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Abstract

In this paper we consider a stochastic-demand periodic-review inventory model with sudden obsolescence. We

characterize the structure of the optimal policy and propose a dynamic programming algorithm for computing its

parameters. We then utilize this algorithm to approximate the solution to the continuous-review sudden obsolescence

problem with general obsolescence distribution. We prove convergence of our approximation scheme, and demonstrate

it numerically against known closed-form solutions of special cases.

� 2003 Published by Elsevier B.V.
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1. Introduction

The decision to hold inventory always incurs some kind of investment and the lost of money such as the

inventory holding cost and the sudden obsolescence cost etc. The sudden obsolescence of the commodity
makes the held inventory useless. Brown et al. (1964) point that ‘‘obsolescence may occur for a particular

item, because the function served by that item is no longer required, because units are replaced by a suitable

item which performs similar or identical functions or because of a program of systematic replacement by a

substitute item.’’ Obsolescence will result in a partial or total loss of value of the inventory on hand. In this

paper we only treat the case of sudden obsolescence, which means that the items held in inventory lose all

value at once and there is no salvage value.

In the literature there are many examples about the obsolescence phenomenon such as the spare parts

management for military aircraft in Hadley and Whitin (1963), the fate of Swiss watches, music records,
and breast implants in Joglekar and Lee (1993). Recently, some researchers study some new examples about
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the obsolescence issue in the inventory management such as the one in David et al. (1997), a central
mapping unit that stocks military maps may face obsolescence when unforeseeable changes such as the

redeployment of missiles occurs. Since the maps are expensive to manufacture and stock, it is desirable to

determine optimal lot sizes to minimize the expected average total cost. Products which are subject to rapid

changes in fashion or competition due to technological changes are particularly vulnerable to a sudden

collapse of demand. For example, successive technological changes such as the computer market are fre-

quent nowadays and might render existing stocks obsolete.

Song and Zipkin (1996) use an inventory-control model to address the obsolescence effect in the in-

ventory management. Their model incorporates a Markovian sub-model to describe the uncertain events
leading to obsolescence. Optimal stocking decisions must consider the effect of obsolescence. The tradi-

tional approach to the obsolescence is to add a cost component to the holding cost in the lot-sizing model.

This approach is suggested by Naddor (1966), Tersine (1988), Masters (1991), Silver et al. (1998), and

Cobbaert and van Oudheusden (1996), among others. On the other hand, Hadley and Whitin (1963) do

not agree on this approach. They argue that it is much more unrealistic to attempt to include obsolescence

costs in the carrying charge. As obsolescence costs incurs only at a single point in time and the holding

cost incurs over a certain time interval, these two kinds of costs are quite different from each other. When

obsolescence is an important consideration in the inventory management, an exact mathematical model
should be used.

Recently, some research works have been done to handle the obsolescence cost exactly such as Joglekar

and Lee (1993), David and Mehrez (1995), and David et al. (1997) for a continuous-review model under the

average cost criterion. Masters (1991) studies the EOQ model with an exponential obsolescent distribution,

he finds that the traditional approach of adding a component cost to the holding cost is appropriate. Both

Joglekar and Lee (1993) and David and Mehrez (1995) provide an exact formulation for the same model.

Joglekar and Lee (1993) find that the estimation error of the approximation approach of Masters (1991) is

significant in some situations. Van Delft and Vial (1996) study the same model by using the discounted cost
criterion. But they only can solve some special cases of the obsolescent distributions. To our knowledge,

there is no efficient computational approach for solving the continuous-review model under a general

obsolescent distribution.

There are some periodic-review models with obsolescence in the literature, such as Hadley and Whitin

(1962), Brown et al. (1964), and Pierskalla (1969). All these research works except Pierskalla (1969) only

present periodic-review models. Pierskalla (1969) considers both the loss of excess demand and the

backlogging of excess demand in the case of the zero fixed setup cost for each replenishment. The author

shows that the base stock policy is optimal and some characteristics of the model are provided. In the case
of positive fixed setup cost, the author merely mentions that the optimal policy is ðs; SÞ policy without any

proof. No efficient algorithm is provided for the computation of the parameters of the optimal ðs; SÞ
policy.

