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ABSTRACT 
In this paper, we propose a multi-agent approach for solving a 
class of optimization problems involving expensive resources, 
where monolithic local search schemes perform miserably. More 
specifically, we study the class of bin-packing problems. Under 
our proposed Fine-Grained Agent System scheme, rational agents 
work both collaboratively and selfishly based on local search and 
mimic physics-motivated systems. We apply our approach to a 
generalization of bin-packing - the Inventory Routing Problem 
with Time Windows - which is an important logistics problem, 
and demonstrate the efficiency and effectiveness of our approach. 

Categories and Subject Descriptors 
I.2.11 [Distributed Artificial Intelligence] Coherence and 
coordination, Intelligent agents, Multiagent systems  

Keywords 
Multi-agent system, optimization problems, expensive resources. 

1. INTRODUCTION 
Among optimization techniques, agent-based approaches 
distinguish themselves by their strength in modeling the 
problem’s distributed nature and expressing complex relationships 
among entities within the system. In agents literature, resource 
allocation problems have been modeled and solved as Distributed 
Constraint Satisfaction Problem (DCSP) [1] and Distributed 
Constraint Optimization Problem (DCOP) [2]. Unfortunately, 
these approaches tend to produce weak results when extended to 
solve optimization problems that have rich combinatorial 
structures such as the bin-packing problem. One reason is perhaps 
the underlying tacit representation of one variable per agent. One 
method for handling multiple local variables per agent was 
proposed in [3], where each agent first finds all solutions to its 
local problem. By obtaining all solutions to local problems, the 
given problem can then be re-formalized as a DCSP, in which 
each agent has one local variable whose domain is a set of 
obtained local solutions. In doing so, agents can apply the 
algorithms that worked on single local variables. One drawback of 

this method is that when a local problem becomes large and 
complex, finding all the solutions of a local problem becomes 
virtually impossible.  

A key limitation in the above mentioned works is that they did not 
consider the issue of resource optimization. The goal of DCOP is 
to minimize the number of conflicting constraints rather than the 
cost of resources utilized. Many real-world resource optimization 
problems can be seen as generalizations of the bin-packing 
problem, where each resource is capacitated and the goal is to 
satisfy a given set of tasks using the minimum resources (bins). In 
many cases, each resource is expensive and hence the power of an 
algorithm lies in its ability to reduce the objective value by even a 
very small value. 

Much resource allocation research from the AI community makes 
use of local search due to its computational efficiency. However, 
local search alone may be ineffective on problems with where the 
number of resources is small (scarce), and the goal is to minimize 
that. A classical example is the Vehicle Routing Problem with 
Time Windows where the primary objective function is to 
minimize the number of vehicles. In this problem, local search 
performs badly – because it is not easy (or even possible) to 
predict whether the number of vehicles can be reduced with 
successive local moves in the long term.   

This paper looks at a computationally efficient multi-agent 
scheme for the above-mentioned problem. More specifically, we 
propose our Fine-Grained Agent System (FGAS) for solving a 
class of bin-packing problems with the following basic features:  

(1) the problem is to insert items into bins with fixed capacity;  

(2) the primary objective of the problem is to minimize the 
number of bins.  

Obviously, vehicle routing problems fall into this category where 
the routes can be modeled as bins while customers as items. 
Obviously also in this case, the sequence of items within the bins 
is important since it involves another objective of minimizing the 
total travel distance. 

What distinguishes our approach from previous multi-agent 
approaches for optimization is that the FGAS agents are endowed 
with more intelligence and stronger human behavior. The 
problem’s objectives are expressed through the local objectives of 
agents. In other words, each agent has its own objective, which 
needs to be consistent with the objectives of the problem. Agent 
actions are motivated by their objectives. A novelty of FGAS is 
how the agents interpret the objective of minimizing the number 
of bins within its local view. Another novelty of FGAS lies in 
how FGAS evaluates a move - besides the change in the overall 
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objective value, the evaluation also includes a long-term effect or 
the future expectation of a move, which is computed by agents 
based on its local information, as well as information provided by 
constraint agents on the degree of satisfying or violating a 
constraint.  

Since FGAS has different types of agents, to minimize confusion, 
we use the term subagent henceforth to refer to the agent in a 
standard multi-agent system. 

