
MIC2003: The Fifth Metaheuristics International Conference TSF-1

Kyoto, Japan, August 25–28, 2003

A Generic Object-Oriented Tabu Search Framework
Hoong Chuin Lau Wee Chong Wan Xiaomin Jia

School of Computing, National University of Singapore
{lauhc, jwan, jiaxiaom}@comp.nus.edu.sg

Extended Abstract

1 Introduction
Recent studies have reported many successful applications of tabu search in solving
optimization problems. In most cases, tabu search applications are designed specifically to the
problems, because different strategies are required to solve different problems. This leads to
little reuse of developed applications. Conceivably, the development cost can be drastically
reduced if a well-designed programming framework is available that allows the reuse of both
designs and codes. The challenge of developing such a framework lies in the tension between its
simplicity of use versus sophistication in allowing user-defined search strategies [Glover and
Laguna, 1997] to be incorporated. To date, there is a lack of a widely accepted tabu search
framework and only few research prototypes have gained limited popularity.

We propose a generic framework that performs the standard routine of the tabu search and yet
offers the robustness for algorithms designers and developers to incorporate their desired search
strategies. Tabu Search Framework (TSF) is a C++ object-oriented software framework that
uses a set of interfaces to epitomize the routine tabu search procedures. It has a centralized
control mechanism to adaptively guide the search in accordance to events encountered
dynamically. TSF also provides a set of supporting software tools, called the Strategy Software
Library, which aids developers in their strategies development. In summary, TSF allows users to
focus on designing and testing algorithms by minimizing efforts in programming.

2 Literature Survey
Harder [Harder, 2001] developed a Java-based tabu search framework OpenTS under the
Common Optimization Interface for Operations Research (COIN-OR) initiative. His framework
follows the object-oriented programming style and has a well-defined structure. The framework
allows the definition of basic elements common to all tabu searches through interfaces and
performs iterations based on these elements. The key elements are the solution structure,
objective function, tabu list, move and move manager. OpenTS, however, restricts users to
implement their strategies through the interfaces. This often leads to an inconvenient of
implementing strategies that require interaction with one or more interfaces.

TSF2 MIC2003: The Fifth Metaheuristics International Conference

Kyoto, Japan, August 25–28, 2003

[Gaspero and Schaerf, 2000] proposed a local search framework EASYLOCAL++, which is not
restricted to tabu search but comprises of a set of cooperating classes of local searches such as
simulated annealing. The classes in EASYLOCAL++ are divided into six categories: Data
classes, Helpers, Runners, Kicker, Solvers and Testers. Data classes store data, including the
states of the search space, the moves and the input/output data. Helpers perform actions related to
some specific aspects of the search such as the generation of neighborhood and prohibition of
moves. Runners are the algorithmic core of EASYLOCAL++ responsible for performing a run of
a local search. Kickers are used as a form of diversifying technique. Solvers control the search by
generating the initial solutions, deciding how and in which sequence the Runners are to be
activated. Testers represent a simple predefined interface of the user program. However, as with
many other similar frameworks, EASYLOCAL++ does not cater an abstract class that could
support user-defined strategies, and in our opinion, is a serious limitation as much of the
development in meta-heuristics lies in the strategies involved.

[Andreas et al., 1998] proposed another generic tabu search - simulated annealing framework
known as the Heuristic OpTimization FRAMEwork (HOTFRAME) that is based primarily on the
use of template in C++ to obtain genericity. The authors suggest some potential advantages of
their design such as run-time efficiency and enhanced decoupling of components that would lead
to a black box reuse. Basically HOTFRAME can be divided into three templates, the Solution
Class, the Heuristic Class and the Neighborhood Iterator. Unfortunately, although HOTFRAME
can be used in most generic problems, it lacks the capabilities that allow developers to adaptively
guide the search process.

