a
CSP instance is drawn from this distribution by the following procedure:

1. Generate a random graph G of n nodes such that an edge (i.e. con-
straint) exists between any two variables with probability q.

2. Generate a random assignment σ̂. For each edge (i1, i2) in G, con-
struct the constraint as follows. Insert the value pair (σ̂i1 , σ̂i2) with
probability 1 and all other k2 − 1 pairs with probability λ.

This generation procedure has been used by others and an online imple-
mentation can be found in [7]. Let m denote the number of edges in G.
Let p = 1 − λ be the inconsistency probability. For brevity, an instance
generated by the above method will be called an R-CSP instance. Clearly,
every R-CSP instance is satisfiable since it has at least one solution σ̂.
Further, it has the following property:

Fact 1. For all constraints R(i1, i2) and all value pairs (j1, j2),

Pr[(j1, j2) ∈ R(i1, i2)] =

{
1, if j1 = σ̂i1 and j2 = σ̂i2

λ, otherwise.

The expected probability that (j1, j2) is a consistent pair is φ =
(

1− 1
k2

)
λ +

1
k2

.

Henceforth, the phrase almost surely means: with probability approach-
ing 1 when n is sufficiently large. All log’s are base 2 and ’ln’ refers to
the natural log.

3 NP-Completeness of rc-CSP

Recently, van Beek and Dechter [8] proved that rc-CSP is polynomial-
time solvable if the constraints are path-consistent with respect to the
given graph. In other words, for any pair of variables (i1, i2) assigned to
consistent values j1 and j2 respectively, there exists a value j3 for any
variable i3 such that these three values satisfy the constraints R(i1, i3)
and R(i2, i3). Path-consistency is a well-studied notion in the of design
of algorithms for CSP. In this section, we show that without the path-
consistency property, unfortunately, rc-CSP remains NP-complete under
certain restrictions.

Theorem 1. rc-CSP is NP-complete, even for grid graphs and domain
size 4.

Proof. (sketch) We show by a many-one reduction from the 3-satisfiability
problem (3-SAT). Let F be an instance of 3-SAT with n Boolean variables
{U1, . . . , Un} and m clauses. Assume that for each clause, if the literal Ui

occurs in the clause, then Ui will. not occur and vice versa. Construct an
n×m grid such that nodes in row i represent the variable Ui and nodes
in column j represent the clause Cj . Let the node on row i and column j
be called xi,j . Call a node xi,j active if Ui or Ui occurs in Cj , and passive
otherwise.

We introduce 7 distinct values {0, θ, 1, a, c, b, d}. Call the subset {θ, 1, c, d}
the accepting set. Except the first and last rows, active nodes have do-
main {0, θ, 1} while passive nodes have domain {a, b, c, d}. In the first row,
active nodes have domain {0, 1} while passive nodes have domain {a, b}.
In the last row, active nodes have domain {θ, 1} while passive nodes have
domain {c, d}. The value 1 represents the truth value True, while both

0 and θ represent False. The values a and c are used to convey 0 or θ
while b and d convey 1.

Two main issues need to be addressed. First, values of active nodes
must be consistently conveyed along the rows. This is essential so that
every Boolean variable carries exactly one truth value throughout all
clauses. This condition is enforced by the horizontal constraints. Next,
every clause must be satisfied, i.e. contains at least one true literal. This
is why we need two values to represent False. Basically, an active node is
assignable to 0 only if no active node in the same column and a smaller-
number row is assigned 1. Similarly, a passive node is assignable to a or
b only if no active node in the same column and a smaller-number row is
assigned 1. By this approach, enforcing the satisfiability of clause Cj is
equivalent to enforcing the last node of column j to have a value of the
accepting set. This condition can be enforced by the vertical constraints.

