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Abstract

The popular models for repairable item inventory, both in the literature as well as practical applications, assume that
the demands for items are independent of the number of working systems. However this assumption can introduce a
serious underestimation of availability when the number of working systems is small, the failure rate is high or the
repair time is long. In this paper, we study a multi-echelon repairable item inventory system under the phenomenon
of passivation, i.e. serviceable items are passivated (‘‘switched off’’) upon system failure. This work is motivated by cor-
rective maintenance of high-cost technical equipment in the miltary. We propose an efficient approximation model to
compute time-varying availability. Experiments show that our analytical model agrees well with Monte Carlo
simulation.
� 2004 Published by Elsevier B.V.
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1. Introduction

Miltary systems such as aircrafts, ships or tanks are expensive and have complex structures that break
down because the underlying components (line replacable units or LRUs) are either worn out over time
and/or damaged during usage. One way to achieve high-operational readiness (or availability) is to acquire
enough spare parts to provide immediate replacement of damaged components. However, since spares are
costly, consume space and become obsolete over time, there is a need to tradeoff the cost of spares with
availability. Logistics planners in the miltary often need to plan for spares according to time-varying
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demands, since the utilization rate varies over time. This is known generally as the spares provisioning
problem for corrective maintenance.
In almost all existing literature, it is assumed that the demand for LRUs does not depend on the number

of working systems, which means that the LRUs within a system fail independently of each other. However
in many situations, it is observed that when an LRU fails, it will affect the demand of the other LRUs with-
in the same system. When a system fails, the failed LRU is transported to a repair shop and all the remain-
ing system LRUs are switched off to maximise component life, which implies that there is no demand of
those LRUs until the system has been restored. In other words, the system failure rate equals 0 during re-
pair (as explained in [4]). This phenomenon is called passivation.
While the assumption of independent demands produces good analytical results for most problems,

availability is seriously understated in scenarios when the number of working systems is small, the failure
rate high and repair time long. For example, in [13], EBO (expected backorder) is overestimated by 37.3%
without passivation, which cause the availability to be underestimated. In this paper, we study the effect of
passivation on system availability in these settings. We are concerned with a multi-echelon single-indenture
repairable item inventory model. In this paper, we use the term ‘‘technical system’’ to generally denote a
miltary equipment such as an aircraft, ship or tank.
This paper is organized as follows. In Section 2, we describe the logistic system structure (based on

assumptions that are also widely accepted in the literature) and the different demand scenarios. A literature
survey is provided in Section 3. In Section 4, we develop a mathematical model for the system in terms of a
single-item. In Section 5, we derive the equations which are used in Section 4 based on a dynamic form of
Palm�s theorem. Section 6 shows how to extend the analysis to multiple items so as to compute availability
under passivation of a system that comprises a number of items. In Section 7, some experiments are pre-
sented to illustrate the effect on availability when passivation is considered. Section 8 concludes the paper.
2. Preliminaries

2.1. Logistic support structure

The literature typically discusses a 2-echelon support structure for illustration except [14]. Although the
underlying principles are the same, the computational gap between 2-echelon and more than 2-echelons is
quite substantial. We hence show our approach using 3-echelon structure as an example (see Fig. 1). Our
approach can be extended easily to 4 echelons and beyond.
In the above example, one depot supports a number of repair sites called intermediate site which sup-

ports a number of units where the technical systems are deployed. All the technical systems are identical
and each technical system is composed of multiple LRUs that are connected in series.
Depot 

Intermediate
Site 

Intermediate
Site

Unit Unit Unit Unit Unit Unit 

Fig. 1. 3-Echelon structure.
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Depending on the nature of fault, the repair will occur on-site immediately if the fault can be rectified at
the unit. Otherwise it will be sent to the intermediate site and an order is placed by the unit to be supplied
from the intermediate site. If the LRU cannot be repaired at the intermediate site, it will be sent to the depot
and an order is placed by the intermediate site. At the unit, the failed LRU will be removed and replaced by
a good component should one be available, and the system becomes serviceable after a short delay, the time
to remove and replace the failed LRU. Otherwise, a backorder is generated and the failed system has to wait
for a spare part to arrive. When repair is completed, the working LRU will be sent to its originating support
site or unit to function as spares. In either case, the organization does so by supplying a serviceable item for
a failed item on a one-for-one basis. Underlying assumptions are presented as follows, most of which are
also accepted in the literature.
In this paper, we make the following assumptions:

1. There are infinite repair resources, i.e. a failed system can be repaired at once.
2. All LRUs are repairable at the depot, i.e. there is no irrepairable item.
3. Continuous resupply, i.e. an LRU can be sent up or down the echelon immediately at any time. The
transport time for each item between two sites is a constant.