In summary, the abovementioned frameworks either do not provide any control mechanism
[Andreas et al., 1998, Gaspero and Schaerf, 2000] or implement decentralized controls that are
attached to the abstract classes [Harder, 2001]. As most tabu search strategies affect one or more
of the abstract classes, adding new strategies to a highly complex local search application may be
difficult and tedious due to the scattered nature of such design. A centralized control mechanism,
on the other hand, produces a better design, as it offers a more organized structure with all
strategies implemented in a single abstract controller, which in turn, manages the rest of the
abstract interfaces. Similarly none of the reviewed frameworks cater for a software library that
supports the development of advanced search strategies.

3 Design and Architecture of TSF
TSF is composed of 4 categories of components: interfaces, control mechanism, search engine,
and strategies software library. The interfaces define the basic components used by tabu search
in an object-oriented architecture. The control mechanism is for advanced users to define rules
that guide the search adaptively in response to events encountered. TSF eliminates the tedious
routine task of programming the search engine. The TSF search engine interacts with the
interfaces and collects information which is passed dynamically to the control mechanism to

MIC2003: The Fifth Metaheuristics International Conference TSF-3

Kyoto, Japan, August 25–28, 2003

re-adjust future search trajectory. Finally, TSF includes a Strategy Software Library (SSL)
consisting of a set of software components to support various user-defined search strategies.

3.1 Interfaces
There are seven key interfaces that must be implemented. The solution interface is used as a
representation for the problem’s solution. The framework does not impose any restriction on how
the user defines the solution or the data structures used since it never manipulates the Solution
objects directly. The Objective Function interface evaluates the objective value of the solution.
The Neighborhood interface generates a list of neighbors with using Move and Constraint
interfaces. The Move interface translates a Solution object into a new solution while the
Constraint interface checks on the degree of violation for each constraint of a solution. The Tabu
List interface records the tabu-ed solutions or moves. The Aspiration Criteria interface allows
specification of aspiration criteria for tabu-ed moves.

3.2 Control Mechanism
3.2.1 Switch Box
Like many machines, a set of switches is required to operate the Search Engine. A Switch Box is
used in the framework to control the basic operations of the search engine. The two more
commonly used switches are the maximizing switch and the first-accept switch. The maximizing
switch is used to control the engine to solve a maximizing or a minimizing problem. The
First-Accept switch informs the tabu search engine to perform first accept or best accept strategy.
The best accept strategy searches through all the feasible solutions in the neighborhood and select

Figure 3.1: Tabu Search Framework Architecture

TSF4 MIC2003: The Fifth Metaheuristics International Conference

Kyoto, Japan, August 25–28, 2003

the best possible move. When run time is comparatively more crucial than the solution quality, we
settle for the first neighbor with a better objective value, i.e. the first-accept strategy.

3.2.2 Event Controller
It is often desirable for the search engine to respond to encountered events. For example, a
reactive tabu list would need to readjust its tenure in response to the success or failure in
obtaining a better solution during the search. Hence we need a means of controlling the tabu
search to make dynamic readjustments. TSF uses a centralized control mechanism. It has an
Event Controller, which provides interaction between the search engine and its interfaces. When
the tabu search engine detects the occurrence of pre-determined events, it conveys them to the
Event Controller. The Event Controller then responds to these events in accordance to strategies
defined by the user. Typically, these strategies will affect one or more of the elements in the
interfaces, which in turn, re-adjust the search strategy adopted by the engine. For the reactive
tabu list example, the number of non-improving moves encountered can be a “triggering-event”,
which causes the Event Controller to readjust the tabu tenure based on parameters. Some default
events in TSF are as follows:

1. Tabu Search Start is triggered at the start of tabu search. Used to start a timer to record the
total time spent in doing the search.

2. Tabu Search Stop is triggered at the end of tabu search. Used to stop the timer or to call an
output program to display the results.

3. New Best Solution Found is triggered when a new best solution is found. Used for
intensification strategies.

4. Non-improving Move Made is triggered when the tabu search engine executes a new
non-improving move. Used for diversification strategies.