All constraints can be shown to be row-convex and thus the instance
is an rc-CSP instance. Due to space constraint, we illustrate how values
are conveyed via horizontal constraints by an example. Suppose we have
three nodes x = xi,j−1, y = xi,j and z = xi,j+1. Further suppose the literal
Ui occurs in clause j − 1 and the literal Ui occurs in clause j + 1. Thus x
and z are active while y is passive. We define the following constraints to
ensure that x and z carry opposite truth values:

R(x, y) = {(0, b), (0, d), (θ, b), (θ, d), (1, a), (1, c)},
R(y, z) = {(a, 0), (a, θ), (b, 1), (c, 0), (c, θ), (d, 1)}.

If x is assigned to 1, then y must be assigned to a or c and thus z must be
assigned to 0 or θ. Else if x is assigned to 0 or θ, then y must be assigned
to b or d and thus z must be assigned to 1.

Suppose we have a solution for the rc-CSP instance. For every i, let ji

be the clause in which either the literal Ui or Ui first occurs. If Ui occurs,
then set t(Ui) to True when xi,ji = 1, and False when xi,ji = 0 or θ. If Ui

occurs instead, do the reverse. The resulting truth assignment t satisfies
F because every column has at least one ’1’.

Conversely, suppose we have a satisfying assignment t. Assign the
active nodes from top to bottom, left to right. For each t(Ui) = True,
assign node xi,j to 1 for all j such that Ui occurs in Cj , and to 0 or θ
for all j such that Ui occurs in Cj (depends on whether a ’1’ has been
assigned to a node in the same column and previous rows). Do the reverse
for each t(Ui) = False. Assign the passive nodes from top to bottom, left
to right. Clearly, such assignment is possible. Since each clause has at

least one true literal, the nodes in the last row will be assigned values in
the accepting set. tu

Example Figure 1 gives an example of the reduction. (a) gives the rc-CSP
instance constructed from the 3-SAT instance

U = {U1, U2, U3, U4, U5}, F = {(U1, U2, U5), (U2, U3, U4), (U1, U3, U4), (U1, U3, U5)}.

Active nodes are unshaded while passive nodes are shaded. From the solu-
tion (b), the corresponding satisfying assignment is {True, False, T rue, False, T rue}.

Fig. 1. Example of reduction from 3-SAT to rc-CSP.

4 Local Search Algorithm LS1

In this section, we present a simple local search algorithm LS1 and analyze
its performance.

Given an assignment σ, let ∆(σ, i, j) denote the assignment obtained
by replacing the assigned value of variable i (i.e. σi) with another value
j. The logic of our local search algorithm LS1 is simple. Begin with a
random assignment and iterate until we reach a solution or all variables
have been reset. Let σ denote the current assignment and S denote the
set of variables which have not been reset. Define a potential function
c : S ×K −→ IN:

c(i, j) = # {v ∈ V − {i} | (j, σv) 6∈ R(i, v)}

That is, c(i, j) counts the number of variables which conflict with the
variable i under the assignment ∆(σ, i, j). Among all variables in S, the
algorithm selects a variable-value pair (i, j) such that the potential func-
tion is minimized and reset i to the value j. LS1 is codified as follows:

procedure LS1:
begin
set S = V ;
generate a random initial assignment σ;
while S 6= ∅ and σ is not a solution do
select (i, j) such that i ∈ S, j 6= σi and c(i, j) is minimized;
set σ = ∆(σ, i, j) and S = S − {i};

endwhile
output σ;

end.

LS1 is similar to Minton et al.’s algorithm [4] with the following ex-
ceptions:

1. Instead of arbitrarily picking a variable in conflict, we pick a variable-
value pair which has the minimum number of conflicts, ties broken
arbitrarily. We call this the min-conflict heuristic.

2. The algorithm terminates after O(n) iterations since we do not al-
low variables to be reset more than once. Hence, the worst-case time
complexity of LS1 in terms of number of comparisons is O(n2k).

We proceed to analyze the performance of LS1. Let B(N, θ) be a bi-
nomial random variable representing the number of successes in N inde-
pendent Bernoulli trials when the probability of success in each trial is θ.
The following lemma can be derived using Chernoff bounds [2] (equations
(6) and (7)). A similar lemma was given in [3].

