
A Multi-Agent Approach for Solving
Optimization Problems involving Expensive Resources

Hoong Chuin Lau
School of Computing

 National University of Singapore

lauhc@comp.nus.edu.sg

Hui Wang
Industrial and Systems Engineering Dept.

University of Southern California

wang.hui@usc.edu

ABSTRACT
In this paper, we propose a multi-agent approach for solving a
class of optimization problems involving expensive resources,
where monolithic local search schemes perform miserably. More
specifically, we study the class of bin-packing problems. Under
our proposed Fine-Grained Agent System scheme, rational agents
work both collaboratively and selfishly based on local search and
mimic physics-motivated systems. We apply our approach to a
generalization of bin-packing - the Inventory Routing Problem
with Time Windows - which is an important logistics problem,
and demonstrate the efficiency and effectiveness of our approach.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence] Coherence and
coordination, Intelligent agents, Multiagent systems

Keywords
Multi-agent system, optimization problems, expensive resources.

1. INTRODUCTION
Among optimization techniques, agent-based approaches
distinguish themselves by their strength in modeling the
problem’s distributed nature and expressing complex relationships
among entities within the system. In agents literature, resource
allocation problems have been modeled and solved as Distributed
Constraint Satisfaction Problem (DCSP) [1] and Distributed
Constraint Optimization Problem (DCOP) [2]. Unfortunately,
these approaches tend to produce weak results when extended to
solve optimization problems that have rich combinatorial
structures such as the bin-packing problem. One reason is perhaps
the underlying tacit representation of one variable per agent. One
method for handling multiple local variables per agent was
proposed in [3], where each agent first finds all solutions to its
local problem. By obtaining all solutions to local problems, the
given problem can then be re-formalized as a DCSP, in which
each agent has one local variable whose domain is a set of
obtained local solutions. In doing so, agents can apply the
algorithms that worked on single local variables. One drawback of

this method is that when a local problem becomes large and
complex, finding all the solutions of a local problem becomes
virtually impossible.

A key limitation in the above mentioned works is that they did not
consider the issue of resource optimization. The goal of DCOP is
to minimize the number of conflicting constraints rather than the
cost of resources utilized. Many real-world resource optimization
problems can be seen as generalizations of the bin-packing
problem, where each resource is capacitated and the goal is to
satisfy a given set of tasks using the minimum resources (bins). In
many cases, each resource is expensive and hence the power of an
algorithm lies in its ability to reduce the objective value by even a
very small value.

Much resource allocation research from the AI community makes
use of local search due to its computational efficiency. However,
local search alone may be ineffective on problems with where the
number of resources is small (scarce), and the goal is to minimize
that. A classical example is the Vehicle Routing Problem with
Time Windows where the primary objective function is to
minimize the number of vehicles. In this problem, local search
performs badly – because it is not easy (or even possible) to
predict whether the number of vehicles can be reduced with
successive local moves in the long term.

This paper looks at a computationally efficient multi-agent
scheme for the above-mentioned problem. More specifically, we
propose our Fine-Grained Agent System (FGAS) for solving a
class of bin-packing problems with the following basic features:

(1) the problem is to insert items into bins with fixed capacity;

(2) the primary objective of the problem is to minimize the
number of bins.

Obviously, vehicle routing problems fall into this category where
the routes can be modeled as bins while customers as items.
Obviously also in this case, the sequence of items within the bins
is important since it involves another objective of minimizing the
total travel distance.

What distinguishes our approach from previous multi-agent
approaches for optimization is that the FGAS agents are endowed
with more intelligence and stronger human behavior. The
problem’s objectives are expressed through the local objectives of
agents. In other words, each agent has its own objective, which
needs to be consistent with the objectives of the problem. Agent
actions are motivated by their objectives. A novelty of FGAS is
how the agents interpret the objective of minimizing the number
of bins within its local view. Another novelty of FGAS lies in
how FGAS evaluates a move - besides the change in the overall

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’05, March 13-17, 2005, Santa Fe, New Mexico, USA.
Copyright 2005 ACM 1-58113-964-0/05/0003…$5.00.