4. FCFS (first come first serve) replenishment policy.
5. The remove-and-replace time for each item follows an exponential distribution.
6. The repair time for each item follows an exponential distribution.
7. No lateral supply, i.e. no supply or shipment across sites within the same echelon.

2.2. Demands

The item demand rate is determined by the mean time between failures MTBF (i.e. the expected value of
time duration between two consecutive failures) and the utilization rate UR (i.e. the usage rate of the item).
In the stationary-demand problem, we assume the utilization rate for each item is identical over the en-

tire time horizon. Given the number of technical systems deployed at unit Nsys, the following formula is
conventionally used to compute the demand rate DR:
DR ¼ UR

MTBF
�Nsys: ð1Þ
In the case of time-varying demand, we assume the utilization rate for each item is a time-dependent piece-
wise constant function, i.e. the demand for an LRU is given by a non-stationary Poisson process. Given the
time-varying utilization rate UR(t), the following formula is adopted to compute the time-varying demand
rate DR(t):
DRðtÞ ¼ URðtÞ
MTBF

�Nsys: ð2Þ
2.3. Passivation

Due to the effect of passivation, the actual demand rate is dependent on the number of working systems,
which changes over time. Hence, even for the stationary problem, the actual demand rate varies with time.
Henceforth in this paper, we will only consider the time-varying demands problem under passivation.
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Clearly, by setting UR(t) � UR for all t, we can easily handle stationary demands problem as well. Let
Nsys(t) be the number of available technical systems at time t, the actual time-varying demand rate is com-
puted as follows:
DRðtÞ ¼ URðtÞ
MTBF

�NsysðtÞ: ð3Þ
The computation of Nsys(t) will be discussed in Section 4.
Since the demand for an LRU is given by a time-dependent Poisson process, the objective function is

inevitably time-dependent. In this paper, we use the conventional EBO (expected backorder) and Ao (oper-
ational availability) as our objective functions. Instead of computing EBO and Ao under steady state
presented in the literature, we will compute EBO and Ao at each time point, thereby capturing the time-
varying behavior of the objective functions. Aside from this, we will show how to derive Ao from EBO
under the time-varying scenario.
The key result of this paper is an evaluation scheme that, given an allocation of spares at time 0 for each

site in the multi-echelon support structure, efficiently computes EBO and Ao at each time point over a given
time horizon, taking into consideration non-stationary demands and the effects of passivation.
3. Literature survey

METRIC (multi-echelon technique for recoverable item control) is a pioneer study for multi-echelon,
single-indenture and multi-repairable-item optimization models presented by Sherbrooke in [18]. In MET-
RIC, one central repair site (depot) supports multiple bases where aircrafts are allocated. It assumes that
there are infinite repair resources at the depot and the failures at bases are Poisson processes. Sherbrooke
provides an optimization procedure for METRIC by employing marginal analysis.
METRIC is only an approximation and during its implementation, it was found that expected number

of backorders was underestimated. In [8], Graves proposes an approach to use negative binomial distribu-
tion instead of Poisson by introducing variance. This is because the variance-to-mean ratio should be 1 un-
der Poisson distribution, but it is usually greater than 1 in practice. Graves produces some test cases and
finds his method achieves higher accuracy than METRIC.
The models with limited repair facility have been studied recently because the assumption of infinite

repair facility is unrealistic in industrial applications. In [6], Dı́az and Fu develop a multi-echelon, sin-
gle-indenture model, considering limited repair facilities (servers) at the depot where all failed LRUs are
repaired. They provide an aggregation–disaggregation approach, trying to calculate the first two moments
of per-class number in queue and repair under steady state. Unfortunately the variance of per-class number
in queue and repair is derived only for single-server multi-class queuing model due to analytical complexity.
In [1,2], Alfredsson proposes OPRAL, a model for optimum spare allocation as well as repair facility