Due to the limitation of the local knowledge, subagents may hold 
different opinions towards the best move, and this phenomenon is 
termed as conflict in this paper. Conflicts can be resolved via 
negotiation amongst agents. An example of cooperativeness-
based negotiation strategy was introduced in [4]. In their work, 
the conflict is defined as the constraint violation caused by some 
agents. When conflict occurs, agents will resolve it by selecting 
values not only to satisfy the constraint but also maximize the 
other agents’ flexibility of choosing values. In this way, they 
achieve a potentially fast solution convergence. FGAS extends 
their idea by estimating each move’s future expectation and 
quantifying it into a value. The one with best future expectation 
will be chosen as the next move. Experiments show that FGAS 
are capable of converging to good solutions quickly. 

This paper proceeds as follows. In section 2, we present the 
FGAS model, followed by an in-depth discussion of the agents in 
section 3. In section 4, we apply FGAS to a practical problem in 
logistics and scheduling – Inventory Routing Problem with Time 
Windows – which is a generalization of bin-packing, where 
vehicles and warehouses are seen as bins. We conclude in section 
5.  

2. FGAS Model 
The FGAS model is extended from the multi-agent optimization 
system proposed by Tsui and Liu [5]. We define FGAS as a 4-
tuple <AA, CA, SA, L>, where AA is an arbitration agent, CA is a 
set of constraint agents, SA is a set of subagents SA = {sA1, 
sA2,…sAn}, L is the local behavior of agents. 

2.1 Arbitration Agent AA 
AA is a virtual agent in FGAS that serves as a global information 
provider for the subagents. It behaves like the environment ε 
defined in Tsui and Liu’s model ([5]).  
Besides its role as a global environment information provider, AA 
also provides the necessary centralized concurrency control for a 
problem where certain kinds of constraints exist among 
subagents. For example, if the change of subagent a affects the 
local knowledge of subagent b, they cannot be computed 
concurrently. Otherwise, b will be acting based on obsolete 
information. Such agents are defined as dependent subagents. We 
can handle this case by using AA monitoring the system and 
preventing dependent subagent changing their states concurrently. 
In this sense, FGAS is able to solve more problems by employing 
AA. 

2.2 Constraint Agents CA 
We observe that the degree of violating or satisfying constraints is 
very helpful information for subagents to estimate a change’s 
potential effect on the solution quality. In FGAS, we introduce a 
class of constraint agents to represent constraints. Constraint 

agents work as consultants for subagents, providing information 
to help subagents make decisions.  As an example, recall that the 
primary objective of the bin-packing problem is to minimize the 
number of bins without exceeding the bin’s capacity. Consider the 
scenario where the bin capacity is 200 and its load after accepting 
some change becomes 5. This change will probably be accepted, 
since it gives a good future expectation of reducing one bin. This 
information of the bin’s load upon accepting a change is sent to 
the subagents, when the associated constraint agents check the 
degree of violation of the vehicle capacity constraints.  

2.3 Subagents SA  
Subagents form the backbone of FGAS. Each subagent represents 
an independent entity in the system. In bin packing for example, a 
subagent represents a “bin” with a prescribed capacity. To solve 
an optimization problem, subagents adopt the local search 
approach: a list of moves will be proposed when several 
subagents encounter with each other. The outcome of a move may 
change subagents’ internal state and improve the objective value. 
When a subagent evaluates a move, the AA and corresponding 
CAs will be consulted for information. Through agent 
communication, negotiation and cooperation, subagents 
collaborate to optimize the problem objective.  
Subagents exhibit the following characteristics: 
a. Cooperative 
Subagents are generally cooperative in the sense that if a change 
can lead to the improvement of the overall objective value, it will 
be desired by all subagents involved. FGAS subagents are not 
always cooperative in the sense that they will intelligently form 
their own opinion of an action’s future expectation. They will 
selfishly stick to their own opinion by rejecting an action that can 
improve current objective value or accepting an action that can 
degrade current objective value. 
b. Selfish and Intelligent 
Subagents are intelligent in the sense that they can compute a 
move’s future expectation based on both 1) their local information 
and 2) the information from a constraint agent. If a move has 
good future expectation, the subagent will have strong desire to 
accept it by sacrificing the current objective value. On the 
contrary, if a move has an undesirable future expectation, the 
subagent will selfishly reject it. The selfishness and intelligence 
of subagents give us a fast solution convergence speed, as we can 
see from the experiment results. 
c. Negotiable 
When subagents involved in one move have different opinions 
towards it, a conflict is said to occur and negotiation kicks in. By 
negotiation, we mean each subagent is willing to make 
compromise to give up its own opinion. This can be seen as 
another form of cooperativeness among subagents.  

