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Abstract 

We study a real-world problem arising from the operations of a hospital service provider, 

which we term the master physician scheduling problem. It is a planning problem of 

assigning physicians’ full range of day-to-day duties (including surgery, clinics, scopes, 

calls, administration) to the defined time slots/shifts over a time horizon, incorporating a 

large number of constraints and complex physician preferences. The goals are to satisfy as 

many physicians’ preferences and duty requirements as possible while ensuring optimum 

usage of available resources. We propose mathematical programming models that 

represent different variants of this problem. The models were tested on a real case from 

the Surgery Department of a local government hospital, as well as on randomly generated 

problem instances. The computational results are reported together with analysis on the 

optimal solutions obtained.  For large-scale instances that could not be solved by the 

exact method, we propose a heuristic algorithm to generate good solutions.  

 

Keywords: scheduling, optimization, health service, master physician scheduling and 

rostering problem, mathematical programming, preferences. 

Introduction 

There has been increased interest in hospital operations management in terms of 

optimized scheduling and allocation of employees (e.g. physicians, nurses and 

administrators). One problem is to design a physician schedule which takes a large 

number of constraints and physician preferences into account.  

A physician schedule is an assignment of physicians to perform different duties in 

the hospital timetable. Unlike nurse rostering which has been extensively studied in the 

literature (e.g. Ernst et al, 2004a; Glass and Knight, 2009; Petrovic and Vanden Berghe, 

2008), in physician scheduling, maximizing satisfaction matters primarily, as physician 

retention is the most critical issue faced by hospital administrations (Carter and Lapierre, 

2001). In addition, while nurse schedules must adhere to collective union agreements, 

physician schedules are more flexible and driven by personal preferences. Carter and 

Lapierre (2001) also provides the fundamental differences between physicians and nurses 
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scheduling problems. In general, scheduling physicians requires satisfying a large number 

of conflicting constraints and preferences.  

To our knowledge, research on physician scheduling has focused primarily on a 

single type of duty, such as the emergency room (e.g. Beaulieu et al., 2000; Carter and 

Lapierre, 2001; Gendreau et al., 2007; Puente et al., 2009), the operating room (e.g. Testi 

et al., 2007; Burke and Riise, 2008; Roland et al., 2010; Vanberkel et al., 2011), the 

physiotherapy and rehabilitation services (Ogulata et al., 2008). In this paper, we consider 

the problem of generating a master schedule for the physicians within a hospital service 

by taking a full range of day-to-day duties/activities of the physicians (including surgery, 

clinics, scopes, calls, administration) into consideration. Our problem, termed the Master 

Physician Scheduling Problem, involves the assignment of physician activities to the 

time slots over a time horizon, incorporating rostering and resource constraints together 

with complex physician preferences. The goals are to satisfy as many physicians’ 

preferences and duty requirements as possible.  

The major contributions/highlights of this paper are as follows: 

(1) We take a physician-centric approach to solving this problem, since physician 

retention is the most critical issue faced by hospital administrations worldwide. 

(2) Using mathematical models, we provide a comprehensive empirical understanding of 

the tradeoff of constraints and preferences against resource capacities. 

The paper is organized as follows. We first provide a review of the literature, before 

presenting a detailed description of the problem. We then address variants of the problem 

each with a single objective and provide mathematical programming models. We also 

extend and formulate the problem as a bi-objective mathematical programming model. 

For this Weighted-Sum model, the varying values of weights are calculated by linear 

interpolation between solutions in order to obtain a set of Pareto-optimal solutions. Our 

developed models are tested on a real case from the Surgery Department of a large local 

government hospital, as well as on randomly generated problem instances. Computational 

results are reported together with our analysis. We also propose a heuristic algorithm to 

solve the single objective problem that could not be solved optimally within reasonable 

time by the exact method, and provide computational results. Finally, we provide 

concluding perspectives and directions for future research. 

Literature Review 

Personnel scheduling and rostering is becoming a critical concern in service organizations 

such as emergency services, higher education systems, health care systems, hospitality, 

and transportation systems. Scheduling in service organizations is different from that of 

manufacturing systems (Aggarwal, 1982). Some of the major differences are that the 
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output of service systems cannot be placed into inventory, the customer receives the 

service directly from the server and so on. The primary objective of the manufacturing 

system is to minimize the total cost, while the service systems deal with conflicting 

objectives, such as minimizing total cost and maximizing staff satisfaction as regards their 

schedules.  

A number of reviews in personnel scheduling and rostering research have appeared 

in Aggarwal (1982), Burke et al. (2004) and Ernst et al. (2004b).  A categorization of 

comprehensive and representative solution techniques employed for different rostering 

problems are found in Ernst et al. (2004b). A number of approaches including artificial 

intelligence approaches, constraint programming, metaheuristics, and mathematical 

programming approaches have been used for solving the specific problems. 