allocation. This model is an offshoot of the commercial software OPUS developed by Systecon AB
[15,16]. In his model, it is assumed that each failed LRU requires only one repair resource. Different LRUs
may share a common repair resource. This assumption implies that LRUs can be partitioned into resource
groups, each of which contains the LRUs that require a particular resource. Therefore, the queue in a re-
source group at the repair facility is modelled as M/M/s so that the expected waiting time for an available
resource can be calculated.
As far as inventory systems on time-varying demands are concerned, there are two influential works. In

[12], Jung presents a methodology for a repairable inventory system with time-varying demand by imple-
menting discrete event simulation. In [21], Slay et al. propose an aircraft sustainability model that can
handle time-varying demand rates but infinite repair resources. The failure at the base is given by a non-
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stationary Poisson process whose mean value varies with time. It investigates the objective function and
spare allocation only at specific times of interest.
4. Mathematical model

4.1. Notations

In this section, we present a mathematical model for the system in terms of a single-item. This model is
applicable to each item of the system consisting of a number of items. In Section 6, we will show how to
compute the time-varying availability of the multi-item system under passivation by combining the per-
formances of all items it has. We adopt and extend the notations of those in [1]. As shown in Fig. 1, there
is one depot supporting multiple intermediate sites. We use 0 to denote the depot and index the interme-
diate sites by i, i = 1, . . ., I. Each intermediate site supports multiple units which are indexed by u,
u = 1, . . .,U. And we use Ui � f1; . . . ;Ug to denote the units supported by intermediate site i. Given any
two site i and j, we will use i = q(j) to denote the relationship that site i supports site j.
As done in [1], the types of LRU are indexed by k, k = 1, . . .,K. Other notations which are consistent

with those used in OPUS and Dyna-METRIC [9,10,15,16] include

Input variables

T the length of planning horizon;
MTBFk mean time between failures of LRU k;
TATU

uk mean repair time of LRU k at unit u;
TATI

ik mean repair time of LRU k at intermediate site i;
TAT0k mean repair time of LRU k at the depot;
TPTU

uk transport time of LRU k between unit u and its supporting intermediate site;
TPTI

ik transport time of LRU k between intermediate site i and the depot;
MTTRuk mean time to remove and replace of LRU k at unit u;
NRTSUuk the probability that LRU k cannot be repaired at unit u;
NRTSIik the probability that LRU k cannot be repaired at intermediate site i;
Nsysu number of technical systems deployed at unit u;
QPMk quantity of LRU k that technical system has;
UR(t) utilization rate at time t;
sUuk number of spares of LRU k at unit u;
sIik number of spares of LRU k at intermediate site i;
s0k number of spares of LRU k at the depot.

Intermediate variables

DRU
ukðtÞ incoming demand rate of LRU k at unit u at time t;

DRI
ikðtÞ incoming demand rate of LRU k at intermediate site i at time t;

DR0k(t) incoming demand rate of LRU k at the depot at time t;
kUukðtÞ effective demand rate of LRU k at unit u at time t;
kIikðtÞ effective demand rate of LRU k at intermediate site i at time t;
k0k(t) effective demand rate of LRU k at the depot at time t, which is equal to the incoming demand

rate at the depot in our case;
EBOU

ukðtÞ EBO of LRU k at unit u at time t;
EBOI

ikðtÞ EBO of LRU k at intermediate site i at time t;
EBO0k(t) EBO of LRU k at the depot at time t.
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Decision variable

Aou(t) operational availability of the systems at unit u at time t.