2.4 Agent Coordination  
We now present the overall agent coordination. Our idea is 
inspired from natural systems in which complex global structures 
and behaviors result from local interactions among many simple 
elements. In FGAS, we develop a physics-motivated coordination 
mechanism [6] that treats subagents as randomly moving, locally 
interacting entities. A similar scheme has already successfully 
used in the area of coalition formation for large-scale electronic 

80



markets in [11]. Note that in E-markets however, the agents can 
randomly move and interact since they are not constrained by 
constraint agents. In our scenario, there may exist  external 
constraints that limit concurrent computation. For example, if the 
change of subagent a affects the local knowledge of subagent b, 
then they cannot be computed concurrently. Otherwise, subagent 
b may make wrong decision based on the obsolete information. 
The AA is used to prevent the situation of error arising from 
concurrent computation with inter-dependent agents. 
The initialization of AA and CA are straight-forward. A standard 
algorithm, such as a greedy algorithm, is used to generate an 
initial solution. After initialization, subagents begin the process of 
collaboration and negotiation. A subagent will interact with 
another on a random basis following the physics-motivated 
coordination mechanism of [6]. AA will be operating in the 
background, ensuring the correctness of concurrent computation. 
When subagents encounter each other, a move list will be 
proposed based on the set of predefined moves. The moves will 
be evaluated by each subagent based on the information both 
locally available and obtained from the CAs. When a conflict 
occurs, subagents begin negotiation with one another. The move 
with best future expectation will be applied. The overall objective 
value is recorded by AA. When a termination criterion is met, the 
program ends. 

3. Subagents 
As discussed in the previous section, subagents are the most 
important kind of agents in FGAS. In this section, we provide 
further technical details. An FGAS subagent i is defined by a 6-
tuple Ai=<Stai, RCi, Oi, Xi, Di(m), Pi(m)>, where Stai is the state of 
subagent i, RCi is the set of constraint agents related to subagent i, 
Oi is the set of objectives of subagent, Xi is the variables 
associated with the subagent, Di(m) measures how the subagent 
desires a move m, and Pi(m) is the negotiation component of a 
subagent. 

3.1 State 
We introduce a state for each subagent, defined as follows: 
if Stai = active, sAi is able to change its state 
if Stai = non-active, sAi is unable to change its state.  
The responsibility for checking and informing the states of inter-
dependent subagents rests with the AA so as to ensure the 
correctness of the system and at the same time maximize possible 
concurrent computation without violating those constraints. 

3.2 Objectives 
Although the objective of a subagent is coherent with the global 
objective, subagent may only see and direct its action based on its 
local objective. In terms of bin-packing, a naive local objective 
function is the objective of destroying itself by pushing out all the 
items in a bin to other subagents. However, such approach is 
impractical because when a bin (say a) transfers its items to others 
(say b), the load of b will increase, which violates b’s objective 
and result in an oscillating solution improvement process. Hence, 
each subagent’s local objective of minimizing number of bins is 
defined as Figure 1:  

1)  when a subagent detects that it stands a chance of emptying all 
its items, it will encourage the change that transfers its items to 
others;  
2)  when a route is almost full, the subagent has the desire to top 
up its load, but without violating capacity constraint.  
The second part of the local objective is based on the observation 
that when the total demand is fixed, the fewer bins are used, the 
more items one bin will have to contain.  
 
 
 
 
 
 
 
 
 
 
 

3.3 Desire  
The desire of subagents quantifies how much a subagent desires a 
move according to its objective. Formally, a desire value is 
defined as: 

 Di(m)= α0*um+α1*ei(Xi,Ci)  

where i is the index of the subagent; m is the move; α0 +α1=1; um 
is the overall change in objective value  by applying the move m; 
ei(Xi,Ci) gives the future expectation function which is defined on 
two variables: Xi being the local information, and Ci being the 
information obtained from the related constraint agents.   
Hence, a desire value consists of 2 parts: 
1.Changes in the overall objective value.  It represents the 
cooperative aspect of a subagent. The more a move contributes to 
the overall objective, the more a subagent desires the move. 
2.Future expectation. This contains the information of future 
expectation, which represents the selfishness and intelligence of a 
subagent, derived from not only from local information but also 
information from its related constraint agents. 

3.4 Negotiation  
When a list of moves is proposed, each subagent involved will 
evaluate the moves in the list and select the best one. When they 
have different opinions towards the best move, a conflict occurs. 
In FGAS, agent negotiation is triggered to deal with the conflict 
between subagents. By negotiation, we mean subagents will 
compromise by giving up its own preference defined according to 
the move’s contribution to overall objective and its future 
expectation.  
Mathematically, the best moves from each subagent will be re-
evaluated using the function p(m)=P(um,em), where um is the 
immediate overall objective value change by applying the move 
m, and em is the sum of the future expectation from each subagent 
involved. The one with highest p(m) value will be chosen. This 

Figure 1. A subagent’s objective of minimizing number of 
bins 
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negotiation strategy can be seen as an extension from 
cooperativeness-based strategies of [4] in the sense that a value 
that maximizes the chance of getting a good solution stands a 
higher chance to be chosen. 

