Solving a Supply Chain Optimization Problem Collaboratively

Hoong Chuin Lau and Andrew Lim

School of Computing
National University of Singapore
3 Science Drive 2, Singapore 117543

Abstract

We propose a novel algorithmic framework to solve an
integrated planning and scheduling problem in supply
chain management. This problem involves the integra-
tion of an inventory management problem and the vehi-
cle routing problem with time windows, both of which
are known to be NP-hard. Under this framework, al-
gorithms that solve the underlying sub-problems col-
laborate rigorously yet in a computationally efficient
manner to arrive at a good solution. We will then
present two algorithms to solve the inventory man-
agement problem: a complete mathematical model
integrating integer programming with constraint pro-
gramming, and an incomplete algorithm based on tabu
search. We present experimental results based on ex-
tended Solomon benchmark vehicle routing problems.

Introduction

Supply chain optimization involves the integration of
decision-making processes to manage the production
and flow of products and services from the source to
the customers. An emerging industry trend in supply
chain management is the formation of logistics opera-
tors that provide a one-stop point-to-point service for
the entire distribution operation in the supply chain.
Under this system, retailers need not manage their own
inventory to ensure timely re-supply while the logistics
operator achieves economies of scale by being able to
co-ordinate deliveries to multiple retailers. Hence, a
system-wide optimization can be achieved through an
algorithmic integration of inventory and transportation.

More precisely, consider a distribution system with
multiple suppliers, capacitated warehouses, capacitated
retailers, identical capacitated vehicles and unit-sized
items. The items are to be transported from the sup-
pliers to the warehouses, and subsequently delivered to
the retailers by vehicles. Vehicles can combine deliveries
to multiple retailers, provided that the items are deliv-
ered within stipulated time windows. Given the retail-
ers’ time-varying demand forecast over a finite planning
horizon, the goal is to find a distribution plan so as to
minimize the total operating cost, which comprises the

Copyright © 2001, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

Qi Zhang Liu
Department of Decision Sciences
National University of Singapore

Lower Kent Ridge Road, Singapore 119260

inventory cost (for amounts exceeding demand), back-
logging cost (for amounts falling short of demand) and
transportation cost.

We call this problem the Inventory Routing Problem
with Time Windows (IRPTW). Clearly, IRPTW is a
complex problem, since it involves the integration of
two classical optimization problems: the dynamic ca-
pacitated lot-sizing problem and vehicle routing prob-
lem with time-windows. Both are proved to be NP-hard
even for very simple instances. (See Florian, Lenstra
and Rinnooy Kan (1980) and Savelsbergh (1986).)

Many inventory models have been proposed by the
OR community in the past. The one-warehouse multi-
retailers problem under constant demand has been ex-
tensively studied in the past few decades, and the struc-
ture of the (near) optimal policies under this system
is already well-understood. The reader may refer to
Graves, Kan and Zipkin (1993) for a comprehensive
review. ;From the Constraint Programming perspec-
tive, an interesting inventory management problem for
reusable resources has been recently investigated by
Caseau and Kokeny (1998).

As far as integrating inventory and transportation,
one of the earliest work in this area is by Federgruen
and Zipkin (1984) who considered a single-period IRP
with stochastic demands at the retailers’ end. Their
model aims to determine the optimal allocation of in-
ventory to retailers while minimizing routing and in-
ventory costs. This problem in itself already leads to a
huge mixed integer programming problem that can only
be solved by heuristics. Chan, Federgruen and Simchi-
Levi (1998) recently modelled a single-item, constant
demand distribution system and presented worst case
as well as probabilistic bounds for their models. Unfor-
tunately, due to the unrealistic assumption on demand,
it is doubtful that any of the asymptotically optimal
heuristic proposed will perform well for realistic prob-
lems with time-varying demand.

To our knowledge, a supply chain problem as ex-
tensive as IRPTW has not been carefully studied
in the literature. A notable exception is Carter et
al. (1996), who proposed a Lagrangean heuristic to
solve a single-supplier, single-warehouse IRPTW. Un-
fortunately, their approach cannot guarantee feasibility

(even if a solution exists), and the algorithm is sensitive
to the values of several parameters where there are no
good heuristics for setting them.