4.2. Time-varying EBO function

With considering passivation, we first divide the time horizon into n periods, which are indexed by t,
t = 1, . . .,n, so that (a) the utilization rate in each period is constant and (b) the number of ‘‘up’’ technical
systems can be regarded as constant, not varying as time in each period.
It is obvious that EBO(0) = 0 for all stock positions and Ao(0) = 100%. For t(P1), the incoming de-

mand rate of LRU k at unit u at time t with considering passivation is
DRU
ukðtÞ ¼

URðtÞ
MTBFk

�QPMk �Nsysu �Aouðt 	 1Þ: ð4Þ
So,
kU
ukðtÞ ¼ ð1	NRTSUukÞDRU

ukðtÞ; ð5Þ

DRI
ikðtÞ ¼

X
u2Ui

NRTSUuk �DRU
ukðtÞ; ð6Þ

kI
ikðtÞ ¼ ð1	NRTSIikÞDR

I
ikðtÞ; ð7Þ

k0kðtÞ ¼ DR0kðtÞ ¼
XI

i¼1
NRTSIik �DRI

ikðtÞ: ð8Þ
The following are intermediate variables for the purpose of computation.

PUukðtÞ random variable representing number of LRU k in the pipeline of unit u at time t;
PIikðtÞ random variable representing number of LRU k in the pipeline of intermediate site i at time t;
P0k(t) random variable representing number of LRU k in the pipeline of the depot at time t;
RPU

ukðtÞ random variable representing number of LRU k in the repair pipeline of unit u at time t;
RPI

ikðtÞ random variable representing number of LRU k in the repair pipeline of intermediate site i at
time t;

RP0k(t) random variable representing number of LRU k in the repair pipeline of the depot at time t;
OSPU

ukðtÞ random variable representing number of LRU k in the order-and-ship pipeline to unit u at time t;
OSPI

ikðtÞ random variable representing number of LRU k in the order-and-ship pipeline to intermediate
site i at time t;

f U
uk ðtÞ fraction of LRU k at unit u contributing to the EBO at its supporting site;
f I
ikðtÞ fraction of LRU k at intermediate site i contributing to the EBO at the depot.

In addition, we will use EBO(sjk) to denote EBO given stock level s when the mean pipeline is k. Fol-
lowing standard probability, this quantity is computed as

P
x>sðx	 sÞPrfX ¼ xg where X is the pipeline

random variable with mean E[X] = k.
Then we have
EBO0kðtÞ ¼ EBO0kðs0kjE½P0kðtÞ
Þ ¼
X
x>s0k

ðx	 s0kÞPrfP0kðtÞ ¼ xg; ð9Þ
where E[P0k(t)] = E[RP0k(t)].
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EBOI
ikðtÞ ¼ EBOI

ikðsIikjE½P
I
ikðtÞ
Þ; ð10Þ
where
E½PI
ikðtÞ
 ¼ E½RPI

ikðtÞ
 þ E½OSPI
ikðtÞ
 þ f I

ikðt 	 TPTI
ikÞEBO0kðt 	 TPTI

ikÞ; ð11Þ

EBOU
ukðtÞ ¼ EBOU

ukðsUukjE½PU
ukðtÞ
Þ; ð12Þ
where
E½PU
ukðtÞ
 ¼ E½RPU

ukðtÞ
 þ E½OSPU
ukðtÞ
 þ f U

uk ðt 	 TPTU
ukÞEBO

I
ikðt 	 TPTU

ukÞ: ð13Þ

In the following section, we will provide the details on how the above formulae can be computed and
implemented.
5. Derivation of intermediate variables

Under the assumption that the number of items in the pipeline follows a Poisson distribution, the ex-
pected number of demands in the pipeline at time t can be computed by a dynamic form of Palm�s theorem.
Carrillo [5] presents a generalization of Palm�s theorem by relaxing the input process and service time dis-
tribution assumptions.

Theorem 1 (Carrillo [5]). Suppose we have non-homogeneous Poisson input with intensity function k(t) P 0

for t P 0, k(t) = 0 otherwise, and non-stationary service distribution G. Then, the number of arrivals

undergoing service at time t has a Poisson distribution with mean
KðtÞ ¼
Z t

0

ð1	 Gðs; tÞÞkðsÞds; ð14Þ
where the random service time Y at time t has the distribution P[Y 6 y] = G(t, t + y).