Beaulieu et al. (2000) proposed a mixed 0-1 programming formulation of the 

physician scheduling problem. They claimed that their work was the first to present a 

mathematical programming approach for scheduling physicians in the emergency room in 

a major hospital of the Montréal region. The basic rules applied at the hospital are 

distinguished into two categories: compulsory (or hard) and flexible (or soft) rules. 

However, this classification depends on the preferences of the hospital and on the 

physician’s flexibility. The constraints are partitioned into four different categories 

according to the types of rules to which they correspond: compulsory constraints, 

ergonomic constraints, distribution constraints, and goal constraints. The objective 

function is to minimize all deviations of the goal constraints. The problem was then 

solved by a heuristic approach based on a partial branch-and-bound. The schedules 

produced were compared with those generated by a human expert in terms of the 

computation time, the effort required and the solution quality.  

Gendreau et al. (2007) presented several generic forms of the constraints encountered 

in six different hospitals in the Montréal area (Canada) as well as several possible solution 

techniques for solving the problem. The constraints of the physician scheduling problem 

can be classified into four categories: supply and demand constraints, workload 

constraints, fairness constraints and ergonomic constraints. In this paper, we are 

concerned about the physicians’ preferences instead of fairness constraints. Four solution 

techniques that can be applied to the physician scheduling problem are categorized into 

four different categories: mathematical programming, column generation, tabu search and 

constraint programming.  

A number of exact and heuristic algorithms for various scheduling problems 

encountered in hospitals were also proposed by Beliën (2007). The first problem, namely 

the trainee scheduling problem, is solved by branch-and-price algorithm (Beliën and 

Demeulemeester, 2006). The second problem, the operating room scheduling problem, is 
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modelled as a number of mixed integer programming based heuristics and simulated 

annealing algorithm (Beliën and Demeulemeester, 2007). These models consider 

stochastic number of patients for each operating room block and a stochastic length of 

stay for each operated patient. The main objective is to minimize the expected total bed 

shortage.  

Buzon and Lapierre (1999) applied tabu search to acyclic schedules. The cost of the 

solution is the sum of the costs of all physician schedules where each cost represents the 

sum of all penalties associated with the unsatisfied constraints. Constraint programming 

has been applied to the nurse scheduling problem (Bard and Purnomo, 2005). This 

solution technique can also be applied to the physician scheduling problem after some 

minor modifications. Rousseau et al. (2002) and Bourdais et al. (2003) presented a 

hybridization of a constraint programming model and search techniques with local search 

as well as some ideas from genetic algorithms to the physician scheduling problem. 

The physician and nurse scheduling problem are inherently multi-objective 

optimization problem with conflicting objectives. (Burke et al., 2009) model these as soft 

constraints. Some classical methods for handling multi-objective optimization problem 

have been proposed in literature. One of the most commonly used method is goal 

programming since it allows simultaneous solution of multiple objectives (Ogulata and 

Erol, 2003; Topaloglu, 2006; White et al., 2006). Burke et al. (2009) presented a Pareto-

based optimization technique based on a simulated annealing algorithm to address nurse 

scheduling problems in the real world. 

Problem Definition 

The problem addressed in this paper is to assign different physician duties (or activities) 

to the defined time slots over a time horizon incorporating a large number of constraints 

and complex physician preferences. For simplicity, we assume the time horizon to be one 

working week (Mon-Fri), further partitioned into 5 days and 2 shifts (AM and PM). The 

problem that we address is a real problem in the Surgery Department of a large 

government hospital.  

Physicians have a fixed set of duties to perform, and they may specify their 

respective ideal schedule in terms of the duties they like to perform on their preferred 

days and shifts, as well as shifts-off or days off.  Taking these preferences together with 

resource capacity and rostering constraints into consideration, our goal is to generate an 

actual schedule. As shown in Figure 1 as example, the ideal schedules might not be fully 

satisfied in the actual schedule. That may occur in two scenarios: 

 Some duties have to be scheduled on different shifts or days – which we term non-

ideal scheduled duties (e.g. Physician 2, Tuesday duties). 
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 Some duties simply cannot be scheduled due to resource constraints – which we term 

unscheduled duties (e.g. Physician 1, Friday PM duty).  

 

 

 

  Physician    Physician 

  1 2 … |I|    1 2 … |I| 

Monday AM Duty 1 - … Duty 3  Monday AM Duty 1 - … Duty 5 

 PM Duty 5 Duty 4 … Duty 1   PM Duty 5 Duty 4 … Duty 1 

Tuesday AM - Duty 1 … Duty 5 
 

Tuesday AM - Duty 5 … Duty 3 

 PM Duty |L| Duty 5 … Duty 2  PM Duty |L| Duty 1 … - 

 : : :  :  : : :  : 

 : : :  :  : : :  : 

Friday AM Duty 4 - … Duty |L|  Friday AM Duty 4 - … Duty |L| 

 PM Duty 1 Duty |L| … -   PM - Duty |L| … - 

  Physicians’ Ideal Schedule    Actual Schedule 

Figure 1. Example of Master Physician Scheduling Problem  

Although each hospital has its unique rostering requirements, the following 

summarizes some common requirements treated in this paper:  

 No physician can perform more than one duty in any shift. 