4. Application 
We now apply FGAS to solve Inventory Routing Problem with 
Time Windows (IRPTW), which is a generalization of bin-
packing, and more precisely, a generalization the well-known 
Vehicle Routing Problem with Time Window. IRPTW has 
important applications in logistics and transportation.  

4.1 Problem Definition 
Formally, IRPTW is defined as given: 

C: set of customers; 
T: consecutive days in the planning period {1,2,…,n}; 
dit: demand of customer i on day t; 
qv: vehicle capacity; 
qw: storage capacity of customer i; 
Wit: time window of customer i on day t; 
cih: inventory cost per unit item per day at customer i; 
cib: backlog cost per unit item per day at customer  

output the following: 
1. a distribution plan, i.e. flow amount from the warehouse to 

each customer i on day t; and 
2. a set of daily transportation routes which carry the flow 

amounts in 1. from the warehouse to the customers  
such that the sum of the following linear costs is minimized: (a) 
inventory cost at the warehouse and the customers, (b) backlog 
cost, and (c) transportation cost from the warehouse to the  
customers.  
The distribution plan must obey the demands and storage capacity 
constraints, and the transportation routes must obey the standard 
routing, vehicle capacities and time windows constraints.   
A solution instance S of IRPTW is viewed as a set of routes, each 
serving a certain subset of customers at a sequence of particular 
time points, i.e. S = {R1, R2, … Rn}, where Ri={(Ci1,qi1,ti1), 
(Ci2,qi2,ti2), …, (Cin, qin, tin)}, qik and tik are the supply amount and 
service time to customer k.  

4.2 Modeling IRPTW using FGAS 
Each subagent represents a route. In [7], it has been shown that 
the above problem can be seen as a multi-objective optimization 
problem that minimizes the transportation cost, inventory cost, 
and the number of vehicles. Within a subagent’s local view, the 
objectives of minimizing transportation and inventory costs 
remain identical globally, while that of minimizing number of 
vehicles is translated as follows: the lower the load a route 
currently carries, the more it desires to empty its load; the higher 
the load a route carries, the more it desires to take a higher load. 
Hence, the future expectation function is defined in terms of how 
near the resulting load is from the two extreme values (0 and full 
capacity). As an example, suppose the full capacity is 1000, and a 
route with an existing load of 400 is evaluating a move that 
deletes from it a customer with demand of 300. The vehicle 
capacity constraint agent, besides checking that the route is still 
valid after the move, also sends to the subagent the remaining 

load after applying the move, which is 100. Since 100 is near to 
the extreme value 0 with respect to the range [0,1000], the future 
expectation value associated with this move will be high, 
according to the function shown in Figure 1. 
The computation of inventory cost requires the information of all 
customers whose inventory levels are affected. This information 
is provided by the AA. Concurrent computation is limited by the 
inventory cost as follows. If two subagents serve the same 
customer in different days, they are dependent agents and cannot 
be active simultaneously. By checking the state component of 
each subagent involved, AA provides concurrency control.  
We create 3 types of constraint agents that respectively handle the 
time windows, vehicle capacity, and customer holding capacity 
constraints. We introduce 2 local moves: the movement of items 
between agents within the same day (which are the classical swap, 
relocate and exchange moves for VRPTW, like [8]); and the 
movement of items between subagents across days, which 
follows the transfer move defined in [9]. 

4.3 Experiment Settings and Results 
Following the test instance generation strategy of [7], our test 
cases are generated based on Solomon test cases for VRPTW. The 
planning period is 10 days. The vehicle capacity, locations and 
time-windows of the customers and depot are those specified in 
the Solomon instances. The demand dit of customer i for day t is 
equal to the demand di of the Solomon instance, by partitioning 
the value 10*di into 10 parts, i.e. di1, di2,…,di,10 randomly such 
that dit is within the range [0.5*di, 1.5*dj]. The capacities of 
consumers and warehouse are the vehicle capacity and infinity 
respectively. As for cost coefficients, the inventory cost and 
backlog cost for each customer are 1 and 2 respectively. The 
transportation cost of each route is 10 times its total distance. 
We conduct experiments on a PIII 1.13GHz machine. In Tables 1 
and 2, we respectively compare solution quality and time 
performances between the solutions of HASTS [10] and FGAS. 
The D and V columns stand for total distance traveled and 
number of vehicles used, respectively. The column TH=F refers to 
the time needed for HASTS to reach the solution whose distance 
traveled is as good as FGAS.  
We observed that FGAS effectively uses less vehicles compared 
with HASTS, especially for R and RC cases. However, the 
distance traveled is not as good as HASTS (average gap is 6.1% 
and the worst case is R206, by 10%). In terms of run time, FGAS 
has a much faster solution convergence speed (8 times running 
time on average for HASTS to reach the solution with the same 
quality as FGAS). We also conduct experiments to demonstrate 
the important contribution of agent selfishness and intelligence. 
Without selfishness and intelligence, note that both the total 
distance and number of vehicle is not good, which can be seen 
clearly by comparing the columns DF vs DFw/oI, and VF vs VFw/oI 
in Table 1. 