From the assumption of constant transport time, it is easy to know that the number of LRUs in the
order-and-ship pipeline follows a Poisson distribution by Theorem 1 and we can get its mean value as
follows:
E½OSPI
ikðtÞ
 ¼

Z t

t	TPTI
ik

NRTSIik �DRI
ikðsÞds; ð15Þ

E½OSPU
ukðtÞ
 ¼

Z t

t	TPTU
uk

NRTSUuk �DRU
ukðsÞds: ð16Þ
According to the assumption that the transport time is constant whereas repair time is exponentially dis-
tributed, we have to consider the two processes as a whole to compute the expected pipelines. We use repair
pipeline to indicate the number of LRUs in retrograde process and repair service. Based on Theorem 1, we
assume the repair time X is exponentially distributed with mean 1/l = TAT and the transport time is L,
which is constant. So the service time is Y = X + L(Y P L) and the service distribution is
Gðs; tÞ ¼ PrfY 6 t 	 sg ¼ PrfX þ L 6 t 	 sg ¼ PrfX 6 t 	 s	 Lg ¼ 1	 e	lðt	s	LÞþ :
So
KðtÞ ¼
Z t

0

kðsÞe	lðt	s	LÞþ ds: ð17Þ
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When demand rate is constant i.e. k(t) � k, and t! 1 which is the scenario in METRIC, we can show the
result of mean pipeline is the same as METRIC as follows:
K ¼ lim
t!1

Z t

t	L
kdsþ lim

t!1

Z t	L

0

ke	lðt	s	LÞ ds ¼ kLþ kTAT ¼ kðLþ TATÞ:
Therefore according to the above conclusion, we can compute the expected number of LRUs in the repair
pipeline as follows:
E½RPU
ukðtÞ
 ¼

Z t

0

kU
ukðtÞe

	 1
TATU

uk

ðt	sÞ
ds; ð18Þ

E½RPI
ikðtÞ
 ¼

X
u2Ui

Z t

0

ð1	NRTSIikÞNRTS
U
ukDR

U
ukðsÞe

	 1
TATI

ik

ðt	s	TPTU
ukÞ

þ

ds; ð19Þ

E½RP0kðtÞ
 ¼
X
u

Z t

0

NRTSIqðuÞkNRTS
U
ukDR

U
ukðsÞe

	 1
TAT0k

ðt	s	TPTI
qðuÞk	TPT

U
ukÞ

þ
ds: ð20Þ
Now we will show how to distribute EBO at the supporting site to its supported sites. Since we assume FCFS
replenishment policy, the waiting time for an available spare from the supporting site of all supported sites
are the same. Therefore, we distribute EBO according to the proportion of demand rate. Given any two sites

i, j that i = q(j), we set fjkðtÞ ¼ NRTSjk�DRjkðtÞ
DRikðtÞ . Unfortunately, this direct approach is incorrect under passiva-

tion. This is because when an LRU fails, the whole technical system is down, which causes no demand of
other LRUs on it. Hence, we need not compute the demand due to this system. However, it still contributes
to the EBO since and as long as it is down. In order to compute the fraction, we introduce some variables.

KU
ukðtÞ incoming demand rate of LRU k at unit u at time t without passivation;

KI
ikðtÞ incoming demand rate of LRU k at intermediate site i at time t without passivation;

K0k(t) incoming demand rate of LRU k at the depot at time t without passivation.

We have
KU
ukðtÞ ¼

URuðtÞ
MTBFk

�QPMk �Nsysu; ð21Þ

KI
ikðtÞ ¼

X
u2Ui

NRTSUuk � KU
ukðtÞ; ð22Þ

K0kðtÞ ¼
XI

i¼1
NRTSIik � KI

ikðtÞ: ð23Þ
So, the fraction
f I
ikðtÞ ¼

NRTSIik � KI
ikðtÞ

K0kðtÞ
; ð24Þ

f U
uk ðtÞ ¼

NRTSUuk � KU
ukðtÞ

KI
qðuÞkðtÞ

: ð25Þ
At last, we can compute EBO based on the stock level according to Eqs. (9)–(13).
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6. Conversion of EBO into Ao

In [20], Sherbrooke puts forward a variety of availabilities and corresponding formulas. Operational
availability (Ao) is one of the most important availabilities, which is widely used in practice. In [20], the
formula used is:
Ao ¼ MTBF