In this paper, we present a novel approach based
on decomposition into two sub-problems (distribution
and routing) plus an interface mechanism to allow the
two algorithms to collaborate in a master-slave fashion,
with the distribution algorithm (A1) driving the routing
algorithm (A2). Intuitively, the procedure is as follows.
Al will determine the flow amounts between the sup-
pliers, warehouse and the retailers so as to minimize
inventory and backlogging costs subject to warehouse
and retailers’ capacities. A2, based on the given flow
amounts (or customer demands, in Vehicle Routing ter-
minology), sequences the deliveries into routes so as to
minimize transportation cost, subject to vehicle capac-
ities and time windows. These routes in turn induce
a re-partitioning of the retailers for Al, and the pro-
cess is repeated. The novelty hinges on the definition
of a good interface between Al and A2 so as to ensure
convergence, since the objective functions are conflict-
ing when taken separately. (To reduce inventory and
backlogging, it is necessary to make more frequent de-
liveries, but this will increase the transportation cost).
To achieve this, we complicate Al with vehicle capacity
constraints and impose penalty for flow amounts that
have high aggregated transportation cost. This will be
explained in greater detail later.

We see several advantages of our approach. First,
from the planning and scheduling perspective, it offers
an efficient and readily implementable way to tackle
the intricacy of integrating two processes along a sup-
ply chain. Second, from the computational perspec-
tive, our framework is agent-oriented in the sense that
the algorithms are agents trying to generate an over-
all plan collaboratively while guarding their individual
interests. Finally, from the software engineering view-
point, it supports the paradigm of reusability and plug-
and-play in the sense that it allows either one of the
modules to be replaced without affecting the other. We
believe our approach can be adapted to provide decision
support for a host of integrated supply chain optimiza-
tion problems we face today.

Preliminaries

IRPTW is defined as, given the following input:
S: set of suppliers;

R: set of retailers;

J: set of items;

T: consecutive days in the planning period
{1727" '7”};

D;j¢: demand of retailer ¢ for item j on day ¢;
Qv: vehicle capacity;
Qw: warehouse storage capacity;
Q;: storage capacity of retailer 4;
W;: time window of retailer i

Cj: inventory holding cost per unit item j per
day at the warehouse;

Cj;: inventory holding cost per unit item j per
day at retailer ;

B;j: backlogging cost per unit item j per day at
retailer i;

T;r: transportation cost incurred by visiting re-
tailer 4 followed by k on the same route;

output the following:
(1) the distribution plan, which is denoted by:
xsj¢: integral flow amount of item j from supplier s
to the warehouse on day ¢; and
x;5¢: integral flow amount of item j from the warehouse
to retailer ¢ on day t¢; and

(2) the set of daily transportation routes ®, which
carry the flow amounts in (1) from the warehouse to
the retailers such that the sum of the following linear
costs is minimized: a) inventory cost at the warehouse
(Cj), b) inventory cost at the retailers (Cj;), ¢) back-
logging cost (B;;); and d) transportation cost from the
warehouse to the retailers (T).

We will use indices i, s, j, t for retailers, suppliers,
items and days respectively.

The distribution plan must obey the demands and
storage capacity constraints. We further assume that
items arriving at the warehouse on day ¢ can only be
delivered to retailers from day t+1 onwards. The trans-
portation routes must obey the standard routing, vehi-
cle capacities and time windows constraints. For nota-
tional convenience, we let ®; denote the set of routes
for day t. Each route is an ordered list of retailers rep-
resenting the delivery sequence performed by one par-
ticular vehicle per day.

Algorithmic Framework

Our algorithmic framework is an iterative approach be-
tween 2 sub-problems, namely the distribution prob-
lem (DP) and the vehicle routing problem with time-
windows (VRPTW).