5. No moves generated is triggered when the Neighborhood Generator could not generate any
moves.

6. No Solution Found event is triggered when the search engine could not find a feasible
solution. Used for implementing oscillating strategies).

TSF also allows users to define their own events by providing a generic Event interface. Users
need to define the triggering event and implement the response to it. For example, suppose we
want to apply Random Restart strategy at every n number of completed iterations. To do this,
we simply need to implement an Event that is triggered at the every nth iteration. The response
to this event is to restart the tabu search with a new starting point. Figure 3.2 gives an example
of code segment for such implementation.

The use of the Event interface is not limited to applying strategies. In fact, the Event can be used
to collect useful information that may be important subsequently. For instance, in implementing
the Frequency and Recency strategy, it is required for the tabu search to record on the number of
occurrences a sub-structure/configuration in the solution appeared throughout the search. For

MIC2003: The Fifth Metaheuristics International Conference TSF-5

Kyoto, Japan, August 25–28, 2003

example, in the Traveling Salesman Problem, if we discover that the solution goes through
customer 4 to customer 3 very frequently and especially in most local optima, this may imply
that the global optimal may contain the sub-route of X–4–3–X, where X refers to an arbitrary
customer in the solution. In this case, we may even implement a soft constraint based on this
observation, which in turn will reduce the size of the neighborhood generated in each iteration.
By collecting more information during the search and adaptively by modifying our search
strategy based on this information, a more intelligent search is resulted.

 // Base class for the Event interface

Class Event{ ……

virtual void IterationEvent (TabuSearch* TS){}; }

Class RandomRestart : Event // user-implemented class
{ int max_limit = n; // User defined n iteration

int count_NonImprovingMoves;

virtual void IterationEvent (TabuSearch* TS){

if (TS->isBadMove())

int count_NonImprovingMoves++;

if (count_NonImprovingMoves > max_limit)

ApplyRandomRestart (TS); } }

3.3 Strategy Software Library (SSL)
To improve the search further, various advanced strategies may need to be incorporated into the
basic tabu search engine. These strategies include intensification among elite solutions,
probabilistic diversification, candidate lists, and very large-scale neighborhood (VLSN). In TSF,
SSL provides a set of software components to support each of these strategies. Although not as
powerful as specific strategies tailored to a single problem type, these generic components
provide a quick and easy means for developers to apply them in their search. In the following,
we describe some of the components in SSL.

3.3.1 Probabilistic Diversification
Probabilistic diversification refers to diversifying search when it is caught in a local optimum.
One simple diversification strategy is to randomly choose a portion of the solution to be
reconstructed and fuse with an unchanged portion. SSL supports this strategy by providing a
Random Generator that generates a portion of the solution that is to be removed according to a
prescribed probability distribution (such as uniformly random distribution).

3.3.2 Intensification search on Elite solutions
SSL supports this strategy by storing a list of elite solutions during tabu search. Each of these

Figure 3.2: A code sample implementation of a user-defined event

TSF6 MIC2003: The Fifth Metaheuristics International Conference

Kyoto, Japan, August 25–28, 2003

elite solutions is then used as a new initial solution for future tabu search. The rationale behind
this strategy is to search the elite solutions more thoroughly and hence is classified as an
intensification strategy. Developers simply need to declare the number of elite solutions to be
collected in the preliminary search and TSF would search each of these points more thoroughly.

3.3.3 Very Large-Scale Neighborhood (VLSN)
VLSN [e.g. Ahuja et al., 2003] works on the principle that in a large neighborhood, there is a
higher probability of obtaining a much better solution in single iteration. This strategy usually
requires some permutation function to generate the large neighborhood. SSL provides two
functions to support this strategy: PermutationGenerator and NeighborhoodBooster.
PermutationGenerator provides the ease of permuting a solution to construct its neighborhood.
NeighborhoodBooster, is used to increase the neighborhood size by combining multiple 2-opt
moves into k-opt moves.