MTBFþMTTR þWT
¼ 1

1þ MTTR
MTBF

þ EBO
: ð26Þ
The following is one variation of the formula:
Ao ¼ 1

1þ
P
k

EBOk
Nsys

þ UR
MTBFk

�QPMk �MTTRk

� � : ð27Þ
This formula suffers several limitations. First, we can only compute Ao under steady state by this formula.
We cannot compute Ao in the transient periods even though the demand is given by constant Poisson proc-
ess. In most cases such as ours, the demand is given by a non-stationary Poisson process, which may cause
the system never to converge to steady state. Secondly, we need to compute the waiting time. While it is well
known that the waiting time WT ¼ EBO

k by Little�s Law, it is not obvious how to compute waiting time un-
der the non-stationary demands case. Experiments show that it does not readily translate to WTðtÞ ¼ EBOðtÞ

kðtÞ .

In a recent paper [17], the authors provide a formula to compute Ao at time t based on an extension of [3].
Unfortunately their approach is very time-consuming.

6.1. Intuitive model

We first look at an intuitive model to compute Ao at any time under both stationary and non-stationary
demand cases. The Ao discussed in this section is always within a given unit so that the subscript u is omit-
ted. The proposed formula is a recursive formulation, defined as follows:
AoðtÞ ¼ 1

1þ
PK
k¼1

EBOkðtÞ
NsysðtÞ þ

URðtÞ
MTBFk

�QPMk �MTTRk

� � ; ð28Þ
where NsysðtÞ ¼ Nsys	
PK

k¼1EBOkðt 	 1Þ.
With this formulation, we can compute EBO and Ao at any unit at any time point t using values de-

rived in time point t 	 1. This means that we can implement the computation iteratively from one period
to the next. We will compare the results with those of simulation in the next section. Experimental results
show our approach yields solutions that match simulation results very well within short computational
time.

6.2. Proposed model

Although the intuitive model works well in general, it does not produce good results for the case when
the MTTR is large (see Fig. 4). In the following, we propose a revised model to better approximate
availability.
If the demand process is a simple Poisson process with mean k and the service time is exponentially dis-

tributed with mean 1/l, the time-varying availability is given by (see for example, [11])
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AðtÞ ¼ l
k þ l

þ Að0Þ 	 l
k þ l

� �
e	ðkþlÞt: ð29Þ
By setting l = 1/MTTR, the availability is maintenance availability (Am) [20]. We know k ¼ UR
MTBF=QPM

, so
we can compute maintenance availability at any time by Eq. (29). For the scenario that demand is given by
a non-stationary Poisson process, we can show
Amðt2Þ ¼
l

kðt2Þ þ l
þ Amðt1Þ 	

l
kðt2Þ þ l

� �
e	ðkðt2ÞþlÞðt2	t1Þ; ð30Þ
where kðt2Þ ¼ URðt2Þ
MTBF=QPM

and Am(0) = 100%.

With this formulation, we can compute Am at any time point iteratively from one period to the next.
According to [20], the operational availability can be computed as the product of supply availability (As)

and maintenance availability (Am) where
Am ¼ 1

1þ UR
MTBF=QPM

�MTTR
: ð31Þ
We notice UR
MTBF=QPM

�MTTR is just the right part of the denominator of Eq. (28). Replacing it with 1
Am

	 1,
we can get the formula to compute operational availability at any time for both small MTTR and large
MTTR under both stationary and non-stationary demand cases. The formula is defined as follows:
AoðtÞ ¼ 1

1þ
PK
k¼1

EBOkðtÞ
NsysðtÞ þ 1

AmkðtÞ 	 1
� � ; ð32Þ
where Amk(t) can be computed according to Eq. (30). Experiment (see Fig. 5) shows our approach matches
simulation results well.
7. Experimental results

In our experiments, we consider a multi-echelon problem where each technical system comprises more
than 50 LRUs. The following two sets of experiments have been conducted:

1. Steady-state Ao computation given a single-spares allocation against METRIC model [16].
2. Time-varying demands against Monte-Carlo simulation [7].