In this paper, we first characterize the structure of the optimal policy for a stochastic periodic-review

model with sudden obsolescence. Then a dynamic programming algorithm is developed for computing the

parameters of this policy. Next, we utilize this algorithm to provide an approximate solution-scheme to the

deterministic demand, EOQ-like, continuous-review sudden obsolescence problem with general obsoles-

cence distribution, and prove its convergence. As a benchmark to our approach, we compare it numerically
against special cases of closed-form solutions of the deterministic-demand problem that are available in the

above sources.

The remainder of this paper is organized as follows. In Section 2, we present a stochastic periodic-review

inventory model with sudden obsolescence. Then, we characterize the structure of the optimal policy and a

dynamic programming algorithm is provided for computing the parameters of this policy. In Section 3, we

present a discrete-time approximation scheme for a continuous-review model. Some numerical results based

on this approach are reported in Section 4. Section 5 concludes the paper.
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2. The periodic-review model and a solution algorithm

In the following, we first present a stochastic periodic-review inventory model with sudden obsolescence.

Then a dynamic programming algorithm is provided for computing the optimal policy.

Suppose that the planning horizon ½0;H � is finite and it is equally divided into T periods. The discrete

demand which happens at the beginning of period j is a random variable nj. We assume that all nj
ð16 j6 T Þ are i.i.d. and bounded by a constant integer D. We denote Prðnj ¼ dÞ by pd for 06 d 6D.

The obsolescence point is at the end point of some period. The probability of obsolescence at tj, the end
point of period j, is denoted by qj ð16 j6 T Þ, hence

PT
j¼1 qj ¼ 1. Without loss of generality, we assume

t0 ¼ 0, q0 ¼ 0, and qT > 0. Let QðjÞ ¼
Pj

l¼0 ql be the cumulative distribution of obsolescence and

QðjÞ ¼ 1� QðjÞ for 16 j6 T . For any s ¼ l H
T , an integral multiple of one period length, let QðljjÞ ¼ QðjþlÞ

QðjÞ
be the conditional probability of obsolescence given that it does not occur at the end of period j and

survives another l periods. For convenience, we define QðljT Þ ¼ 0 for any l > 0.

The purchasing cost for each replenishment with xð> 0Þ units consists of a fixed cost KðP 0Þ and a

variable cost ax where aðP 0Þ is the unit purchasing cost. Zero lead time is assumed. The excess demand in

each period will be backlogged. The holding and backlogging costs will be charged at the end of the period

after the period�s demand has occurred, but prior to delivery of stock for the next period. The per unit per

period holding cost and the per unit per period backlogging cost are denoted as h and b, respectively.
Let LðyÞ be the expected holding and shortage cost in each period given the inventory level y after or-

dering but before demand occurs. The formulation of LðyÞ can be expressed as
LðyÞ ¼
Py

d¼0 hðy � dÞpd þ
PD

d¼yþ1 bðd � yÞpd ; yP 0;PD
d¼0 bðd � yÞpd ; y < 0:

(

Let fjðxÞ be the optimal cumulative expected cost from period j until period T given the initial inventory

level x at the beginning of period j and obsolescence has not occurred in prior periods. If the obsolescence

occurs at the end of period j, the holding and backlogging cost in period j is LðyÞ. Otherwise, the total cost

is LðyÞ þ
PD

d¼0 fjþ1ðy � dÞpd if j < T . Thus, the expected total cost from period j to period T is
gjðyÞ ¼ LðyÞ þ Qð1jj� 1Þ
XD
d¼0

fjþ1ðy � dÞpd : ð1Þ
Let dðxÞ ¼ 1 if x > 0 and dð0Þ ¼ 0. For convenience, we assume fTþ1ðxÞ ¼ 0 for any x. We have the

following optimality recursive equations:
fjðxÞ ¼ min
y2½x;þ1Þ

fKdðy � xÞ þ aðy � xÞ þ gjðyÞg ð2Þ
for j ¼ 1; 2; . . . ; T .
By using the result in Chan and Song (2003), we know that fjðxÞ is K-convex on ð�1;þ1Þ and the

optimal ordering policy in period j is ðsj; SjÞ policy for any 16 j6 T . Thus, the optimal policy for fjðxÞ is
characterized by a pair of critical numbers sj and Sj where sj < Sj. If x6 sj, order ðSj � xÞ, and if x > sj, do
not order.