79

2005 ACM Symposium on Applied Computing

objective value, the evaluation also includes a long-term effect or
the future expectation of a move, which is computed by agents
based on its local information, as well as information provided by
constraint agents on the degree of satisfying or violating a
constraint.

Since FGAS has different types of agents, to minimize confusion,
we use the term subagent henceforth to refer to the agent in a
standard multi-agent system.

Due to the limitation of the local knowledge, subagents may hold
different opinions towards the best move, and this phenomenon is
termed as conflict in this paper. Conflicts can be resolved via
negotiation amongst agents. An example of cooperativeness-
based negotiation strategy was introduced in [4]. In their work,
the conflict is defined as the constraint violation caused by some
agents. When conflict occurs, agents will resolve it by selecting
values not only to satisfy the constraint but also maximize the
other agents’ flexibility of choosing values. In this way, they
achieve a potentially fast solution convergence. FGAS extends
their idea by estimating each move’s future expectation and
quantifying it into a value. The one with best future expectation
will be chosen as the next move. Experiments show that FGAS
are capable of converging to good solutions quickly.

This paper proceeds as follows. In section 2, we present the
FGAS model, followed by an in-depth discussion of the agents in
section 3. In section 4, we apply FGAS to a practical problem in
logistics and scheduling – Inventory Routing Problem with Time
Windows – which is a generalization of bin-packing, where
vehicles and warehouses are seen as bins. We conclude in section
5.

2. FGAS Model
The FGAS model is extended from the multi-agent optimization
system proposed by Tsui and Liu [5]. We define FGAS as a 4-
tuple <AA, CA, SA, L>, where AA is an arbitration agent, CA is a
set of constraint agents, SA is a set of subagents SA = {sA1,
sA2,…sAn}, L is the local behavior of agents.

2.1 Arbitration Agent AA
AA is a virtual agent in FGAS that serves as a global information
provider for the subagents. It behaves like the environment ε
defined in Tsui and Liu’s model ([5]).
Besides its role as a global environment information provider, AA
also provides the necessary centralized concurrency control for a
problem where certain kinds of constraints exist among
subagents. For example, if the change of subagent a affects the
local knowledge of subagent b, they cannot be computed
concurrently. Otherwise, b will be acting based on obsolete
information. Such agents are defined as dependent subagents. We
can handle this case by using AA monitoring the system and
preventing dependent subagent changing their states concurrently.
In this sense, FGAS is able to solve more problems by employing
AA.

2.2 Constraint Agents CA
We observe that the degree of violating or satisfying constraints is
very helpful information for subagents to estimate a change’s
potential effect on the solution quality. In FGAS, we introduce a
class of constraint agents to represent constraints. Constraint

agents work as consultants for subagents, providing information
to help subagents make decisions. As an example, recall that the
primary objective of the bin-packing problem is to minimize the
number of bins without exceeding the bin’s capacity. Consider the
scenario where the bin capacity is 200 and its load after accepting
some change becomes 5. This change will probably be accepted,
since it gives a good future expectation of reducing one bin. This
information of the bin’s load upon accepting a change is sent to
the subagents, when the associated constraint agents check the
degree of violation of the vehicle capacity constraints.

2.3 Subagents SA
Subagents form the backbone of FGAS. Each subagent represents
an independent entity in the system. In bin packing for example, a
subagent represents a “bin” with a prescribed capacity. To solve
an optimization problem, subagents adopt the local search
approach: a list of moves will be proposed when several
subagents encounter with each other. The outcome of a move may
change subagents’ internal state and improve the objective value.
When a subagent evaluates a move, the AA and corresponding
CAs will be consulted for information. Through agent
communication, negotiation and cooperation, subagents
collaborate to optimize the problem objective.
Subagents exhibit the following characteristics:
a. Cooperative
Subagents are generally cooperative in the sense that if a change
can lead to the improvement of the overall objective value, it will
be desired by all subagents involved. FGAS subagents are not
always cooperative in the sense that they will intelligently form
their own opinion of an action’s future expectation. They will
selfishly stick to their own opinion by rejecting an action that can
improve current objective value or accepting an action that can
degrade current objective value.
b. Selfish and Intelligent
Subagents are intelligent in the sense that they can compute a
move’s future expectation based on both 1) their local information
and 2) the information from a constraint agent. If a move has
good future expectation, the subagent will have strong desire to
accept it by sacrificing the current objective value. On the
contrary, if a move has an undesirable future expectation, the
subagent will selfishly reject it. The selfishness and intelligence
of subagents give us a fast solution convergence speed, as we can
see from the experiment results.
c. Negotiable
When subagents involved in one move have different opinions
towards it, a conflict is said to occur and negotiation kicks in. By
negotiation, we mean each subagent is willing to make
compromise to give up its own opinion. This can be seen as
another form of cooperativeness among subagents.