Lemma 1. Let X = B(N1, θ) and Y = B(N2, θ) where N2 ≤ N1 ≤ n

and log n
n ≤ θ ≤ 1. Then, Pr[X ≤ Y] ≤ 2

(
1
n

)(
√

N1−
√

N2)2
/2.08n

.

Lemma 2. Let x be an instance of R-CSP with n variables, domain size
k, edge probability q ≥ log n/n, and consistency probability 0 ≤ λ ≤
ln k/k. Then x has one solution almost surely.

Proof. The instance x has at least one solution, namely σ̂ (see section
2). Consider any assignment σ 6= σ̂. The probability that σ is a solu-
tion is φm (see Fact 1) because it must satisfy all constraints. Thus, the

probability that there exists a solution other than σ̂ is no more than
(kn − 1)φm ≤ knφm. Since q ≥ log n/n, m is expected to be at least
n−1

2 log n. Substituting φ and the bounds for m and λ, we get

knφm ≤ kn
[
ln k

k

(
1− 1

k2

)
+

1
k2

]n log n

≤
(ln k + 1

k)n log n

kn(log n−1)
� 1

for sufficiently large n. tu

From now, consider an R-CSP instance which contains exactly one
solution σ̂. Observe that for each variable, only one value is correct while
the other k− 1 values are wrong. Each variable-value pair (i, j) is correct
if j is the correct value for i. Our aim is to show that, if the initial
assignment is good, (i.e. the number of variables that differ from σ̂ is
less than half the total), then LS1 will pick a correct (i, j) pair almost
surely thus bringing us one step closer to the solution. Let D denote the
Hamming distance between the initial assignment and σ̂. Let the local
search iterations be numbered D,D− 1, . . . , 1. Define a binomial random
variable Xd[i, j] for the value of the potential function c(i, j) at iteration
d, given that we have chosen correct pairs from iterations D to d + 1.

Lemma 3. For all i ∈ S and j ∈ K, if (i, j) is correct then Xd[i, j] =
B(d, qp), else Xd[i, j] = B(n− 1, qp).

Proof. Let σ be the current assignment at the beginning of iteration d.
In σ, d variables have wrong values. If (i, j) is a correct pair, only these d
variables can conflict with i under the assignment ∆(σ, i, j). Conversely,
if (i, j) is wrong, then all n − 1 variables can potentially conflict with i.
Any variable i′ will conflict with i iff there is an edge between i and i′ and
the value pair (j, σi′) is inconsistent. The probability that an edge exists
between i and i′ is q. By Fact 1, the probability that (j, σi′) is inconsistent
is p. tu

Let (imin, jmin) denote the variable-value pair chosen by the min-
conflict heuristic at iteration d and Ed, the event that (imin, jmin) is a
wrong pair.

Lemma 4. If qp ≥ log n
n then Pr[Ed] ≤ 2

(
1
n

) d
2.08n

(
√

n−1−
√

d)2

.

Proof. Since (imin, jmin) is wrong, by the min-conflict heuristic, there
exist d correct pairs examined at iteration d whose potential function
values are no less than that of (imin, jmin) (otherwise, one of those pairs

would have been picked instead of the wrong pair). Therefore, the proba-
bility that Ed occurs is the probability that Xd[i, j] ≥ Xd[imin, jmin], for
all d correct pairs (i, j). Since the d + 1 random variables are pairwise
independent,

Pr[Ed] ≤ (Pr[Xd[imin, jmin] ≤ Xd[i, j]])
d

≤ (Pr[B(n− 1, qp) ≤ B(d, qp)])d (by Lemma 3)

≤ 2
(

1
n

) d
2.08n(

√
n−1−

√
d)2

(by Lemma 1)

tu

Putting Lemmas 2 and 4 together, we get the following result:

Theorem 2. Let x be an instance of R-CSP with n variables, domain
size k, consistency probability 0 ≤ λ ≤ ln k

k and edge probability q ≥
log n

(1−λ)n . Then LS1 returns a solution for x almost surely if the initial
assignment is good.