 The number of resources (e.g. operating theatres, clinics) needed cannot exceed their 

respective capacities at any time. For simplicity, we assume that each type of activity 

does not share its resources with another type of activities – for example, operating 

theatres and clinics are used to perform surgery and out-patient duties, respectively.  

 Ergonomic constraints: Some duties are regarded as heavy duties, such as surgery 

and endoscopy duties. The following ergonomic constraints hold: 

o If a physician is assigned to a heavy duty in the morning shift, then he cannot be 

assigned to another type of heavy duty in the afternoon shift on the same day. 

However, it is possible to assign the same type of heavy duties in consecutive 

shifts on the same day.  

o Similarly, a physician cannot also be assigned to another type of heavy duty in the 

morning shift on a particular day if he has been assigned to a heavy duty in the 

afternoon shift on the previous day.  

Note that there are other ergonomic constraints (such as those presented by Gendreau 

et al. (2007) on constraints related to night shift). In this paper, these constraints do 

not apply as we consider only two different shifts (AM and PM). They may be added 

without loss of generality to our proposed models.  
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 The number of activities allocated to each physician cannot exceed his contractual 

commitments, and do not conflict with his external commitments. In this paper, we 

assume external commitments take the form of physicians’ request for shifts-off or 

days-off, and hence no duty should be assigned to these requests.  

We study different settings that may be instantiated from the problem. The basic 

problem (known as Model I) is to minimize the total number of unscheduled duties in an 

unconstrained setting (i.e. without any physician preferences or ergonomic constraints). 

From this basic problem, we look into two constrained problem settings that respectively 

handle physician preferences and ergonomic constraints. The first is the problem of 

satisfying the physicians’ ideal schedule as far as possible (or maximizing the total 

number of ideal scheduled duties) while not compromising on having the minimum 

number of unscheduled duties. The second is the setting where physicians do not provide 

their ideal schedule, but instead ergonomic constraints are employed across all physicians 

in minimizing the total number of unscheduled duties. Both problem settings are 

formulated as Models IIa and IIb, respectively. Finally, we also consider the problem that 

optimizes physician ideal schedules on one hand, and on the other, improves the quality of 

duty transition on non-ideal scheduled slots through ergonomic constraints.  

Mathematical Programming Models 

In this section, following a presentation of the notations used in this paper, we will 

provide the mathematical programming formulation of the basic model (Model I), single 

objective models (Models IIa and IIb) and finally the bi-objective model (Model III).   

 

Basic notations: 

I   = Set of physicians,  I,,,i 21  

J   = Set of days,  J,,,j 21  

K   = Set of shifts per day,  K,,,k 21  

L   = Set of duties,  L,,,l 21  

HL    = {l   L : l = heavy duty}  

PRA   = {(i, j, k) I × J × K : (i, j, k) = physician i requests not being assigned on day j  

shift k} 

 

Data parameters: 

lR  = number of resources required to perform duty l (lL) 

jklC   = number of resources available for duty l on day j shift k (jJ, kK, lL)  

  (i.e. resource capacity) 

ilA  = number of duty l requested by physician i in a weekly schedule (i I, lL) 

ijklF  = 1 if physician i requests duty l on day j shift k, 0 otherwise 

 

Decision and auxiliary variables: 
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ijklX  = 1 if physician i is assigned to duty l on day j shift k, 0 otherwise 

iU  = number of unscheduled duties of physician i  

iN  = number of non-ideal scheduled duties of physician i  

iS  = number of ideal scheduled duties of physician i  

 

The unconstrained problem (Model I) is one of minimizing the number of unscheduled 

duties subject to resource capacity constraints. It is formulated as follows: 

 
[Model I] 

Minimize  Ii iUZ  (1) 

Subject to: 

jklIi ijkll CXR 
  LlK,kJ,j   (2) 

ilJj Kk ijkl AX  
  LlI,i   (3) 

1 


Ll ijklX  KkJ,jI,i           (4) 

  Ll ijklX 0    PRAkj,i,   (5) 

       Ll Jj Kk Ll ijklili XAU  Ii  (6) 

 1,0ijklX  LlK,kJ,jI,i   (7) 

ZU i  Ii  (8) 

 

Constraint (1) is the total number of unscheduled duties that needs to be minimized. 

Constraint (2) is the resource capacity constraint (total number of resources required does 

not exceed total number of available resources per shift)
2
. Therefore, lR is set to zero for 

activities without limited number of resources available. Through constraint (3), the 

number of duties allocated to each physician cannot exceed his contractual commitments. 