2.4 Agent Coordination
We now present the overall agent coordination. Our idea is
inspired from natural systems in which complex global structures
and behaviors result from local interactions among many simple
elements. In FGAS, we develop a physics-motivated coordination
mechanism [6] that treats subagents as randomly moving, locally
interacting entities. A similar scheme has already successfully
used in the area of coalition formation for large-scale electronic

80

markets in [11]. Note that in E-markets however, the agents can
randomly move and interact since they are not constrained by
constraint agents. In our scenario, there may exist external
constraints that limit concurrent computation. For example, if the
change of subagent a affects the local knowledge of subagent b,
then they cannot be computed concurrently. Otherwise, subagent
b may make wrong decision based on the obsolete information.
The AA is used to prevent the situation of error arising from
concurrent computation with inter-dependent agents.
The initialization of AA and CA are straight-forward. A standard
algorithm, such as a greedy algorithm, is used to generate an
initial solution. After initialization, subagents begin the process of
collaboration and negotiation. A subagent will interact with
another on a random basis following the physics-motivated
coordination mechanism of [6]. AA will be operating in the
background, ensuring the correctness of concurrent computation.
When subagents encounter each other, a move list will be
proposed based on the set of predefined moves. The moves will
be evaluated by each subagent based on the information both
locally available and obtained from the CAs. When a conflict
occurs, subagents begin negotiation with one another. The move
with best future expectation will be applied. The overall objective
value is recorded by AA. When a termination criterion is met, the
program ends.

3. Subagents
As discussed in the previous section, subagents are the most
important kind of agents in FGAS. In this section, we provide
further technical details. An FGAS subagent i is defined by a 6-
tuple Ai=<Stai, RCi, Oi, Xi, Di(m), Pi(m)>, where Stai is the state of
subagent i, RCi is the set of constraint agents related to subagent i,
Oi is the set of objectives of subagent, Xi is the variables
associated with the subagent, Di(m) measures how the subagent
desires a move m, and Pi(m) is the negotiation component of a
subagent.

3.1 State
We introduce a state for each subagent, defined as follows:
if Stai = active, sAi is able to change its state
if Stai = non-active, sAi is unable to change its state.
The responsibility for checking and informing the states of inter-
dependent subagents rests with the AA so as to ensure the
correctness of the system and at the same time maximize possible
concurrent computation without violating those constraints.

3.2 Objectives
Although the objective of a subagent is coherent with the global
objective, subagent may only see and direct its action based on its
local objective. In terms of bin-packing, a naive local objective
function is the objective of destroying itself by pushing out all the
items in a bin to other subagents. However, such approach is
impractical because when a bin (say a) transfers its items to others
(say b), the load of b will increase, which violates b’s objective
and result in an oscillating solution improvement process. Hence,
each subagent’s local objective of minimizing number of bins is
defined as Figure 1:

1) when a subagent detects that it stands a chance of emptying all
its items, it will encourage the change that transfers its items to
others;
2) when a route is almost full, the subagent has the desire to top
up its load, but without violating capacity constraint.
The second part of the local objective is based on the observation
that when the total demand is fixed, the fewer bins are used, the
more items one bin will have to contain.