In order to design an efficient algorithm to compute the parameters of the optimal policy, we find that

some results in the literature are very useful. One result is about the X � Y band structure of the optimal

policy for a periodic-review model. It is characterized by Chen and Lambrecht (1996) and reproduced here.

Let xL and ST be the minimizers of LðyÞ and UðyÞ ¼ ay þ LðyÞ, and sT ð6 ST Þ be the maximum point at

which UðsT ÞPUðST Þ þ K. For any initial inventory level x at the beginning of period j, the optimal or-

dering quantity OjðxÞ satisfies OjðxÞ ¼ 0 if xP xL and OjðxÞ ¼ Sj � x if x6 sT . The second result is about the
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upper bound of Sj. If Sj is not unique, we choose the smallest one. Igelhart (1963) show that Sj
6M for all

16 j6 T where M ¼ minyP xL fyjLðyÞP LðxLÞ þ Kg.

Remark. Although the above results are proved under the assumption of the constant discount factor

0 < a6 1 for all 16 j6 T , here a ¼ Qð1jj� 1Þ and it is period dependent (not a constant), but all the proofs

are valid.

Let A ¼ sT and B ¼ M . By using the above results we are ready to design a dynamic programming al-

gorithm for the computation of sj and Sj, 16 j < T .

Dynamic Programming (DP) Algorithm:

Step 1. Find sT , ST , xL, and M .

Step 2. For j ¼ T � 1 to j ¼ 1 (computing backwardly): Compute the values of gjðyÞ on ½A;B�, find the

smallest minimizer Sj of gjðyÞ on ½A;B�, and find the maximal sj on ½A; Sj� such that gjðsjÞPK þ
gjðSjÞ.

In Step 1, the definitions of the parameters sT , ST , xL, and M are described above. They can be obtained
by using the functions LðyÞ and UðyÞ. In Step 2, we need to compute the values of gjðyÞ on ½A;B� by using

Eq. (1). After that, the minimizer Sj of gjðyÞ and the the maximal sj on ½A; Sj� such that gjðsjÞPK þ gjðSjÞ
can be found on ½A;B�. For any given y, suppose that the computational effort of evaluating LðyÞ is Oð1Þ,
then the computational complexity in Step 1 is OðB� AÞ. The computational complexity in Step 2 is OðT Þ.
Hence, the overall computational complexity is OðT Þ.
3. Approximating the EOQ model with general obsolescence distribution

In this section, we first present a continuous-review inventory model with sudden obsolescence,

then we propose a discrete approximation approach for the computation of a good policy. Fur-

thermore, we show that this discrete approximation scheme is convergent as the number of periods

tends to infinity.

3.1. The EOQ model with sudden obsolescence

The well known EOQ model with sudden obsolescence can be described as follows. The cost parameters

and demand process are the same as in the EOQ model, combined with an exogenous obsolescent process

with a known distribution GðtÞ, 06 t6H . We assume that GðtÞ is continuous. Let GðtÞ ¼ 1� GðtÞ > 0 for

any 06 t < H and GðsjtÞ ¼ GðtþsÞ
GðtÞ , the conditional probability of living an extra time s at t. The replenish-

ment lead time is zero and shortage is not allowed.

Let l be the deterministic continuous demand rate. The cost components for each replenishment are a

fixed cost K > 0, a purchasing cost per unit a > 0, and the holding cost rate h > 0. Therefore the decision

epochs occur only at the beginning of the planning horizon or when inventory hits zero.
David et al. (1997) is the latest research work for the EOQ model with sudden obsolescence. Let V ðtÞ be

the minimal expected cumulative cost starting from the time t with zero stock given that there is no ob-

solescence until time tðP 0Þ. The determination of V ðtÞ also specifies the optimal decision at t. David et al.