Proof. By Lemma 2, x has exactly one solution almost surely. Suppose
the initial assignment is good, i.e. D ≤ N (N = bn−1

2 c). The probability
that LS1 fails to return the solution is the probability that at least one
event Ed occurs along the way, for some 2 ≤ d ≤ D. Notice that E1 cannot
occur because the algorithm always correctly reset the last wrongly-set
variable. Thus,

Pr[LS1 fails] = Pr[ED] + Pr[ED−1 | ED] + · · ·+ Pr[E2 | ∧D
d=3Ed]

≤ Pr[ED] + Pr[ED−1]
1−Pr[ED] + · · ·+ Pr[E2]

1−
∑D

t=3
Pr[Et]

≤
∑D

d=2
ed

1−
∑D

t=d+1
et

(by Lemma 4)

where ed = 2
(

1
n

) d
2.08n(

√
n−1−

√
d)2

. Consider the sequence E = (e2, . . . , eN).
By simple calculus, one may verify that E is a bitonic sequence e2 ≥ e3 ≥
· · · ≥ e(n−1)/4 ≤ e(n−1)/4+1 ≤ · · · ≤ eN . For sufficiently large n ≥ 70, this
sequence has the interesting property that

N∑
t=3

et ≤ e2.

This may be hard to prove analytically, but a simple program can be
written to verify this property. It follows that

ed

1−
∑D

t=d+1 et

≤ ed

1− e2
, ∀ 2 ≤ d ≤ D.

Therefore,

Pr[LS1 fails] ≤ 1
1− e2

D∑
d=2

ed ≤ 2e2

1− e2
.

Since e2 tends to 0 for sufficiently large n, the lemma follows. tu

5 Iterative Local Search Algorithm LS2

The previous section shows that LS1 performs well when λ is reasonably
small. When λ becomes large, our analysis of LS1 collapses because we
cannot assume that instances have unique solutions. In this section, we
turn our attention to iterative local search, i.e. performing local search
iteratively with independent random initial assignments.

We propose the following iterative local search algorithm LS2. Let
LS denote any local search which begins with a random assignment and
performs hill-climbing (i.e. no downhill moves) to increase the number of
satisfied constraints until it reaches a local optimum. Note that LS1 is
not an example of LS. Execute LS for a maximum of O(nk+1 lnn) times,
where n is the number of variables and k is the domain size.

Consider an R-CSP instance generated with edge probability q and
consistency probability λ. We say that an assignment is α-near iff it sat-
isfies at least αm constraints (recall m is total number of constraints).
Let σ∗ be the output computed by LS2. Given 0 ≤ α ≤ 1, what is the
probability that σ∗ is α-near? Clearly, if α ≤ φ (recall φ is the expected
consistency probability), the probability is close to 1, since a random as-
signment would satisfy φm constraints. If α > λ however, it turns out
that the probability is still close to 1 for a significantly large range of α.
The reason (which we will show) is that the assignment obtained by one
local search iteration is α-near with not-so-small probability. Hence, with
enough independent random initial assignments, we can expect to find an
α-near assignment almost surely.

We need the following theorem from analytic inequalities:

Proposition 1. [5]. For all x > 0,∫ ∞

x
e−

z2

2 dz >
1
2

(√
x2 + 4− x

)
e−

x2

2 .

Define π(α) to be the probability that one invocation of LS returns an

α-near assignment. Let c0 = α−λ√
λ(1−λ)

and a0 = 1
2

(√
c2
0qnk + 4− c0

√
qnk

)
.

Lemma 5. For sufficiently large n, π(α) ≥ a0√
2π

e−
c20qnk

2 .

Proof. Let σ be the assignment obtained by LS. The probability that σ
is not α-near is the probability that we randomly pick a variable i and it
is incident on less than αmi (mi is degree of i) satisfied constraints. For
counting purpose only, re-label all domain values so that each domain has
a distinct set of values. Since σ is locally optimal, the total number of
consistent value pairs occurring in those incident constraints, which is a
binomial random variable B(mik, φ), must be less than αmik. Therefore,

1− π(α) = Pr [B(mik, φ) < αmik] .