3.3 Desire
The desire of subagents quantifies how much a subagent desires a
move according to its objective. Formally, a desire value is
defined as:

 Di(m)= α0*um+α1*ei(Xi,Ci)

where i is the index of the subagent; m is the move; α0 +α1=1; um
is the overall change in objective value by applying the move m;
ei(Xi,Ci) gives the future expectation function which is defined on
two variables: Xi being the local information, and Ci being the
information obtained from the related constraint agents.
Hence, a desire value consists of 2 parts:
1.Changes in the overall objective value. It represents the
cooperative aspect of a subagent. The more a move contributes to
the overall objective, the more a subagent desires the move.
2.Future expectation. This contains the information of future
expectation, which represents the selfishness and intelligence of a
subagent, derived from not only from local information but also
information from its related constraint agents.

3.4 Negotiation
When a list of moves is proposed, each subagent involved will
evaluate the moves in the list and select the best one. When they
have different opinions towards the best move, a conflict occurs.
In FGAS, agent negotiation is triggered to deal with the conflict
between subagents. By negotiation, we mean subagents will
compromise by giving up its own preference defined according to
the move’s contribution to overall objective and its future
expectation.
Mathematically, the best moves from each subagent will be re-
evaluated using the function p(m)=P(um,em), where um is the
immediate overall objective value change by applying the move
m, and em is the sum of the future expectation from each subagent
involved. The one with highest p(m) value will be chosen. This

Figure 1. A subagent’s objective of minimizing number of
bins

load

D
esire of taking in
item

s

empty full empty

D
esire of giving up

item
s

load

full

81

negotiation strategy can be seen as an extension from
cooperativeness-based strategies of [4] in the sense that a value
that maximizes the chance of getting a good solution stands a
higher chance to be chosen.

4. Application
We now apply FGAS to solve Inventory Routing Problem with
Time Windows (IRPTW), which is a generalization of bin-
packing, and more precisely, a generalization the well-known
Vehicle Routing Problem with Time Window. IRPTW has
important applications in logistics and transportation.

4.1 Problem Definition
Formally, IRPTW is defined as given:

C: set of customers;
T: consecutive days in the planning period {1,2,…,n};
dit: demand of customer i on day t;
qv: vehicle capacity;
qw: storage capacity of customer i;
Wit: time window of customer i on day t;
cih: inventory cost per unit item per day at customer i;
cib: backlog cost per unit item per day at customer

output the following:
1. a distribution plan, i.e. flow amount from the warehouse to

each customer i on day t; and
2. a set of daily transportation routes which carry the flow

amounts in 1. from the warehouse to the customers
such that the sum of the following linear costs is minimized: (a)
inventory cost at the warehouse and the customers, (b) backlog
cost, and (c) transportation cost from the warehouse to the
customers.
The distribution plan must obey the demands and storage capacity
constraints, and the transportation routes must obey the standard
routing, vehicle capacities and time windows constraints.
A solution instance S of IRPTW is viewed as a set of routes, each
serving a certain subset of customers at a sequence of particular
time points, i.e. S = {R1, R2, … Rn}, where Ri={(Ci1,qi1,ti1),
(Ci2,qi2,ti2), …, (Cin, qin, tin)}, qik and tik are the supply amount and
service time to customer k.

4.2 Modeling IRPTW using FGAS
Each subagent represents a route. In [7], it has been shown that
the above problem can be seen as a multi-objective optimization
problem that minimizes the transportation cost, inventory cost,
and the number of vehicles. Within a subagent’s local view, the
objectives of minimizing transportation and inventory costs
remain identical globally, while that of minimizing number of
vehicles is translated as follows: the lower the load a route
currently carries, the more it desires to empty its load; the higher
the load a route carries, the more it desires to take a higher load.
Hence, the future expectation function is defined in terms of how
near the resulting load is from the two extreme values (0 and full
capacity). As an example, suppose the full capacity is 1000, and a
route with an existing load of 400 is evaluating a move that
deletes from it a customer with demand of 300. The vehicle
capacity constraint agent, besides checking that the route is still
valid after the move, also sends to the subagent the remaining

load after applying the move, which is 100. Since 100 is near to
the extreme value 0 with respect to the range [0,1000], the future
expectation value associated with this move will be high,
according to the function shown in Figure 1.
The computation of inventory cost requires the information of all
customers whose inventory levels are affected. This information
is provided by the AA. Concurrent computation is limited by the
inventory cost as follows. If two subagents serve the same
customer in different days, they are dependent agents and cannot
be active simultaneously. By checking the state component of
each subagent involved, AA provides concurrency control.
We create 3 types of constraint agents that respectively handle the
time windows, vehicle capacity, and customer holding capacity
constraints. We introduce 2 local moves: the movement of items
between agents within the same day (which are the classical swap,
relocate and exchange moves for VRPTW, like [8]); and the
movement of items between subagents across days, which
follows the transfer move defined in [9].