(1997) show that
V ðtÞ ¼ min
s>0

K
�

þ alsþ GðsjtÞ hls2

2

�
þ V ðt þ sÞ

�
þ
Z s

h¼0

hl sh

�
� h2

2

�
dGðt þ hÞ

GðtÞ

�
: ð3Þ
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In Eq. (3), the time parameter s is the decision variable. The total purchasing cost is K þ als. If no

obsolescence occurs during the planned horizon s, the holding cost is hls2

2
and the remaining total optimal

cost is V ðt þ sÞ. If the obsolescence occurs at t þ h, 06 h6 s, the holding cost is hlðsh� h2

2
Þ. Therefore the

expected holding cost is
R s
h¼0

hlðsh� h2

2
Þ dGðtþhÞ

GðtÞ . If H is finite, let r ¼ H � t. Then Eq. (3) can be rewritten as
Table

An illu

ðsj; S
App

Opt
V ðrÞ ¼ min
0<s6 r

K
�

þ alsþ GðsjH � rÞ hls2

2

�
þ V ðr � sÞ

�
þ
Z s

h¼0

hl sh

�
� h2

2

�
dGðH � r þ hÞ

GðH � rÞ

�
: ð4Þ
David et al. (1997) obtain an optimal ordering policy for some special cases such as the cases of deter-

ministic, exponential, and uniform obsolescence. Since the above equation of V ðtÞ is continuously recursive,
it is difficult to solve and obtain some closed-form results for general obsolescent distribution.

3.2. The discrete-time approximation scheme

The discrete-time approximation scheme can be described as follows. First we equally partition one unit

time into n periods and hence the planning horizon ½0;H � is divided into T ¼ nH periods. Then, by ad-

justing the unit holding cost per period to l
n2 h, we may regard the demand at the beginning of each period to

be one unit and, accordingly, the per unit purchasing cost is also adjusted to l
n a. Finally, we accumulate the

obsolescent probability in each period to the end point of this period, the obsolescent probability qj at the
end of period j is qj ¼ GðjnÞ � Gðj�1

n Þ, 16 j6 nH . Thus, we have generated a corresponding periodic-review

model from the EOQ model with sudden obsolescence.

Next, we apply the DP algorithm to find the optimal policy ðsj; SjÞ, 16 j6 nH , of this periodic-review
model, and apply this policy to the original EOQ model with sudden obsolescence. The approximation cost

of this policy via Eq. (3) can be computed easily. As this policy is just one of the feasible policies, this

approximation cost will be larger than or equal to the optimal cost of the EOQ model with sudden ob-

solescence.

An Example: In order to illustrate the above approximation scheme, we choose l ¼ 1, H ¼ 9, K ¼ 20,

a ¼ 6, h ¼ 0, and the obsolescent distribution is uniform on ½0;H � in the EOQ model with sudden obso-

lescence. By taking n ¼ 1, each unit time is considered as one period in the discrete approximation. Hence

we have 9 periods in the periodic-review model. Then the obsolescent distribution in this periodic-review
model is given by: q0 ¼ 0 and qj ¼ 1

9
for 16 j6 9. The per period demand is taken to be 1. The per period

per unit holding cost and per unit purchasing cost are 0 and 6, respectively. The backlogging is not allowed

(or the backlogging cost is infinity). Applying the DP algorithm for this periodic-review model, we obtain sj

and Sj for all j ð16 j6 T Þ which are given in Table 1. Then we use this ðsj; SjÞ policy to compute the

approximation cost of the EOQ model with sudden obsolescence.

In Table 1, AppCj is the approximation cost over ½j;H � obtained by applying the optimal ðs; SÞ policy of

the approximated periodic-review model to the EOQ model. OptCj is the optimal cost of the EOQ model

over ½j;H �, which can be computed by using the results in David et al. (1997).
1

stration of the discrete approximation

j

9 8 7 6 5 4 3 2 1

jÞ ð0; 1Þ ð0; 2Þ ð0; 3Þ ð0; 4Þ ð0; 4Þ ð0; 5Þ ð0; 5Þ ð0; 6Þ ð0; 6Þ
Cj 26 32 38 44 49.2 54.3333 59.1429 64 68.6667

Cj 26 32 38 43.8333 49.1667 54.2222 59.119 63.9167 68.6481
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3.3. Convergence of the discrete-time approximation scheme

In this subsection, we will show that the approximated periodic-review model will converge to the

corresponding EOQ model with sudden obsolescence as the number of periods tends to infinity.