DP is a constrained version of the dynamic lotsiz-
ing problem, since it has to iterate with VRPTW in
a manner that guarantees convergence. It receives a
set of transportation routes ® as part of the input,
and returns a solution that has to be consistent with
® (see definition below). Moreover, its objective func-
tion has an additional transportation cost component,
which serves as a heuristic in order to generate a dis-
tribution plan such that VRPTW will in turn generate
low-cost routes subsequently. In this way, the iterative
improvement will be sustainable and hence effective.

Definition 3.1. We say that a distribution plan x
is consistent with a set of transportation routes ®
iff ® can fulfill the transport needs of x without
violating any vehicle capacity constraints. More
specially, for all days ¢ € T and routes ¢ € Py,

Dieg 225 Tijt < Qv

VRPTW is a well-studied N P-hard problem. Several
variants of VRPTW have been studied, and many effi-
cient optimal as well as heuristic approaches have been

developed to solve them. For a comprehensive review
on these algorithms, see Desrosiers et al. (1995). Our
algorithm framework works for all kinds of VRPTW
and any algorithm solving VRPTW. For the conve-
nience of expression, we assume that there is no limit
on number of vehicles. However, each vehicle is charged
a high penalty so that the number of vehicles used will
be minimized. This is to avoid the difficulty of finding
feasible solutions for original VRPTW. (Even if there
is some limit on number of vehicles, as the iteration
between VRPTW and DP progresses, some retailers
won'’t be visited on certain day. Hence the problem in-
stances of VRPTW needed to be solve in the next iter-
ation will decrease. Then the limit may become easy to
meet.) With this assumption, we will assume the avail-
ability of one such efficient algorithm that returns to us
a near-optimal feasible solution when given a VRPTW
instance.

Let the algorithms for solving DP and VRPTW be
denoted Al and A2, and let the objective functions be
denoted f; and f,, respectively. Let lowestSoFar be
the objective value of the best DP solution found so far,
initialized to oo. Procedurally, we propose the follow-

ing:

Algorithm A:

(1) call A2 to generate an initial set of transportation

routes ¢

(2) call Al to generate a distribution plan z that is

consistent with ®

(3) if fi(z) = lowestSoFar return (z,®) and stop

else set lowestSoFar = f;(z)

(4) call A2 to generate a new set of routes ® based

on z s.t. fo(®') < fo®)

(5) if no such ® can be found, return (z, ®) and stop

(6) set ® = &'; goto Step (2)

Tt suffices to say now that, by optimality, Step (2) will
never return a solution whose objective value is worse
than the previous solution. In the next section, we will
present details of A1 and A2, and prove that the above
algorithm is correct and converges to a solution. More
precisely, we will prove that under this framework, the

overall objective function of IRPTW decreases mono-
tonically from one iteration to the next.

Integrated IP/CP Model

In this section, we present an exact IP/CP model for
solving DP.

Basically, we model DP as a multi-commodity flow
problem complicated by side constraints. This model
is a time-expanded 3-layer network for suppliers, ware-
house and retailers respectively. The warehouse node
and each retailer node are replicated n times for the
n-day planning period. Arcs between nodes of different
layers represent the flow amounts (suppliers to ware-
house, warehouse to retailers), while arcs between ad-
jacent replicated nodes represent either inventory car-

rying over to the next day, or backlogging from the
previous day. This model is complicated by the consis-
tency condition and additional transportation compo-
nent, which can be handled by adding artificial nodes
and concave costs on the incident arcs. The resulting
model is a fixed-charge (or concave-cost) layered net-
work.

In this section, we present a complete formulation
with redundant logic constraints to model interesting
relationships between inventory and demands. In the
next section, we will present a tabu search strategy with
strategic oscillation.

We explain further notations used.

Recall that by A2 (i.e. the VRPTW algorithm) out-
puts a set of routes ® to DP. The following variables
can be derived directly from &:

hire: 1 if retailer 7 is served by route r € ® on day t,
and 0 otherwise;

¢t cost of route r, defined as the sum of transporta-
tion costs Tj; over all adjacent retailers ¢ and k on route
T,

The following intermediate variables are used:

zij: integral amount of item j held in retailer ¢ on
day t;

Zjs: integral amount of item j held in the warehouse
on day t;

bij¢: integral amount of item j backlog for retailer i
on day t;

yr: (0,1) variable, whether route r € ® is used;

yi: (0,1) variable, whether retailer ¢ is served on day
t.