Constraint (4) ensures that each physician cannot be assigned more than one duty in any 

shift, while constraint (5) ensures that no duty would be assigned to a physician during 

any shifts-off or days-off requested. Equation (6) defines the number of unscheduled 

duties (which is to be minimized). Constraint (7) imposes the 0-1 restrictions for the 

decision variables Xijkl, while constraint (8) is the nonnegative integrality constraint for the 

decision variables Ui. Model I computes the minimum number of unscheduled duties with 

only resource capacity constraints. It therefore provides the lower bound on the number of 

unscheduled duties as we constrain the problem further in subsequent models below.  

Model IIa extends the base model by considering the physicians’ ideal schedule. Let 

*
iU denote the optimal solution containing the number of unscheduled duties for physician 

i obtained by Model I. In order to keep to the number of unscheduled duties for each 

physician to this value, we impose this value as an upper bound (see constraint (10)). 

Model IIa seeks to then maximize the total number of ideal scheduled duties. The total 
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numbers of unscheduled, ideal and non-ideal duties for each physician are calculated by 

equations (6), (11)–(12). The rest of the constraints are identical to those of Model I. 

 

[Model IIa] 

Maximize       


Ii Jj Kk Ll ijklijkl FXZ   (9) 

Subject to: 

(2) - (8)  
*
ii UU    Ii  (10) 

    


Jj Kk Ll ijklijkli FXS
 

Ii  (11) 

 


Ii iiili USAN
 

Ii  (12) 

ZS,N,U iii  Ii  (13) 

 

We next consider another problem setting where constraints are imposed on duty 

transition, which is formulated as Model IIb. Here, we assume that duties are classified 

into two different groups: heavy and light duties. A physician assigned to a heavy duty in 

a particular shift cannot be assigned to a different heavy duty in the next shift on the same 

day, as represented by constraint (15); nor a different heavy duty in the first shift on the 

next day (constraint (16)). However, physicians can perform the same heavy duties in 

consecutive shifts. Such ergonomic constraints apparently reduce the fatigue factor and 

improve physician productivity and hence quality of service.  

 

[Model IIb] 

Minimize  Ii iUZ   (14) 

Subject to: 

(2) – (8) 

  11   2lkij1ijkl XX                212112,1 llLl&l,K,,kJ,jI,i H    (15) 

  1
21

11   ljilKij
XX     212112,1 llLl&l,J,,jI,i H    (16) 

 

Observation: Model I is a basic model without ergonomic constraints, while Model IIb is 

an extended model with ergonomic constraints. Hence, the optimal number of 

unscheduled duties obtained by Model IIb is greater than or equal to that of Model I. 

 

In Model III, we combine the two problem settings (i.e. Model IIa and IIb) presented 

previously. More precisely, we are concerned with the bi-objective problem of 

maximizing the number of ideal scheduled duties and minimizing the number of 

unscheduled duties under ergonomic constraints. Note that in Model IIa, we assume that 

non-ideal scheduled duties can be allocated at any time period without considering 

ergonomic constraints. In this combined problem, we improve the quality of the duty 
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transition of each physician by imposing ergonomic constraints on non-ideal scheduled 

duties.  

 In the following, we propose an approach to solve the problem, which is based on 

weighted-sum method that obtains Pareto-optimal solutions. Two additional sets of 

decision variables are defined as follows: 

ijklX̂  = 1 if physician i is assigned to duty l on day j shift k with respect to the ideal 

schedule, 0 otherwise 

ijklŶ  = 1 if physician i is assigned to duty l on day j shift k with respect to ergonomic 

constraints, 0 otherwise 

 

A classical multi-objective weighted-sum method combines the two objectives into a 

single objective by multiplying each objective with a user-defined weight. This weighted-

sum model is then embedded within a proposed algorithm to obtain a set of Pareto-

optimal solutions (Figure 2).  

 

[Model III] 

Minimize    Ii iIii )U(W)S(WZ 21   (17) 

Subject to:  

jklIi ijklijkll CYX(R   )ˆˆ  LlK,kJ,j   (18) 

1ˆˆ  ijklijkl YX  LlK,kJ,jI,i   (19) 

ilJj ijklKk ijkl A)YX(    ˆˆ  LlI,i   (20) 

1ˆˆ  Ll ijklijkl )YX(  KkJ,jI,i            (21) 

  Ll ijklijkl )YX( 0ˆˆ    PRAkj,i,   (22) 

ijklijkl FX ˆ    LlK,kJ,jI,i   (23) 

       Jj Kk Ll ijklijklLl ili YXAU )ˆˆ(  Ii  (24) 

     Jj Kk Ll ijkli XS ˆ  Ii  (25) 

     Jj Kk Ll ijkli YN ˆ  Ii  (26) 

    1ˆˆˆ
221 11   lkijlkijijkl YXY

    
   212112,1 llLl&l,K,,kJ,jI,i H    (27) 