For any given t ¼ ði0 � 1Þ H
2k0

ð06 t6HÞ for some nonnegative integer k0 and i0 ð16 i0 6 2k0Þ, suppose
that the obsolescence has not occurred until t. If ½0;H � is equally divided into 2k0 periods, ½t;H � will be
equally divided into m0 ¼ 2k0 � ði0 � 1Þ periods. For any kP k0, if we equally divide ½0;H � into 2k periods,

½t;H � will be equally divided into m ¼ m02
k�k0 periods and t can also be expressed as ði� 1Þ H

2k
where

i� 1 ¼ ði0 � 1Þ2k�k0 . For simplicity, from now on we call period ði0 � 1Þ2k�k0 þ j as period j. Let tj ¼ t þ j H
2k

be the end point of period j, qj ¼ GðtjÞ � Gðtj�1Þ, QðjÞ ¼
Pj

l¼0 qj and QðjÞ ¼ 1� QðjÞ for 16 j6m.
Let s ¼ l H

2k
for some integer lP 1 be the length of the interval covered by an order quantity at tj

ðjþ l6mÞ given that the initial inventory level at tj is zero and ½0;H � is equally divided into 2k periods.

Then, Adðtj; tj0 ; sÞ, the expected total holding cost incurred on ½tj; tj0 � in the approximated periodic-review

model, can be expressed as
Adðtj; tj0 ; sÞ ¼
Qðj0Þ
QðjÞ

þ ðl� 1Þðl� ðj0 � jÞÞ
2

ðj0 � jÞ H
2k

� �2

lh ð5Þ

þ qjþ1

QðjÞ
ðl� 1Þ H

2k

� �2

lhþ qjþ2

QðjÞ
ððl� 1Þ þ ðl� 2ÞÞ H

2k

� �2

lhþ � � � ð6Þ

þ qj0

QðjÞ
ðl� 1Þ þ ðl� ðj0 � jÞÞ

2
ðj0 � jÞ H

2k

� �2

lh ð7Þ
by applying (2) recursively over periods ðjþ 1Þ; ðjþ 2Þ; . . ., and j0. For the corresponding EOQ model with

sudden obsolescence, let Acðtj; tj þ d; sÞ be the expected total holding cost incurred on ½tj; tj þ d� given that

the initial inventory at tj is zero. This can be expressed as
Acðtj; tj þ d; sÞ ¼ GðdjtjÞd
sþ ðs� dÞ

2
lhþ

Z d

h¼0

h
sþ ðs� hÞ

2
lh

dGðtj þ hÞ
GðtjÞ

: ð8Þ
We can see that Adðtj; tj0 ; sÞ is the discretization of Acðtj; tj þ d; sÞ and

Adðtj; tj0 ; sÞ6Acðtj; tj þ d; sÞ; ð9Þ
where d ¼ H
2k
ðj0 � jÞ and sP d. By using Eqs. (5)–(8), we get
Acðtj; tj þ d; sÞ6Adðtj; tj0 ; sÞ þ
qjþ1

QðjÞ

�
þ 2

qjþ2

QðjÞ
þ � � � þ ðj0 � jÞ qj0

QðjÞ
þ ðj0 � jÞQðj

0Þ
QðjÞ

�
H
2k

� �2

lh

6Adðtj; tj0 ; sÞ þ ðj0 � jÞ H
2k

� �2

lh:
Thus, we get
lim
k!þ1

Adðtj; tj0 ; sÞ ¼ Acðtj; tj þ d; sÞ: ð10Þ
In the following we first provide some properties about s�ðtjÞ ¼ l� H
2k
for some l� P 1, the optimal length

of interval covered by the order quantity at tj in the approximated periodic-review model given that the

initial inventory at tj is zero.

Lemma 1. There exist an integer k1 P k0 and two small real numbers d1 > 0 and d2 > 0 such that for any

kP k1, we have s�ðtjÞP d1 if tj 2 ½t;H � d2Þ and s�ðtjÞ ¼ H � tj if tj 2 ½H � d2;H � for all 06 j6m.
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The proof is provided in Appendix A. From Lemma 1, we know that the total number of replenishments
is bounded by a constant if the number of periods in the approximated periodic-review model is large

enough.

Let F1;mðtÞ and fj;mðtÞ be the corresponding optimal cumulative expected costs from period j to period m
given that the initial inventory at t is zero if the demand in each period is satisfied at the end of the period

and the beginning of the period, respectively. We have the following property and the proof can be found in

Appendix A.

Lemma 2. For any lP 1, F1;2lðtÞ6 F1;lðtÞ and f1;2lðtÞP f1;lðtÞ.