The integer programming formulation of DP is given
as follows:

min Y, >0 (¢ Ci+32; 2ijt Cij+3 2, bije Big) + 32, yrey

subject to the following linear constraints:

ZijtSQw,fortET 1)
ijijt+2jzijtSQia forie RandteT (2)
Zz’ Tijt < Zjts fOI‘j eJandteT (3)
25 Tsjt + Zjt = Zjey1 — 2 Tije = 0,
forjeJandt<n (4)

Tije + Zijt — Zijat+1 — bijt + bijer1 = Dije,
forie R,jeJandt<n (5

Tijn + Zijn — bz’jn = Dz’jn; forie R,jeJ (6
Ej Tijt < Y@, fori € Randt €T (7
(8

9

Yit Syr; fori e R,T‘ € @,tETWIth hirt =1
20225 2o Tijthirt < yrQv, forr € @

The objective function comprises 4 components: the
warehouse inventory cost, retailers’ inventory cost,
backlogging cost, and a specially designed function to
reflect transportation cost.

Constraint (1) is the warehouse capacity constraint;
(2) is the retailers’ capacity constraint; (3) means the
inventory in the warehouse must exceed daily delivery
requirement; (4) is the inventory balance constraint on
the warehouse; (5) & (6) are the inventory balance con-
straints on retailers; (7) defines whether each retailer

— N N —

is served on each day; (8) means a route is used iff at
least 1 retailer on this route is served; (9) is the ve-
hicle capacity constraints that enforce the consistency
condition on used routes.

The highlight of this model is that, when used co-
operatively with the VRPTW algorithm, guarantees
convergence. Particularly:

(a) The last component of the objective penalizes us-
age of expensive routes, i.e. it discourages the genera-
tion of a distribution plan that will incur a high trans-
portation cost.

(b) Constraint (9) introduces bundle (or knapsack)
constraints on the flows to enforce the consistency con-
dition (see Definition 3.1).

Obviously, the above model by itself is much harder
to solve than the standard multi-commodity flow prob-
lem, due to the following reasons:

(a) The last component of the objective introduces
disjunction (on y,.) into the problem; and

(b) Typically, a problem with tight bundle con-
straints takes much longer to solve than one of com-
parable size without, as shown in Ho and Loute (1983).
In fact, it has been shown in Garey and Johnson (1979)
that the min-cost network flow problem with bundle
constraints is NP-complete, even if all capacities are 1
and all bundles have 2 arcs.

One way to speed up search is to introduce redundant
constraints that will trigger constraint propagation. We
add the following logical (non-linear) constraints into
the IP formulation:

zijt >0=>y; =1,foralli € R,j € J and t € T(10)
(zije > 0) + (bije > 0) < 2,

forallie R,je JandteT (11)
Zijt > Ziji—1 € Tije > Dije + bije—1

forallie R,jeJandteT (12)
bijt > biji—1 € Tije + Zije—1 < Dije

forallicRjeJandteT (13)

Constraint (10) says retailer ¢ is served on day t only
if there is a positive flow to i that day. (11) is the
mutual-exclusivity constraint on inventory holding and
backlogging. (12) relates the rise and fall of retailers’ in-
ventories between 2 consecutive days with the demand-
supply situation. (13) does likewise for retailers’ back-
logs.

(10) plays the role in forcing early instantiation of the
variables y;;, which, by Constraint (8), cause an early
instantiation of the disjunctive variables y,. Similarly,
(11) to (13) serve to trigger constraint propagation on
the variables z;;; and b;;;, by Constraints (2) to (6),
cause an early instantiation of the variables x;;;.

The above formulation cannot be solved by tradi-
tional MIP solvers which do not support logic con-
straints, but can be efficiently solved by ILOG Plan-
ner (version 3.0) which integrates the ILOG Solver (a
constraint propagation search engine) and CPLEX MIP
solver.