    1ˆˆˆ
221

1111   ljiljilKij YXY
  

   212112,1 llLl&l,J,,jI,i H    (28) 

1ˆˆˆ
221

11  lijlijlKij YXY
            

 2121 llLl&lJ,jI,i H 
 

(29)
 

    1ˆˆˆ
221 111   lKjilKjilij YXY

            
   21213,2 llLl&l,J,...,jI,i H   (30) 

 1,0ˆ,ˆ ijklijkl YX   LlK,kJ,jI,i   (31) 

ZS,NU iii ,   Ii  (32) 

 

Note that in Model III above, maximizing the total number of ideal scheduled duties 

is equivalent to minimizing the function given by (-1) × total number of ideal scheduled 

duties. In this model, the objective function and some of constraints are identical to those 
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of Model IIa. Constraint (21) ensures that a duty is scheduled as either an ideal or a non-

ideal duty. The details of ergonomic constraints are represented by equations (27) – (30). 

Finally, constraint (31) imposes the 0-1 restrictions for the decision variables ijklX̂ and 

ijklŶ while constraint (32) is the nonnegative integrality constraint for the decision 

variables iU , iN and iS .  

The advantage of the weighted-sum method is that it guarantees finding Pareto-

optimal solutions for convex optimization problems, which can be inferred from Deb 

(2003) Theorem 3.1.1:  

Corollary: The solution to Model III is not Pareto-optimal iff either W1 or W2 is set to 

zero. 

We efficiently generate a set of Pareto-optimal solutions for Model III by using the 

following algorithm. We first generate k (constant) number of solutions with different 

values of W1 uniformly distributed between [0, 1]. Since not all Pareto-optimal solutions 

may be discovered by the initial set of weights, we introduce an adaptive exploration on 

the neighbourhood of weights using linear interpolation, i.e. we examine two different 

Pareto-optimal solutions to derive weights for obtaining other possible optimal solutions. 

The details of the algorithm for using Model III to obtain Pareto-optimal solutions are 

presented in Figure 2. 

 

 

(1) Set W1 = 1 

(2) Repeat 

(3)   Set W2 = 1 - W1 

(4)   Solve Model III 

(5)   W1 = W1 – 0.1 

(6) Until W1 < 0 

(7) For all solutions generated by the above, let S denote the subset of Pareto-optimal solutions  

(8) For a pre-set number of iterations do the following 

(9) Let S1 and S2 ( S) with the lowest and the second lowest total number of unscheduled duties, 

respectively 

(10)   Set W′1 = W1 of solution S1 and W′2 = W2 of solution S1 

(11)   Set W′′1 = W1 of solution S2 and W′′2 = W2 of solution S2 

(12)   Calculate new weights, denoted as W*1 and W*2, as follows: 

   W*1 = (W′1 + W′′1)/2 

   W*2 = 1 - W*1 

(13) Solve Model III with W1 = W*1 and W2 = W*2 

(14) If the solution obtained is a new Pareto-optimal solution then 

(15)    Update S 

(16) Else if the solution obtained and S1 are the same then 

(17)   Set the solution obtained as S1 and Update S 

(18) Else if the solution obtained and S2 are the same then 

(19)    Set the solution obtained as S2 and Update S 

Figure 2. Algorithm to obtain Pareto-optimal solutions 

Computational Results 
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In this section, we report a comprehensive suite of experimental results which aims to 

provide computational perspectives on one hand, and insights to hospital administrators 

on the other. All models were solved by the CPLEX 10.0 solver engine.  

Experimental Setup 

First we discuss problem instance generation. 6 sets of random instances (Random 1 to 6) 

were generated with varying values of the following parameters : total percentage of 

heavy duties assigned to physicians (last column of Table 1) and number of resources 

available in every shift (Table 2). This is to enable sensitivity analysis, which will be 

described in more detail after the results reported (Figure 3). Other parameters, such as 

number of heavy duties and number of duties with limited resource capacity, are set to a 

constant. In addition to random instances, we also provide a real case study provided by 

the Surgery Department of a large local government hospital and several other quasi-

random instances (Random 7, 8 and 9) which have similar characteristics to the real case, 

to help understand the nature of the real case study. Table 1 summarizes the 

characteristics of each problem set. In order to generate sufficient hard problem instances 

for the purpose of sensitivity analysis, the resource capacity level has to be carefully set, 

and interested reader can refer to Gunawan and Lau (2009).  