4.3 Experiment Settings and Results
Following the test instance generation strategy of [7], our test
cases are generated based on Solomon test cases for VRPTW. The
planning period is 10 days. The vehicle capacity, locations and
time-windows of the customers and depot are those specified in
the Solomon instances. The demand dit of customer i for day t is
equal to the demand di of the Solomon instance, by partitioning
the value 10*di into 10 parts, i.e. di1, di2,…,di,10 randomly such
that dit is within the range [0.5*di, 1.5*dj]. The capacities of
consumers and warehouse are the vehicle capacity and infinity
respectively. As for cost coefficients, the inventory cost and
backlog cost for each customer are 1 and 2 respectively. The
transportation cost of each route is 10 times its total distance.
We conduct experiments on a PIII 1.13GHz machine. In Tables 1
and 2, we respectively compare solution quality and time
performances between the solutions of HASTS [10] and FGAS.
The D and V columns stand for total distance traveled and
number of vehicles used, respectively. The column TH=F refers to
the time needed for HASTS to reach the solution whose distance
traveled is as good as FGAS.
We observed that FGAS effectively uses less vehicles compared
with HASTS, especially for R and RC cases. However, the
distance traveled is not as good as HASTS (average gap is 6.1%
and the worst case is R206, by 10%). In terms of run time, FGAS
has a much faster solution convergence speed (8 times running
time on average for HASTS to reach the solution with the same
quality as FGAS). We also conduct experiments to demonstrate
the important contribution of agent selfishness and intelligence.
Without selfishness and intelligence, note that both the total
distance and number of vehicle is not good, which can be seen
clearly by comparing the columns DF vs DFw/oI, and VF vs VFw/oI
in Table 1.

5. Conclusion
We proposed FGAS for solving a class of bin-packing problems
with the aim towards solving real-world logistics problems
involving expensive resources such as vehicles and warehouses.
FGAS is able to overcome the shortcoming of local search by
predicting the long-term effects of local moves through the
computation of desire values in the context of multi-agent

82

coordination and negotiation. Experimental results show that
FGAS produces good solutions to IRPTW efficiently. They also
demonstrate the contribution of agent rationality and selfishness.
We believe FGAS can be adapted to solve other forms of bin-
packing problems successfully. Future work includes using FGAS
to solve online optimization problems, since the system is capable
of creating and destroying agents as the input changes over time.

6. REFERENCES

[1] Yokoo M., Durfee E. H., Ishida T., and Kuwabara K., 1998
Distributed constraint satisfaction problem: Formalization and
algorithms. IEEE Transactions on Data and Knowledge
Engineering, 673-685
[2] Modi P. J., Shen W., Tambe M., and Yokoo M., 2003 An
asynchronous complete method for distributed constraint
optimization. Proc. Autonomous Agents and Multiagent Systems,
161-168
[3] Armstrong, A. and E. Durfee, 1997 Dynamic Prioritization of
Complex Agents in Distributed Constraint Satisfaction Problems.
Proc. 15th International Joint Conference on Artificial
Intelligence, 620-625
[4] Jung H. and Tambe M., 2003 Performance Models for Large
Scale Multiagent Systems: Using Distributed POMDP Building
Blocks, Proc. Autonomous Agents and Multiagent Systems, 297-
304