Having presented enough details, we now proceed to
give the convergence proof of algorithm A.

Convergence Proof

Let A1l be an algorithm that solves DP (represented by
the above IP/CP model) to optimality, and A2 be any
algorithm that returns a feasible solution for a given
feasible VRPTW instance. We now prove the conver-
gence of Algorithm A.

Let fi(z,®) = Zj Et(zjtcj + ZZ 21 Csj +
Y bijeBij) + >, cq Yrcr denote the objective function
of DP and f2(®) = }_ 4 ¢, denote the objective func-
tion of VRPTW. The key argument is that between two
consecutive calls to A2, the objective value of f; on the
same distribution plan must decrease, shown as follows.

Write fi(z,®) as fi(z) + fi(®), where fi(z) =
25 2423t C + 325 2t Cig + 32, bije Bij) and fi(®) =
Y orca Yrcr- Split @ into &, = {r € ®ly, = 1} and
®, = {r € 2|y, = 0}. Then f1(®) = f1(P1) = f2(®1).
Suppose A2 generates a new set of routes 3 = <I>'1 U <I>12,
where ®; (resp. ®,) covers the retailers in ®; (resp.
®,). Since f2(®') < fo(®), it follows necessarily that
f2(®)) < fo(®1). Hence, f1(®) = fo(®;) < fo(®1) =
fi(®). This implies, fi(z,®) = fi(z) + fi(®) <
f1(x) + f1(®) = fi(z,®). We can therefore easily get
the following lemma.

Lemma 1 Given a feasible instance of IRPTW, Algo-
rithm A converges to a solution.

Tabu Search

In this section, we present a tabu search (TS) algorithm
for solving DP.

TS is a form of local search augmented with adaptive
memory. In TS, a move operator defines the neigh-
borhood N(s) of the current solution s. Starting with
an initial solution, TS proceeds iteratively by replac-
ing current solution s with a best neighbor s € N(s)
among all possible moves. One crucial feature of TS is
the notion of a tabu list, which is a short-term memory
that helps the search avoid cycling as well as escape
from local optimality. Another interesting feature is
the notion of strategic oscillation, which is a long-term
memory that achieves an effective interplay between in-
tensification and diversification of search. For a com-
prehensive description of the tabu search methodology,
the reader may refer to the text of Glover and Laguna
(1997). In the following, we assume that the reader is
familiar with standard TS terminology.

Move Operators

The key move operator is the transfer move, which
transfer flow amount from one flow variable to another
having the same retailer and item (i.e. transfer flow
across different days). We define two ways to determine
the units of amount to be transferred. The first is based
on a variable scaling strategy where each z;j5; is scaled

to some discrete units and at each iteration, only 1 unit
is transferred. The scaling factor differs over different
iterations. We begin with large factors (i.e. coarse-
granular flows) and gradually decrease them. When
no refinement can be made to obtain better solution,
the procedure reverts to a large factor and the process
repeats. The second is greedy feeding strategy, where
we transfer as many units as possible between two flow
variables without violating any capacity constraint.

Two other move operators are introduced to speed up
the search for better solutions and to escape from local
optimality: (1) the free move, which frees a retailer on
a certain day by transferring all items to other days via
the greedy feeding strategy; and (2) the empty move,
which empties a route by freeing all retailers on the
route via free moves.

Note that the moves can result in infeasible solutions
(see sub-section on Strategic Oscillation).

Tabu List

The tabu search procedure uses a tabu list to store the
time (i.e. iteration number) when tabu-active! status
of each variable ends. Let ©, = (73j¢), 3D-array of
size |R| - |J| - |T|, be the tabu list associated with the
variables z;;;. We define 7;;; as follows:

Tije = start;; + tenure;y,

where start;j; is the iteration number immediately be-
fore x;;; was changed, and tenure;;; is the tabu tenure,
which is a fraction of the size of ©,. Experimentally,
TS is effective when the tenure is a random value in
the range [|R||J||T'|/5, |R||J||T|/4] generated at itera-
tion start;j;.