The experiments were conducted on a Pentium III 1.2 GHz machine with 512 MB RAM. In all simu-
lation models, we set the number of replications to be 1000 which is a fairly standard practice in simulation
experimentation.

7.1. Steady-state Ao without passivation

First, we verify that our model also works under steady state without passivation. In these experiments,
we consider a 5-system problem and compute their operational availability under steady state given a fixed
spare allocation. We compare the results against the results obtained by METRIC by setting the probability
distribution of the pipeline to be Poisson. The average run time per test case is 0.16 s.
The following tables give a summary of the results.
From Tables 1 and 2, we observe that our results are exactly the same as METRIC.



Table 1
Our result vs. METRIC (zero spare allocation)

Station Ao-METRIC (%) Ao-our model (%) Error

System A 16.75 16.75 No error
System B 16.75 16.75
System C 16.75 16.75
System D 16.75 16.75
System E 16.86 16.86

Table 2
Our result vs. METRIC (spare allocation 1)

Station Ao-METRIC (%) Ao-our model (%) Error

System A 61.08 61.08 No error
System B 61.12 61.12
System C 61.12 61.12
System D 61.85 61.85
System E 55.08 55.08
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7.2. Ao under constant UR with passivation

Next, by using the test cases given in the previous section, we compute the time-varying availability with
passivation. Since the METRIC model can only compute Ao under steady state without passivation, we
benchmark our results instead with reliable simulation results. 1 The following table and chart give a sum-
mary of the results.
Fig. 2 shows that our results match simulation results very well within acceptable statistical errors. The

Ao is about 72.85% when it goes into steady state under both simulation and our model, wheareas Ao un-
der METRIC without passivation is 55.08%. From Table 3, we can find the availability is underestimated
by about 20% for all systems without considering passivation.
We make a remark here on the choice of first-order method over second-order method. As discussed in

[6], [8] and [20], first-order method (such as METRIC), which assumes that the number of items in the pipe-
line follows Poisson distribution, usually underestimates EBO (or overestimates Ao). Hence, second-order
method (such as VARI-METRIC), based on negative binomial distribution, is used instead of Poisson dis-
tribution. However, from the table and figure shown above, we observe that when passivation is considered,
the first-order method itself actually underestimates Ao instead of overestimating it. Moreover, the second-
order method underestimates Ao more than the first-order method! In other words, we believe that the first-
order method will generate better solutions than the second-order.

7.3. Time-varying demands

In this section, we verify the accuracy of modeling the number of items in the pipeline as a time-depend-
ent Poisson distribution. In doing so, we effectively rule out the need for second-order approximation as
proposed in [6], [8] and [19].
1 The simulation results are obtained via a simulation software developed in-house at the Singapore Ministry of Defense which has
been verified and adopted for use there.



Fig. 2. The effect of passivation (System E given spare allocation 1).

Table 3
Ao with passivation vs. without passivation (spare allocation 1)

Station Ao–passivation (%) Ao–no passivation (%) Error (%)

System A 76.50 61.08 20.16
System B 76.56 61.12 20.17
System C 76.56 61.12 20.17
System D 76.72 61.85 19.3
System E 72.85 55.08 24.39

12 H.C. Lau et al. / European Journal of Operational Research xxx (2004) xxx–xxx

ARTICLE IN PRESS
In these experiments, we run the test cases with time-varying utilization rate (UR) and compare the re-
sults (Ao) against simulation results. The utilization rate is given as follows for all systems at all units: (time
0–1500), 0.08 (time 1500–2000), 0.6 (time 2000–2500), 0.3333 (time 2500–3000), 0.5 (time 3000–3500) and
0.25 (time 3500–4000) and the following chart gives a summary of the results.
From Fig. 3 we can see that our results match those produced by simulation with less than 0.1% absolute

error on average. We also ran the test cases with other spare allocations and achieved results that match
simulation results very well.
Fig. 3. Our result vs. simulation (time-varying Ao at unit).
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7.4. The effect of passivation over varying availabilities

Next, we obtain some results using the previous test cases to study the effect of passivation over a range
of availability values. The results are shown in Table 4.
From Table 4, we observe that (1) the model without passivation always underestimates availability; and