By using the result in Lemma 2, we shall show that both ff1;mðtÞg and fF1;mðtÞg are monotone and

bounded. Hence, they are convergent. The proof of the following result is provided in Appendix A.

Lemma 3. There exists a constant integer M0 (not dependent on t) such that
f1;mðtÞ6 V ðtÞ6 F1;mðtÞ6 f1;mðtÞ þ
M0

2k
: ð11Þ
Hence, we get
lim
k!þ1

f1;mðtÞ ¼ lim
k!þ1

F1;mðtÞ ¼ V ðtÞ: ð12Þ
From this result, we can see that for any t ¼ ði0 � 1Þ H
2k0

for some nonnegative integer k0 and i0 ð16 i0 6m0Þ,
limk!þ1 f1;mðtÞ ¼ V ðtÞ. Note that the set {tjt ¼ ði0 � 1Þ H

2k0
for all nonnegative integers i0 and k0} is dense in

½0;H � and V ðtÞ is continuous, we have the following result.

Theorem 1. The discrete-time approximation scheme for the EOQ model with sudden obsolescence is con-

vergent when the number of periods in the approximated periodic-review model tends to infinity.
4. Numerical results

The following two instances of the EOQ model with sudden obsolescence are treated by David et al.

(1997) by using (4). As the optimal solutions for these two instances can be found, we can verify our discrete

approximation solutions with the optimal ones.

Example 1 (Deterministic obsolescence). In this problem, GðxÞ is an one-point distribution, namely

PrðX ¼ HÞ ¼ 1. At each time t, let r ¼ H � t be the residual time, David et al. (1997) proved that the
optimal order quantity at t is to cover demands up to t þ s�ðrÞ, where
s�ðrÞ ¼ r
l�ðrÞ ; l�ðrÞ ¼ min lj hlr2

2lðlþ 1Þ

�
6K; lP 1

�
:

The optimal value function is given by
V ðrÞ ¼ n�ðrÞK þ alr þ hlr2

2l�ðrÞ :
We choose four sets, Iu ð16 u6 4Þ, of interval ranges for parameters H , K, a, and h to generate the

parameters values as described in Table 2. For each Iu, 20 sets of parameters are randomly generated. Each

set of parameters has four values representing the failure horizon H , the setup cost K, the per unit pur-

chasing cost a and the holding cost rate h, respectively.



Table 2

Interval ranges for parameters

I1 I2 I3 I4

H ½1; 10� ½1; 10� ½5; 6� ½1; 20�
K ½5; 20� ½30; 50� ½30; 80� ½30; 100�
a ½1; 9� ½1; 9� ½1; 9� ½1; 100�
h ½1; 9� ½1; 9� ½1; 9� ½1; 100�

Table 3

Mean approximation cost for Example 1

I1 I2 I3 I4

n ¼ 1 76.2865 122.191 144.754 1172.82

n ¼ 2 75.7987 122.052 144.481 1159.78

n ¼ 5 75.6004 122.03 144.492 1157.87

n ¼ 10 75.5803 122.025 144.481 1157.29
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For the generated H in each set of parameters and each n (n ¼ 1, 2, 5, or 10), we partition H into nH
periods to generate a periodic-review model. Then we apply the DP algorithm to determine sj and Sj,
16 j6 nH , of this periodic-review approximation model. Then we apply ðsj; SjÞ policy to compute the

approximation cost of the EOQ model with sudden obsolescence. Every value in Table 3 is the mean of the

20 approximation costs corresponding to the 20 sets of parameters. It shows that the approximation cost

decreases as n increase in each interval range Iu, 16 u6 4.

For comparison, we define the deviation ratio of the discrete approximation cost from the optimal cost

of the EOQ model by
Table

Mean

n ¼
n ¼
n ¼
n ¼
AppCost�OptCost

OptCost
:

Table 4 gives the mean deviation of the approximation costs from the optimal costs. The values show that
the approximation costs are very close to the optimal costs of the EOQ model even if one unit time is

treated as one period in the approximation, namely n ¼ 1.

Example 2 (Uniform obsolescence). In this problem, GðxÞ is a uniform distribution on ½0;H � and h ¼ 0. Let

r ¼ H � t be the residual time and w ¼ K
al. Suppose that V ðrÞ is measured in units of al. David et al. (1997)

obtained the following results:

(1) s�ðrÞ, for 06 r6H , is piecewise linear concave

s�ðrÞ ¼ nw
2

þ r
lþ 1

for rl 6 r6 rlþ1, r0 ¼ 0 and rl ¼ wlðlþ1Þ
2

.