5. Conclusion 
We proposed FGAS for solving a class of bin-packing problems 
with the aim towards solving real-world logistics problems 
involving expensive resources such as vehicles and warehouses. 
FGAS is able to overcome the shortcoming of local search by 
predicting the long-term effects of local moves through the 
computation of desire values in the context of multi-agent 
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coordination and negotiation. Experimental results show that 
FGAS produces good solutions to IRPTW efficiently. They also 
demonstrate the contribution of agent rationality and selfishness. 
We believe FGAS can be adapted to solve other forms of bin-
packing problems successfully. Future work includes using FGAS 
to solve online optimization problems, since the system is capable 
of creating and destroying agents as the input changes over time. 
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Test 
Case DH VH DF VF DFw/oI VFw/oI 

C201 52104 29 53654 29 69237 33 
C202 53404 29 55756 29 77647 44 
C203 53620 29 56901 29 79508 45 
C204 54778 29 57401 28 81150 48 
C205 51907 30 52827 30 56793 31 
C206 50507 28 53685 28 80637 39 
C207 51453 29 53935 29 79953 39 
C208 52501 30 54052 30 71114 35 
R201 62034 21 63538 19 72333 41 
R202 56071 27 60593 20 71159 41 
R203 53000 30 56550 23 72387 53 
R204 49708 27 53139 19 67882 48 
R205 53877 28 57088 20 70232 40 
R206 52747 28 57958 20 71229 44 
R207 51867 29 55271 22 71334 46 
R208 49541 22 51764 19 69700 45 
R209 52453 29 57455 21 68052 43 
R210 52478 25 56630 21 66501 41 
R211 50521 26 54781 21 68236 42 
RC201 67765 28 72902 20 84361 52 
RC202 67534 26 71149 21 83744 49 
RC203 61722 31 66275 22 82398 47 
RC204 60542 27 62255 21 86501 57 
RC205 68507 27 70920 20 81217 47 
RC206 64750 27 70242 22 82991 44 
RC207 61677 28 66333 22 82392 49 
RC208 58330 30 61994 23 78066 48 
Avg   59446  75064  

 

Table 1. Comparison of solution quality  

Test 
Case 

TH    
(sec) 

TH=F 
(sec) 

TF   
(sec) TH=F/TF 

C201 2203.20 766.93 173.16 4.43  
C202 1741.33 677.69 154.72 4.40  
C203 2423.05 554.14 134.75 4.14  
C204 1399.94 602.68 209.20 2.88  
C205 2763.52 638.76 224.32 2.85  
C206 2497.03 1077.41 277.94 3.89  
C207 2539.15 685.26 287.33 2.39  
C208 2278.86 790.36 199.67 3.97  
R201 828.35 754.32 22.45 33.60  
R202 2089.18 734.89 34.66 21.20  
R203 2027.01 649.47 30.72 21.14  
R204 2046.14 716.17 74.77 9.58  
R205 1789.15 924.79 36.49 25.34  
R206 1862.95 689.81 49.36 13.98  
R207 2454.79 922.07 55.57 16.59  
R208 1468.98 1000.01 114.28 8.77  
R209 1918.24 602.47 39.42 15.28  
R210 1812.79 828.31 48.05 17.24  
R211 2821.55 652.79 72.43 9.01  
RC201 2052.38 1108.78 24.65 44.98  
RC202 1817.48 951.42 33.93 28.04  
RC203 2581.78 1057.68 47.27 22.50  
RC204 2656.73 1210.69 87.83 13.78  
RC205 1221.23 852.59 26.42 32.27  
RC206 2782.00 729.54 30.58 23.86  
RC207 2058.50 1008.37 34.28 29.42  
RC208 2848.84 758.07 66.82 11.35  
Avg 2110.52 812.79 95.81 8.48 
 

            Table 2. Run time Comparison  
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