(2) the effect of passivation (i.e. the absolute value of relative error) will increase to a certain peak and then
decrease as availability increases. The phenomenon can be explained as follows. As discussed before, avail-
ability is seriously underestimated when the number of working systems is small, the failure rate is high
and/or the repair time is long. Hence, when the availability is high such as 95.21%, the number of working
systems can be regarded as large (since the down systems can be restored quickly with enough spares) and
hence the effect of passivation is not keenly felt. On the opposite extreme, when availability is low such as
16.78%, the spares are equal or near to zero, thus mitigating the effects of passivation. In all other cases, the
number of working systems varies frequently as time and hence the effect of passivation is significantly felt.
We also measure the effect of passivation as parameters using the examples cited in [13]. Table 5 gives a

summary of the results.
From Table 5, we observe that compared with the base case (Test 1), the effect of passivation will be

large when the number of system is small (Test 2), the availability is low with few spares (Test 3), the repair
time is long (Tests 5 & 6), and the failure rate is high (Test 8). Furthermore, we also notice that when the
spares are zero, the effect of passivation is trivial (Tests 4 & 7).

7.5. The effect of large MTTR

Finally, we run test cases with large MTTR and compare results against simulation. In this case, MTTR
is set to be 300 hour while the MTBF is 500. There are infinite spares and utilization rate varies with time at
Table 4
The effect of passivation as Ao

Ao–passivation (%) Ao–no passivation (%) Error (%)

16.78 16.76 	0.12
27.84 25.13 	9.73
38.85 35.90 	7.59
57.51 45.50 	20.88
65.02 56.09 	13.73
70.73 65.58 	7.28
79.60 75.47 	5.19
87.86 85.94 	2.19
95.21 95.03 	0.19

Table 5
The effect of passivation as parameters

Test MTBF TAT Nsys ORG DSU Ao–passivation (%) Ao–no passivation (%) Error (%)

1 40 30 2 0 3 70.41 65.14 	7.48
2 40 30 10 0 3 56.58 54.79 	3.16
3 40 30 2 1 6 94.95 94.20 	0.79
4 40 30 2 0 0 52.63 52.63 	0.00
5 40 7 2 0 3 86.47 86.28 	0.22
6 40 100 2 0 3 37.58 30.53 	18.76
7 40 100 2 0 0 27.40 27.40 	0.00
8 640 30 2 0 3 99.06 99.06 	0.00



Fig. 4. Large MTTR by Eq. (28).

Fig. 5. Large MTTR by Eq. (32).
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the unit as follows: 0.75 (time 0–500), 0 (time 500–1000), 0.5 (time 1000–1250), 1 (time 1250–1700) and 0.3
(time 1700–2000).
Fig. 4 shows that we cannot expect to obtain accurate results by applying Eq. (28). This is due to the

effect of time-varying demands. On the other hand, by using the proposed Eq. (32), we overcome this prob-
lem and obtain accurate results that match simulation results very well as shown in Fig. 5. We also ran
other test cases under other spare allocations and achieved accurate results as well.
8. Conclusion and future work

In this paper, we considered a multi-echelon single-indenture repairable item inventory system for tech-
nical corrective maintenance under passivation. We proposed an analytical approach to accurately compute
time-varying EBO and operational availability. Our model is particularly relevant in the context of fast
changing business/operating environment, where the assumption of constant demand-rate for inventory
planning and optimization is no longer realistic. Experiments show that our analytical model is efficient
and agrees well with Monte Carlo simulation.
In our work, we assume infinite repair resources such that failed systems can be repaired at once. We

note in real-life that repair resources are not infinite since they are costly and consume space. What is chal-
lenging as future work is to relax the assumption of infinite repair resources. In practice we also notice fail-
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ures sometimes arrive at units and the malfunctioning items are shipped from units to the maintenance de-
pot, not individually, but in batches. Thus another interesting research is to handle this.
In our model, MTBF is assumed to be an item�s inherent attribute, which is constant over the compo-

nent�s lifespan. We note in real-life that since items will become obsolete or worn-out over time, the prob-
ability of failure will be increasing. A natural extension is to hence apply our method to model the effect of
wear-out.
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