The tabu-active status of other variables, such as re-
tailer coverage y, and route usage y;; are defined like-
wise.

Candidate List

In general, the neighborhood associated with each move
operator can be extremely large. For instance, the
transfer move neighborhood has |R||J||T||T — 1| ele-
ments and hence an exhaustive search of the entire
neighborhood at every iteration is too expensive. In-
stead, we achieve an effective tradeoff between the qual-
ity of the best move and the effort expended to find it
by determining a much-smaller candidate list for each
move operator via a greedy strategy.

For the transfer move, we maintain a sorted list of
relative inventory costs for each retailer ¢ and item j:

wij = (z Zijt + Zbijt)/ZDijt
t t t

and those variables z;;; whose corresponding costs are
within the top ¢% (where c is a pre-defined constant)
are considered for move.

When a variable is tabu-active, its value is not allowed
to change during that iteration.

In the same vein, for free moves and empty moves, we
consider retailers and routes (respectively) whose rela-
tive loads (defined below) are either very high or very
low. Low loads can potentially save cost, while high
loads may help escape from local optimality. Hence,
for free moves, we maintain a sorted list of weights for
each retailer ¢ on each day ¢:

wit =maz(Y_ wije/ Y Dijs, 1= Y wije/ Y, Dijs);
J 8,7 i 8,J
and for empty moves, we maintain:

wy = mam(Z(hirt-Z zijt) [Qv, I_Z(hirt'z zijt) [Qv);
3 it j

it

those retailers and routes whose corresponding weights
are within the top ¢% (where c is a pre-defined constant)
are considered for move.

Strategic Oscillation

Strategy oscillation operates in the tabu search pro-
cedure by orienting moves in and out of the feasible
region. A penalty is imposed on solutions that are in-
feasible, i.e. those which violate some constraints. For
each ¢ € R and j € J, let z;5 41 be amount of unful-
filled demand of retailer ¢ for item j, i.e.,

Tijmir = »_ Diji = > Tij.
t t

Let f(z) be a function that takes value z if z > 0, or
0 otherwise. Denote the amount of items exceeding the
capacity of retailer ¢ on day ¢ by

vie = FOQ_ mije — Qu);
J

the amount exceeding the capacity of the warehouse on
day t by

ve=fO_ 2t — Qw);
J

and the amount exceeding the capacity of a vehicle serv-
ing route r on day t by

Up = f(Z(h“-t : sz’jt) - QV)

it

We impose an infeasible solution with a penalty cost
directly proportional to the degree of constraint viola-
tion:

Py Zzwij,n+1 + PQ(Z Zvit + th + Zvr),
i 7 t t T

%

where P; < P, are pre-defined parameters. For the in-
tensification phase, they are set high values to reduce
the chance of reaching an infeasible solution, while for
the diversification phase, they are set lower values. Ex-
perimentally, our tabu search scheme is effective when
P = PR)2.

Problem || Initial | Final | Iterations | Time(sec)
R101 48929 | 46022 3 19
R102 47852 | 44412 3 20
R103 47915 | 43638 4 40
R104 45692 | 43184 3 35
R105 46646 | 43450 3 23
R106 44545 | 42651 3 35
R107 43050 | 42193 3 30
R108 41495 | 40403 2 14
R109 46376 | 44322 3 24
R110 48283 | 45283 3 25
R111 47564 | 44960 3 34
R112 46613 | 44408 3 38
C101 105608 | 90667 2 15
C102 146067 | 104105 3 34
C103 131945 | 106930 4 44
C104 153228 | 111894 3 30
C105 120002 | 106073 2 17
C106 128149 | 112500 3 34
C107 126839 | 105747 5 55
C108 128345 | 102260 5 59
C109 142795 | 108688 4 38

RC101 110842 | 106259 4 39
RC102 122789 | 110580 2 13
RC103 132193 | 110467 6 70
RC104 119634 | 102381 4 45
RC105 127889 | 117552 5 44
RC106 106396 | 99141 4 32
RC107 117967 | 109035 2 17
RC108 108388 | 105446 4 43

Table 1: Experimental Results (Based on Extended
Solomon’s Benchmarks)

Experimental Results

In this section, we report some preliminary experimen-
tal results. To our knowledge, no benchmark test data
available in the literature matches our problem exactly.
Hence, our experimental results are based on the test
data we generated as follows.