3.3.4 Candidates List
Candidates are often used to narrow the neighborhood size especially when VLSN is involved. A
possible technique is to select neighbors that meet some certain criteria or constraint. SSL
provides a Filter function that inherits from the Constraint Interface. It receives a solution, a
move and a selection function, and “filters” unfavorable moves that do not meet the constraint.

4 Experimentation on VRPTW
We developed a VRPTW application and benchmark on Solomon’s test instances [Solomon,
1987]. Five different moves were implemented: Relocate, Exchange, Reverse, Cross and
Distribute. Reverse is used to reverse the sequence of customers within a same route and is
useful when the time window is loose. Cross is an extended Exchange where a sub-section of a
route is swapped with another. Distribute attempts to reduce a vehicle by distributing the
vehicle’s customers to other vehicles. The design of these moves exploits the advantage of
minimizing the distance without minimizing vehicles. With the exception of Relocate and
Distribute, the other moves are designed to minimize the total distance traveled. We also
adaptively apply intensification or diversification strategies based on the quality of the solutions
found. Based on the default events, each solution is classified into two categories: improving
solutions and non-improving solutions. An improving solution has an objective value that is
better than all previously found solutions. Non-improving solution refers to solutions whose
objective value is the same or poorer than the best-found solution. TSF adaptively alternates
between intensification and diversification by observing the frequency of non-improving
solutions. Diversification will be applied using a greedy heuristic when the frequency of
non-improving solution exceeds a certain threshold. Appendix A summarizes our experimental
results. TSF Results are results obtained by TSF; Best Results are the best-published results.

MIC2003: The Fifth Metaheuristics International Conference TSF-7

Kyoto, Japan, August 25–28, 2003

5 Experimentation on QAP
In QAP, the Solution can be represented as a permutation on a set of n facilities. A typical move
often involves swapping two elements in the solution. [Ahuja et al., 2003] proposed a VLSN
strategy for QAP, which implements complex moves involving multiple swap. Generally, VLSN
produces better solutions than typically swap move. Following the authors’ proposal, we
demonstrate that TSF is capable supporting this strategy through the use of two software
components: PermutatorGenerator and NeighborhoodBooster. The PermutatorGenerator is
used to construct the neighborhood from a solution by generating all the possible permutations.
The NeighborhoodBooster then performs two further steps to generate a larger neighborhood.
First, a selection criterion is used to accept only elite neighbors. These elite neighbors are then
further permutated to result in more neighbors. The two steps are repeated for k times (and thus
known as k-opt). To facilitate our testing, a set of test cases (CHR, BUR, NUG, SKO) were used
and the results are summarized in Appendix B. Gap is calculated as Gap = (Best Result – TSF
Result)/Best Result *100%. From the table, we can see that TSF works very well for most of test
cases. In CHR set of test cases, except for Chr20a and Chr25a, the results obtained are optimal;
the results for other test cases are within a small gap from optimality.

6 Conclusion
We presented TSF, an object-oriented framework for tabu search. TSF imposes no restriction on
the domain representation and yet provides a well-defined structure for controlling the search.
TSF differs from other frameworks in that it offers users the flexibility of incorporating various
tabu search strategies through the Event Controller as the centralized control mechanism
without compromising too much on the run-time efficiency and solution quality. Strategies
Software Library further supports the development of enhancing solution quality. Finally, through
the implementations of TSF on VRPTW and QAP, we illustrate that good results can be obtained
with the framework within reasonable implementation time as well as good run-time.