Table 1. Characteristics of Problem Instances 

Problem Set 
Number 

of 

physicians 

Number of 
shifts per 

day 

Number 

of days 

Number 

of duties 

Number 
of heavy 

duties 

Number of 

duties with 

limited 
capacity 

Total 

percentage 

of heavy 
duties* 

Case study 15 2 5 9 3 3 73% 

Random 1 20 2 5 7 3 3 20% 

Random 2 20 2 5 7 3 3 30% 
Random 3 20 2 5 7 3 3 40% 

Random 4 20 2 5 7 3 3 50% 

Random 5 20 2 5 7 3 3 60% 
Random 6 20 2 5 7 3 3 70% 

Random 7 15 2 5 9 3 3 75% 

Random 8 16 2 5 9 3 3 75% 
Random 9 50 2 5 7 5 3 69% 

  %|K||J||I|/A* Ii Ll ilH 100     

 

As an illustration, Table 2 presents three columns that give the varying values of Cjkl 

for different duties defined in the instances of the Random 1 problem sets. The total 

number of resources required for Duty 1, Duty 2 and Duty 3 are 15, 28 and 22, 

respectively. Here, Duty 2 is the duty with the highest number of resources required and 

hence the value of Cjkl for Duty 2 is set to 












52

282
 and decreases by one unit until it is 

equal to 1
52

28











. For Duty 1 and Duty 3, we set the initial values of Cjkl to 1

52

15











 



  

12 

and 1
52

22











, respectively and varying the values according to the description given 

above. For instance, for Duty 1, by varying the values for Cjkl, there are 7 different 

problem instances generated. 

 

 Table 2. Examples of varying values of Cjkl (Random 1 instances) 

Problem Set Instances 
L 

Duty 1 Duty 2 Duty 3 

Random 1 

 15 28 22 

Random 1a 3 6 4 

Random 1b 3 5 4 

Random 1c 3 4 4 

Random 1d 3 3 4 

Random 1e 3 3 3 

Random 1f 2 3 3 

Random 1g 1 2 2 

 

In the following, we report a suite of computational results and analysis obtained 

from our mathematical models described above. Our mathematical models were 

implemented using CPLEX 10.0 and executed on a Intel (R) Core (TM)
2
 Duo CPU 

2.33GHz with 1.96GB RAM that runs Microsoft Windows XP. 

Results from Model I and IIa 

First, results obtained from Model I for Random 1 and Random 2 problems are shown in 

Table 3.  It is interesting to observe a two-point phase transition in the minimum number 

of unscheduled duties (column 2) with changing values of Cjkl. It remains unchanged over 

a sufficiently large range of values. As the value of Cjkl of the duty with the highest 

requirement tends to 














 

JK

AR Ii ill , the number of unscheduled duties starts to increase. 

For example, as we decrease the Cjkl’s value for Duty 2 from 6 to 4 for Random 1 

instances, the number of unscheduled duties remains zero, but when this value reaches 3, 

the number of unscheduled duties increases to 4. Then, when the number of resources 

available is set to 1














 

JK

AR Ii ill for each activity Ll , the number of unscheduled 

duties increases drastically from 5 to 10 unscheduled duties. The same behavior was also 

observed for the other problem sets listed in Table 1.  

From Table 3 again, we observe that the number of unscheduled duties is very low in 

comparison to the number of scheduled duties. The percentage of unscheduled duties is on 

average less than 3% for Random 1 and Random 2 instances. Similar observations are 

made for other random problem sets. These results demonstrate the effectiveness of the 

optimization model on random hard instances. It is interesting to see these results in the 

light of the real-world case study problem instance where the percentage of unscheduled 
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duties obtained is around 4.7%. This gives evidence to the hospital management that their 

resource capacity has reached a critical threshold as typified by problem instances 1g and 

2i, and consequently will experience a drastic reduction of performance if resources 

cannot come up to par with physician duties. 

 

Table 3. Summary of results for Models I and IIa 

Problem 

Instances 

Number of 

unscheduled 

duties 

Number of scheduled duties 
Percentage of 

unscheduled 

duties (%) 

Percentage of scheduled duties 

(%) 

Ideal Non-ideal Ideal Non-ideal 

Case study 7 139 4 4.7 92.6 2.7 

Random 1a 0 196 4 0 98 2 

Random 1b 0 192 8 0 96 4 

Random 1c 0 192 8 0 96 4 

Random 1d 4 186 10 2 93 5 

Random 1e 5 179 16 2.5 89.5 8 

Random 1f 5 178 17 2.5 89 8.5 

Random 1g 10 173 17 5 86.5 8.5 

Random 2a 0 196 4 0 98 2 
Random 2b 0 196 4 0 98 2 

Random 2c 0 196 4 0 98 2 

Random 2d 0 194 6 0 97 3 

Random 2e 0 194 6 0 97 3 

Random 2f 3 184 13 1.5 92 6.5 

Random 2g 3 184 13 1.5 92 6.5 

Random 2h 3 183 14 1.5 91.5 7 

Random 2i 10 176 14 5 88 7 

 
Table 3 also presents results on the extent of the satisfiability of ideal schedule in the 

actual schedule, obtained from running Model IIa. These results are illustrated in Figures 

3(a) and 3(b). Note that the left axes in both figures measure the percentage of ideal, non-

ideal scheduled and unscheduled; and the resource availability/requirement gap %Gap 

respectively. The resource availability/requirement gap is defined 

as %100





 

    

 

    

Ii Ll ill

Jj Kk Ll Ii Ll illjkl

AR

ARCLK
% Gap . It represents a resource 

buffer, i.e. the proportion of total resource availability that exceeds the sum of resource 

requirement requested.  