4

deviation ratio for Example 1

I1 I2 I3 I4

1 0.0074344 0.000822437 0.00184307 0.0140725

2 0.00177371 0.000125374 0.00000 0.00203012

5 0.000260697 3.29142e)05 7.37412e)05 0.000667373

10 3.1471e)05 5.00839e)06 2.84217e)15 0.000144421



Table 5

Mean approximation cost for Example 2

I1 I2 I3 I4

n ¼ 1 35.4249 65.7362 83.9 437.252

n ¼ 2 35.3784 65.7066 83.8717 436.444

n ¼ 5 35.3496 65.7071 83.871 436.086

n ¼ 10 35.3462 65.7055 83.871 436.01

Table 6

Mean deviation ratio for Example 2

I1 I2 I3 I4

n ¼ 1 0.00192911 0.000307615 0.000416294 0.00404961

n ¼ 2 0.000920541 1.50136e)05 1.22738e)05 0.00167107

n ¼ 5 0.000101368 1.94422e)05 2.05314e)06 0.000485199

n ¼ 10 1.65986e)05 1.94422e)05 2.05314e)06 3.89082e)05

Y. Song, H.C. Lau / European Journal of Operational Research xxx (2003) xxx–xxx 9

EOR 5771 No. of Pages 11, DTD=4.3.1

29 August 2003 Disk used
ARTICLE IN PRESS
(2) The optimal value function (the expected remaining cost till obsolescence) is given by

V ðrÞ ¼ ðlþ 2Þr
2ðlþ 1Þ þ

ðlþ 2Þw
2

� lðlþ 1Þðlþ 2Þw2

24r

for rl 6 r6 rlþ1.

Except choosing h ¼ 0 in the model, the values of all other parameters in the experiment for Example 2

are the same as in Table 2. In the traditional lot-sizing inventory model, zero holding cost, h ¼ 0, is very

meaningless. But in the above Example 2, even if h ¼ 0, we need to balance the purchasing cost and the

obsolescence cost (no any value of the remaining inventory at the obsolescent time point). This is not trivial.

Similarly as in Table 3, every value in Table 5 is the mean of the 20 approximation costs corresponding

to the 20 sets of parameters for Example 2. It shows that the approximation cost decreases as n increase in

each interval range Iu, 16 u6 4. Table 6 gives the mean deviation ratios of the approximation costs from
the optimal costs for Example 2. The values show that the approximation costs are very close to the optimal

costs of the EOQ model even if the number of periods n in the discrete-time approximation model is very

small (n6 10).
5. Conclusion

We present a stochastic periodic-review inventory model with sudden obsolescence which allows
backlogging and stochastic demand in every period. We first characterize the structure of the optimal policy

and then propose a DP algorithm for the computation of the optimal policy.

As there is no any efficient computational approach for the EOQ model with sudden obsolescence, as an

application, we propose a discrete approximation approach for the EOQ model with sudden obsolescence.

From both the numerical experiments and the analytical results, we show that the discrete approximation

costs are very close to the corresponding optimal costs of the EOQ model with sudden obsolescence ob-

tained by David et al. (1997).

The discrete approximation approach in this paper can be applied to the stochastic continuous-review
models with sudden obsolescence such as the one in David and Mehrez (1995). As the structure of the

optimal policy of this model is unknown, we cannot verify our approximation scheme in a numerical way.
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We guess that our discrete-time approximation scheme is convergent even for this stochastic model but the
proof may be complicated.

Further investigation and extension of the theory and applications of the stochastic periodic-review

model with sudden obsolescence, such as the case where there is an ordering capacity constraint for each

replenishment, should be of interest to many researchers and practitioners.
Appendix A

Proof of Lemma 1. We first show that there exists d2 > 0 such that for any kP k0, we have s�ðtjÞ ¼ H � tj if
there exists tj 2 ½H � d2;H �.

It is obvious that there exists d2 > 0 such that AcðH � s;H ; sÞ < K if s6 d2. As

Adðtj;H ;H � tjÞ6Acðtj;H ;H � tjÞ if there exists any tj 2 ½H � d2;H �, we have Adðtj;H ;H � tjÞ < K. From
this, we can see that we should order up to the end of the planning horizon if H � tj 6 d2.