Reference:
[Andreas et al., 1998] A. Fink, S. Voß: HotFrame: A Heuristic Optimization Framework. In: S.
Voß and D.L. Woodruff (Eds.), Optimization Software Class Libraries, Kluwer, Boston (2002).
[Glover and Laguna, 1997] F. Glover and M. Laguna, Tabu Search, Readings, Kluwer
Academic Publishers, Boston/Dorderecht/London, 1997
[Gaspero and Schaerf, 2000] L. Di Gaspero and A. Schaerf, EasyLocal++: An object-oriented
framework for flexible design of local search algorithms, Kluwer Academic Publishers, 2001.
[Harder, 2001] R.Hearder, IBM OpenTS Homepate, http://opents.iharder.net, 2001.
[Ahuja et al., 2003] R. K. Ahuja, K. C. Jha, J. B. Orlin, D. Sharma, Very Large-Scale
Neighborhood Search for the Quadratic Assignment Problem, INFORMS, 2003.
[Solomon, 1987] M. M Solomon, Algorithms for Vehicle Routing and Scheduling Problem with
Time Window Constraints, Operation Research Vol. 35, pp. 254 – 265, 1987.

http://opents.iharder.net/

TSF8 MIC2003: The Fifth Metaheuristics International Conference

Kyoto, Japan, August 25–28, 2003

Appendix A

Test
cases

Best
Results

Published
by

TSF
Results

Test
cases

Best
Results

Published
by

Final Results

R101 19/1650.80 RT 19/1686.24 R209 3/ 909.86 RGP 3/ 979.30
R102 17/1486.12 RT 18/1493.31 R210 3/ 955.39 HG 3/ 968.32
R103 13/1292.85 HG 14/1301.64 R211 2/ 910.09 HG 3/ 865.51
R104 10/ 982.01 RT 10/1025.38 RC101 14/1694.94 TBGGP 15/1698.50
R105 14/1377.11 RT 14/1458.60 RC102 12/1554.75 TBGGP 13/1551.32
R106 12/1252.03 RT 12/1314.69 RC103 11/1262.02 RT 11/1371.40
R107 10/1113.69 CLM 10/1140.27 RC104 10/1135.48 CLM 10/1187.97
R108 9/ 964.38 CLM 10/ 994.66 RC105 13/1633.72 RGP 14/1618.01
R109 11/1194.73 HG 12/1207.58 RC106 11/1427.13 CLM 12/1434.33
R110 10/1124.40 RGP 11/1166.65 RC107 11/1230.54 TBGGP 11/1266.92
R111 10/1096.72 RGP 11/1172.66 RC108 10/1139.82 TBGGP 10/1273.12
R112 9/1003.73 HG 10/1041.36 RC201 4/1406.94 CLM 4/1445.00
R201 4/1252.37 HG 4/1366.34 RC202 3/1389.57 HG 4/1204.45
R202 3/1191.70 RGP 3/1239.22 RC203 3/1060.45 HG 3/1091.71
R203 3/ 942.64 HG 3/1000.29 RC204 3/ 799.12 HG 3/ 826.27
R204 2/ 849.62 CLM 3/ 781.86 RC205 4/1302.42 HG 4/1469.25
R205 3/ 994.42 RGP 3/1063.29 RC206 3/1153.93 RGP 3/1259.12
R206 3/ 912.97 RT 3/ 955.34 RC207 3/1062.05 CLM 3/1127.19
R207 2/ 914.39 CR2 3 /866.35 RC208 3/ 829.69 RGP 3/ 937.78
R208 2/ 731.23 HG 2/1016.07

Legend:
CR2 W. Chiang and R. A. Russell, A Reactive Tabu Search Metaheuristic for Vehicle Routing

Problem with Time Windows, INFORMS Journal on Computing, Vol 8, No 4, 1997
CLM J. F. Cordeau, G. Laporte, and A. Mercier, "A Unified Tabu Search Heuristic for Vehicle

Routing Problems with Time Windows," Journal of the Operational Research Society 52,
928-936, 2001

HG J. Homberger and H. Gehring, "Two Evolutionary Metaheuristics for the Vehicle Routing
Problem with Time Windows," INFOR, VOL. 37, 297-318, 1999

RT Rochat, Y. and E. Taillard, Probabilistic Diversification and Intensification in Local Search for
 Vehicle Routing, Journal of Heuristics, 1, 147-167, 1995
RGP L.M. Rousseau, M. Gendreau and G. Pesant, "Using Constraint-Based Operators to Solve the
 Vehicle Routing Problem with Time Windows," Journal of Heuristics, 1999
TBGGP E. Taillard, P. Badeau, M. Gendreau, F. Geurtin, and J.Y. Potvin, "A Tabu Search Heuristic for
 the Vehicle Routing Problem with Time Windows," Transportation Science, 31, 170-186, 1997

Table A: Performance comparison on Solomon’s VRPTW problem set.