  

(a)      (b)  

Figure 3. Parameter analysis of Random 1 Problem Set 
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From Figure 3(a), we can infer that in order to ensure zero unscheduled duties 

(which is often a hard constraint, since doctor duties should not be unfulfilled), the total 

number of available resources for each activity Ll  must be above the threshold 

1














 

JK

AR
Ii ill  (see instances 1a, 1b and 1c). From Figure 3(b), we can also infer that 

when the %Gap is decreased below 23%, the percentage of unscheduled duties will be 

doubled (see instances 1f vs 1g, also 2h vs 2i). Similar observations have been made for 

the rest of the problem instances. From the hospital administration standpoint, the latter 

result shows the critical resource availability threshold below which the degradation of 

service performance will be keenly felt.  

Next, the result of the case study problem instance is compared with that of the 

actual allocation generated manually by the hospital, as summarized in Table 4. Although 

the number of unscheduled duties via manual allocation is smaller than the results 

obtained by Model IIa, the number of non-ideal scheduled duties is significantly higher 

than that of the model solution. Note also that the manual allocation is strictly speaking 

not feasible, since two physicians had to cancel their days-off or shifts-off to perform their 

duties. This manual plan is therefore very undesirable since physicians might have 

external commitments that cannot be delayed or cancelled. Suppose that the two 

physicians are unwilling to fulfill these duties on their days-off or shifts-off, the number 

of unscheduled duties would be equal to the solution obtained by our proposed approach. 

We conclude that our proposed approach performs better than the manual allocation. 

Table 4. Comparison between the manual allocation and model solution on a real case 

 Manual allocation Optimal solution 

Number of unscheduled duties 5 7 

Number of non-ideal scheduled duties 10 4 

Number of physicians assigned duties during days-off or shifts-off 2 0 

Results from Model IIb 

Table 5 presents results obtained by running Model IIb against our problem instances.  

We observe that Random 6 (where the percentage of heavy duties reaches 70%) and 

Random 9 problem sets could not be solved to optimality within the computation time 

limit of 6 hours. As such, we only report the best known solutions that could be obtained 

for these problem instances.  

Using Model IIb, we perform sensitivity analysis on the impact of ergonomic 

constraints on resource utilization, which is of great interest to the hospital administrator. 

Particularly, for solutions with non-zero unscheduled duties (see instances 1d-1g, …, 5j-

5m, etc on Table 5), the question is the resource level actually needed to bring the number 
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of unscheduled duties down to 0. We conducted experiments over the same set of random 

instances as shown in Table 1 (see last column).  

Figure 4(a) gives the aggregate results. The x-axis represents the percentages of 

heavy duties, while the y-axis measures the resource requirement.  

(a) The square-solid curve shows the minimum total resource required in order that the 

number of unscheduled duties will remain zero (due to ergonomic constraints), while 

the diamond-dotted curve shows the corresponding resource requirement given by 

the input (refer to left y-axis). The impact of the ergonomic constraints is given by the 

gap between these two curves. We observe that across the board, a resource buffer of 

about 20% of the total resource requirement is needed, in order to satisfy all 

ergonomic constraints. In other words, the cost of enforcing ergonomics constraints is 

20% of resource requirement.  

(b) Another observation is the impact on the number of unscheduled duties under fixed 

resource constraints. The triangular-dashed curve shows the number of unscheduled 

duties for problem instance 1c (refer to right y-axis). Note that as we increase the 

percentage of heavy duties, the total number of unscheduled duties increases 

gradually, until a certain threshold of 40%, when it is observed to increase sharply. 

This phase transition phenomenon is also observed in other random instances. It 

provides insights to the hospital administrator in terms of planning the limits of heavy 

duties for the physicians. 

 