Since IRPTW contains VRPTW as a sub-problem,
we adopt the well-known Solomon benchmark problems
listed in Solomon (1987) to generate the locations and
time-windows of the retailers and warehouse (depot).
The demands of retailers are randomly generated in the
range [0,30]. The capacities of the vehicles, retailers and
warehouse are set as 200, 300 and 10000 respectively.
In this paper, we consider 3 types of items, 3 suppli-
ers, 1 warehouse and 50 retailers over a 5-day planning
horizon. In terms of cost parameters, the inventory cost
at the warehouse (C;), inventory cost of retailer (Cj;)
and backlogging cost (B;;) are set to be 1, 2 and 4 per
unit item per day respectively. The transportation cost
of each route is 5 times its total distance plus a fixed
vehicle usage cost of 50.

DP is implemented based on the Tabu Search de-
scribed above, and VRPTW is based on an efficient
engine developed inhouse. Note that our concern is not

the absolute quality of the solution, but rather, the im-
provement that can be derived when the two engines
collaborate (versus the conventional sequential pipeline
approach). Under our proposed collaborative frame-
work, any improvement made to the DP algorithm or
VRPTW algorithm will increase the overall solution
quality of IRPTW.

We run our program on a Pentium 300 PC and the
results are given as follows. In this table, we plot the
different test instances against: (1) the initial objec-
tive value, (2) final objective value, (3) total number of
iterations taken, and (4) CPU run time.

i From Table 1, we observe that the average number
of iterations to convergence is 3.38, and the average
percentage improvement in the objective value of the
final solution over the initial solution is 10.5%.

References

M. W. Carter, J. M. Farvolden, G. Laporte, J. Xu,
Solving an Integrated Logistics Problem Arising in
Grocery Distribution, INFOR, 34:4 (1996), 290-306.

L. M. Chan, A. Fedegruen and D. Simchi-Levi,
Probabilistic Analysis and Practical Algorithms for
Inventory-Routing Models, Operations Research, 46:1
(1998) 96-106.

Y. Caseau and T. Kokeny, An Inventory Management
Problem, Constraints, 3, (1998), 363-373.

J. Desrosiers, Y. Dumas, M. M. Solomon and F.
Soumis, Time Constrainted Routing and Scheduling,
in: M. O. Ball et al. eds., Handbooks in Operations
Research and Management Science Vol 8: Network
Routing, (North-Holland, 1995), 35-1309.

M. Florian, J. K. Lenstra, and A. H. G. Rinnooy Kan,
Deterministic Production Planning: Algorithm and
Complexity, Management Sc., 26:7 (1980), 669-679.

A. Fedegruen and P. Zipkin, An Efficient Algorithm
for Computing Optimal (s,S) Policies, Operations Re-
search, 22 (1984), 1268-1285.

S. C. Graves, A. H. G. Rinnooy Kan and P. H. Zip-
kin eds., Handbook in Operations Research and Man-

agement Science Vol 4: Logistics of Production and
Inventory, (North-Holland, 1993).

M. R. Garey and D. S. Johnson, Computers and In-
tractibility, (Freeman and Company, 1979).

F. Glover and M. Laguna, Tabu Search, (Kluwer Aca-
demic Publishers, 1997).

J. K. Ho and E. Loute, Computational Experience
with Advanced Decomposition of Decomposition Al-
gorithms, Math Programming, 27:3, (1983), 283-290.
M. W. P. Savelsbergh, Local Search for Routing Prob-
lems with Time Windows, Annals of Operations Re-
search, 4, (1986), 285-305.

M. M. Solomon, Algorithms for the Vehicle Rout-
ing and Scheduling Problem with Time Window Con-
straints, Operations Research, 35, 1987, 254-265.