[5] Tsui K. C. and Liu J., 2003 Multiagent Diffusion and
Distributed Optimization. Proc. Autonomous Agents and
Multiagent Systems, 169-176
[6] Shehory O., Kraus S, and Yadgar O., 1999 Emergent
cooperative goal satisfaction in large-scale automated-agent
systems. Artificial Intelligence, 110(1): 1-55
[7] Lau H. C., Ono H., and Liu Q. Z., 2002 Integrating Local
Search and Network Flow to Solve the Inventory Routing
Problem. Proc. 18th National Conf. on Artificial Intelligence
(AAAI), 9-14
[8] De Backer B., and Furnon V., 1997 Meta-heuristics in
Constraint Programming Experiments with Tabu Search on the
Vehicle Routing Problem, Proc. 2nd Metaheuristics International
Conference
[9] Lau H. C., Lim A., and Liu Q. Z., 2000 Solving a Supply
Chain Optimization Problem Collaboratively. Proc. 17th National
Conf. on Artificial Intelligence (AAAI), 780-785
[10] Lau H. C., Lim M. K., Wan W. C., Wang H. and Wu X.,
2003 Solving Multi-Objective Multi-Constrained Optimization
Problems using Hybrid Ants System and Tabu Search. Proc. 5th
Metaheuristics International Conference
[11] Lerman K. and Shehory O., 2000 Coalition formation for
largescale electronic markets. Proc. International Conference on
Multi-Agent Systems (ICMAS)

Test
Case DH VH DF VF DFw/oI VFw/oI

C201 52104 29 53654 29 69237 33
C202 53404 29 55756 29 77647 44
C203 53620 29 56901 29 79508 45
C204 54778 29 57401 28 81150 48
C205 51907 30 52827 30 56793 31
C206 50507 28 53685 28 80637 39
C207 51453 29 53935 29 79953 39
C208 52501 30 54052 30 71114 35
R201 62034 21 63538 19 72333 41
R202 56071 27 60593 20 71159 41
R203 53000 30 56550 23 72387 53
R204 49708 27 53139 19 67882 48
R205 53877 28 57088 20 70232 40
R206 52747 28 57958 20 71229 44
R207 51867 29 55271 22 71334 46
R208 49541 22 51764 19 69700 45
R209 52453 29 57455 21 68052 43
R210 52478 25 56630 21 66501 41
R211 50521 26 54781 21 68236 42
RC201 67765 28 72902 20 84361 52
RC202 67534 26 71149 21 83744 49
RC203 61722 31 66275 22 82398 47
RC204 60542 27 62255 21 86501 57
RC205 68507 27 70920 20 81217 47
RC206 64750 27 70242 22 82991 44
RC207 61677 28 66333 22 82392 49
RC208 58330 30 61994 23 78066 48
Avg 59446 75064

Table 1. Comparison of solution quality

Test
Case

TH
(sec)

TH=F
(sec)

TF
(sec) TH=F/TF

C201 2203.20 766.93 173.16 4.43
C202 1741.33 677.69 154.72 4.40
C203 2423.05 554.14 134.75 4.14
C204 1399.94 602.68 209.20 2.88
C205 2763.52 638.76 224.32 2.85
C206 2497.03 1077.41 277.94 3.89
C207 2539.15 685.26 287.33 2.39
C208 2278.86 790.36 199.67 3.97
R201 828.35 754.32 22.45 33.60
R202 2089.18 734.89 34.66 21.20
R203 2027.01 649.47 30.72 21.14
R204 2046.14 716.17 74.77 9.58
R205 1789.15 924.79 36.49 25.34
R206 1862.95 689.81 49.36 13.98
R207 2454.79 922.07 55.57 16.59
R208 1468.98 1000.01 114.28 8.77
R209 1918.24 602.47 39.42 15.28
R210 1812.79 828.31 48.05 17.24
R211 2821.55 652.79 72.43 9.01
RC201 2052.38 1108.78 24.65 44.98
RC202 1817.48 951.42 33.93 28.04
RC203 2581.78 1057.68 47.27 22.50
RC204 2656.73 1210.69 87.83 13.78
RC205 1221.23 852.59 26.42 32.27
RC206 2782.00 729.54 30.58 23.86
RC207 2058.50 1008.37 34.28 29.42
RC208 2848.84 758.07 66.82 11.35
Avg 2110.52 812.79 95.81 8.48

 Table 2. Run time Comparison

83

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