Secondly, we shall show that there exist an integer k1 P k0 and d1 > 0 such that for all kP k1 we have

s�ðtjÞP d1 if tj 2 ½t;H � d2Þ.
For s ¼ H

2k
, there exists d0 > 0 such that Acðtj; tj þ s; sþ lðH � t � sÞÞ < K for any tj 2 ½t;H � d2� and

s6 d0. As Adðtj; tj þ s; sþ lðH � t � sÞÞ6Acðtj; tj þs; sþ lðH � t � sÞÞ, there exists k1 P k0 such that for

any kP k1 Adðtj; tj þ s; sþ lðH � t � sÞÞ < K and s ¼ H
2k
6

H
2k1

< d0. From this, we can see that

s�ðtjÞP d1 ¼ H
2k1

for all tj 2 ½t;H � d2Þ. h

Proof of Lemma 2. As the proofs for f1;mðtÞ and F1;mðtÞ are similar, we only prove this lemma for F1;mðtÞ. We

prove this by induction on l, the number of periods over ½t;H � given that the obsolescence does not occur

until t.
If l ¼ 1, ½t;H � is treated as one period. In our approximated periodic-review model, the only obsolescent

point is H and F1;1ðtÞ ¼ K þ alðH � tÞ þ lðH � tÞ2h. If l ¼ 2, ½t;H � is equally divided into two periods,

there are two possible obsolescent points, t1 ¼ t þ H�t
2

and t2 ¼ H , with q1 ¼ Gðt1Þ � GðtÞ and

q2 ¼ Gðt2Þ � Gðt1Þ, respectively.
F1;2ðtÞ ¼ K þ alðH � tÞ þ q1
q1 þ q2

ðH � tÞ2

2
hþ q2

q1 þ q2

3ðH � tÞ2

4
h:
It is obvious that F1;2ðtÞ6 F1;1ðtÞ. Therefore, it is true for l ¼ 1.

Suppose that it is true for any l ¼ nP 1, i.e., F1;2nðtÞ6 F1;nðtÞ. For l ¼ nþ 1, ½t;H � is equally divided into

nþ 1 periods. We call ½t; t þ H�t
nþ1

�, the first period, as interval 1 and ½t þ H�t
nþ1

;H �, from period 2 until period

nþ 1, as interval 2. Suppose that the optimal order up to quantity at t is y� in the approximated periodic-
review model given that the initial inventory level at t is zero. The optimal expected total cost F1;nþ1ðtÞ
includes two parts: one occurs on interval 1 and the other part occurs on interval 2. If we divided ½t;H � into
2ðnþ 1Þ periods, we still order up to y� units at t given that the initial inventory at t is zero. The optimal

expected total cost F1;2ðnþ1ÞðtÞ is also includes two parts: one occurs on interval 1 (the first two periods) and

the other parts occurs on interval 2 (the last 2n periods). Applying the argument for l ¼ 1 on interval 1 and

the assumption for l ¼ n on interval 2, we obtain that F1;2ðnþ1ÞðtÞ6 F1;nþ1ðtÞ. Thus, it is also true for

l ¼ nþ 1. h

Proof of Lemma 3. From the definitions of f1;mðtÞ, F1;mðtÞ, and V ðtÞ, we can see that f1;mðtÞ6 V ðtÞ6 F1;mðtÞ.
For any kP k0, by Lemma 2, limk!þ1 F1;mðtÞ and limk!þ1 f1;mðtÞ exist. By Lemma 1, for any kP k1, the
number of replenishments over ½t;H � is uniformly bounded by an integer l0. From the definitions of f1;mðtÞ
and F1;mðtÞ, we get



Y. Song, H.C. Lau / European Journal of Operational Research xxx (2003) xxx–xxx 11

EOR 5771 No. of Pages 11, DTD=4.3.1

29 August 2003 Disk used
ARTICLE IN PRESS
F1;mðtÞ6 f1;mðtÞ þ D;
where D ¼ l0
lH2h
22k

1

GðtÞ

Pm
j¼0 jqj. As limk!þ1 l0

lH2h
22k

1

GðtÞ

Pm
j¼0 jqj ¼ 0, we complete the proof. h
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