Since the instance is generated with parameters q and λ ≤ φ, this implies
that

π(α) ≥ Pr [B(qnk, λ) ≥ αqnk] .

By the Central Limit Theorem, B(qnk, λ) can be approximated closely by
a Gaussian random variable Z with mean qnkλ and variance qnkλ(1−λ).
Thus,

π(α) ≈ Pr [Z ≥ αqnk] =
1√
2π

∫ ∞

c0
√

qnk
e−

z2

2 dz

and the lemma follows by Proposition 1. tu

Lemma 6. For sufficiently large n, if q ≥ log n/n and c0 ≤
√

2 ln 2, then
π(α) ≥ 1√

2π
n−(k+1).

Proof. For sufficiently large n,

a0 =
1
2

(√
c2
0qnk + 4− c0

√
qnk

)
≥ n−1.

Since q ≥ log n/n and c0 ≤
√

2 ln 2, by Lemma 5,

π(α) >
a0√
2π

e−
c20qnk

2 ≥ n−1

√
2π

·
(
e− log n

)c20k/2
≥ 1√

2π
n−(k+1).

tu

This non-trivial probability of success allows us to conclude that:

Theorem 3. Let x be an instance of R-CSP with n variables, fixed do-
main size k, edge probability ≥ log n/n, and consistency probability λ. LS2
almost surely returns an α-near assignment after O(nk+1 lnn) iterations,
where 0 ≤ α ≤ min(λ + 1.17

√
λ(1− λ), 1).

Proof. By Lemma 6, after cnk+1 lnn (constant c) independent iterations
of LS, the probability of finding an α-near assignment is at least

1−
(

1− 1√
2π

n−(k+1)
)cnk+1 ln n

≥ 1− e− ln n = 1− 1
n

which tends to 1 for sufficiently large n. tu

While the above theorem gives a good approximation result, our main
concern is to find an exact solution. Substituting the upper bound of α
by 1:

Corollary 1. For 0.43 ≤ λ ≤ 1 and edge probability ≥ log n/n, LS2
almost surely returns a solution of an R-CSP instance in polynomial time.

Acknowledgements

I wish to thank O. Watanabe for stimulating discussions and P. van Beek
for comments on an early version of this paper.

References

1. Noga Alon and Nabil Kahale. A spectral technique for coloring random 3-colorable
graphs. In Proc. 26th ACM Symp. on Theory of Computing, pages 346–355, 1994.

2. Torben Hagerup and Christine Rub. A guided tour of Chernoff bounds. Inf. Process.
Lett., 33:305–308, 1989.

3. Elias Koutsoupias and Christos H. Papadimitriou. On the greedy algorithm for
satisfiability. Inf. Process. Lett., 43:53–55, 1992.

4. Steve Minton, Mark D. Johnson, Andrew B. Philips, and Philip Laird. Minimiz-
ing conflicts: a heuristic repair method for constraint satisfaction and scheduling
problems. Artif. Intell., 58:161–205, 1992.

5. D. S. Mitrinovic. Analytic Inequalities. Springer Verlag, Heidelberg, 1970.
6. Bart Selman, Hector Levesque, and David Mitchell. A new method for solving

hard satisfiability problems. In Proc. Nat’l Conf. on Artif. Intell. (AAAI-92), pages
440–446, St Jose, CA, 1992.

7. Peter van Beek. On-line C-programs available at ftp.cs.ualberta.ca under direc-
tory /pub/ai/csp.

8. Peter van Beek and Rina Dechter. On the minimality and global consistency of
row-convex constraint networks. J. Assoc. Comput. Mach., 42(3):543–561, 1995.

9. Nobuhiro Yugami, Yuiko Ohta, and Hirotaka Hara. Improving repair-based con-
straint satisfaction methods by value propagation. In Proc. Nat’l Conf. on Artif.
Intell. (AAAI-94), Seattle, WA, 1994.