MIC2003: The Fifth Metaheuristics International Conference TSF-9

Kyoto, Japan, August 25–28, 2003

Appendix B

Test cases Best results TSF results Gap Test cases Best results TSF results Gap
Chr12a 9552 9552 0.0 Nug15 1150 1152 0.2
Chr12b 9742 9742 0.0 Nug16a 1610 1610 0.0
Chr12c 11156 11156 0.0 Nug16b 1240 1240 0.0
Chr15a 9896 9896 0.0 Nug17 1731 1742 0.6
Chr15b 7990 7990 0.0 Nug18 1930 1930 0.0
Chr15c 9504 9504 0.0 Nug20 2570 2570 0.0
Chr18a 11098 11098 0.0 Nug21 2438 2456 0.7
Chr18b 1534 1534 0.0 Nug22 3596 3596 0.0
Chr20a 2192 2222 1.5 Nug24 3488 3500 0.3
Chr20b 2298 2298 0.0 Nug25 3744 3744 0.0
Chr20c 14142 14142 0.0 Nug27 5234 5348 2.2
Chr22a 6165 6165 0.0 Nug30 6124 6128 0.0
Chr22b 6194 6194 0.0 Sko42 15812 16020 1.3
Chr25a 3796 3920 4.0 Sko49 23386 23486 0.4
Bur26a 5426670 5432488 0.1 Sko56 34458 34664 0.6
Bur26b 3817852 3824458 0.1 Sko64 48498 48838 0.7
Bur26c 5426795 5427731 0.0 Sko72 66256 66702 0.7
Bur26d 3821225 3821275 0.0 Sko90 115534 116168 0.5
Bur26e 5386879 5387728 0.0 Sko100a 152002 153610 1.1
Bur26f 3782044 3782246 0.0 Sko100b 153890 155318 0.9
Bur26g 10117172 10118787 0.0 Sko100c 147862 149036 0.8
Bur26h 7098658 7098658 0.0 Sko100d 149576 151756 1.5
Nug12 578 578 0.0 Sko100e 149150 150996 1.2
Nug14 1014 1016 0.2 Sko100f 149036 150906 1.3

Legend:
CHR: N. CHRISTOFIDES and E. BENAVENT. An exact algorithm for the quadratic assignment
 problem. Operations Research, 37-5:760-768, 1989
BUR: R.E. BURKARD and J. OFFERMANN. Entwurf von Schreibmaschinentastaturen mittels
 quadratischer Zuordnungsprobleme. Zeitschrift für Operations Research, 21:B121-B132, 1977
NUG: C.E. NUGENT, T.E. VOLLMAN, and J. RUML. An experimental comparison of techniques
 for the assignment of facilities to locations. Operations Research, 16:150-173, 1968
SKO: J. SKORIN-KAPOV. Tabu search applied to the quadratic assignment problem. ORSA Journal
 on Computing, 2(1):33-45, 1990

Table B: Performance comparisons on QAP problem set.

	TSF also allows users to define their own events by providing a generic Event interface. Users need to define the triggering event and implement the response to it. For example, suppose we want to apply Random Restart strategy at every n number of comple
	Class Event{	……
	{	int max_limit = n; // User defined n iteration
	int count_NonImprovingMoves;
	virtual void IterationEvent (TabuSearch* TS){
	if (TS->isBadMove())
	int count_NonImprovingMoves++;
	if (count_NonImprovingMoves > max_limit)