Table 5. Computational results of Model IIb 

Problem 
instances 

Number of 
unscheduled duties 

Number of 
scheduled duties 

Problem instances 
Number of 

unscheduled duties 
Number of 

scheduled duties 

Case study 8 142 Random 4i 6 194 

Random 1a 0 200 Random 4j 6 194 

Random 1b 0 200 Random 4k 10 190 

Random 1c 0 200 Random 5a 0 200 

Random 1d 4 196 Random 5b 0 200 

Random 1e 5 195 Random 5c 0 200 
Random 1f 5 195 Random 5d 0 200 

Random 1g 10 190 Random 5e 0 200 

Random 2a 0 200 Random 5f 0 200 

Random 2b 0 200 Random 5g 0 200 

Random 2c 0 200 Random 5h 0 200 

Random 2d 0 200 Random 5i 0 200 

Random 2e 0 200 Random 5j 3 197 

Random 2f 3 197 Random 5k 8 192 

Random 2g 3 197 Random 5l 8 192 
Random 2h 3 197 Random 5m 10 190 

Random 2i 10 190 Random 6a* 2 198 

Random 3a 0 200 Random 6b* 2 198 
Random 3b 0 200 Random 6c* 3 197 

Random 3c 0 200 Random 6d* 3 197 

Random 3d 0 200 Random 6e* 3 197 

Random 3e 0 200 Random 6f* 3 197 

Random 3f 5 195 Random 6g* 3 197 

Random 3g 9 191 Random 6h* 3 197 

Random 3h 9 191 Random 6i* 4 196 
Random 3i 10 190 Random 6j* 4 196 

Random 4a 0 200 Random 6k* 5 195 
Random 4b 0 200 Random 6l* 6 194 

Random 4c 0 200 Random 6m* 7 193 
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Problem 

instances 

Number of 

unscheduled duties 

Number of 

scheduled duties 
Problem instances 

Number of 

unscheduled duties 

Number of 

scheduled duties 

Random 4d 0 200 Random 6n* 7 193 

Random 4e 0 200 Random 6o* 23 177 

Random 4f 0 200 Random 7 8 142 

Random 4g 0 200 Random 8 12 148 
Random 4h 3 197 Random 9* 27 473 

*CPU time = 6 hours  
 
 

Figure 4(b) gives a detailed breakdown of three selected duties for the Random 1d 

instance (where the number of unscheduled duties is non-zero, due to resource 

constraints). Again, we examine the gap between the total requirement (as given by the 

input) vs the number of resources actually required in order to ensure zero unscheduled 

duties. We see that Duty1 with fewer resource requirements would require less resource 

buffer (up to 30%). On the other hand, Duty2 and Duty3 require more resource buffer (up 

to 40%) in order to ensure zero unscheduled duty. Similar observations can be obtained 

for other random instances. 

 

  

               (a)                                         (b) 

Figure 4. Sensitivity analysis on percentage of heavy duties 

Results from Model III 

Recall that different sets of weight vectors were generated using the proposed algorithm 

presented in Figure 2 in order to obtain a set of Pareto-optimal solutions. Table 6 

represents the results obtained by the proposed algorithm for representative instances 6k 

and 6l. The number of iterations is set to 5 iterations. We start by selecting 10 different 

weight vectors that are uniformly distributed within [0, 1]. We notice that different weight 

vectors need not necessarily lead to different Pareto-optimal solutions, and some weight 

vectors lead to the same solution.  

Table 6. Computational results of instances 6k and 6l 

Random 6k Random 6l 

Weight 
Number of 
Scheduled 

duties 
Number of 

Unscheduled 

duties 

Weight 
Number of 
Scheduled 

duties 
Number of 

Unscheduled 

duties 
W1 W2 Ideal 

Non-
Ideal 

W1 W2 Ideal 
Non-
Ideal 

1.0 0.0 166 0 14 1.0 0.0 161 0 19 
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0.9 0.1 166 7 7 0.9 0.1 161 9 10 
0.8 0.2 166 7 7 0.8 0.2 161 9 10 

0.7 0.3 166 7 7 0.7 0.3 161 9 10 

0.6 0.4 166 7 7 0.6 0.4 161 9 10 
0.5 0.5 165 9 6 0.5 0.5 161 9 10 

0.4 0.6 163 13 4 0.4 0.6 159 13 8 

0.3 0.7 161 16 3 0.3 0.7 153 22 5 
0.2 0.8 153 27 0 0.2 0.8 149 27 4 

0.1 0.9 153 27 0 0.1 0.9 140 38 2 

0.0 1 106 74 0 0.0 1 93 85 2 

0.25 0.75 153 27 0 0.15 0.85 140 38 2 
0.275 0.725 156 23 1 0.175 0.825 145 32 3 

0.2625 0.7375 156 23 1 0.1625 0.8375 140 38 2 

0.25625 0.74375 156 23 1 016875 0.83125 145 32 3 
0.256125 0.746875 156 23 1 0.165625 0.834375 140 38 2 

 

By using linear interpolation, we can obtain other possible Pareto-optimal solutions. 

Here, we focus on exploring neighbourhoods of the solutions with the lowest values of the 

total number of unscheduled duties since we view unscheduled duties as undesirable 

compared to non-ideal scheduled duties. In general, the value of W1 should be within [0.1, 

0.2] in order to obtain the lowest number of unscheduled duties. 

The following figure represents the Pareto-optimal solutions obtained for some 

Random 5 and Random 6 instances. This can be extended and applied to other instances 

of other problems. In general, we observe the general trade-off between the number of 

unscheduled duties and the number of non-ideal scheduled duties. 

    

Figure 5. Pareto optimal solutions of some instances of Random 5 and Random 6 problem sets 

 

We also tested the proposed algorithm to the real case study. It is concluded that the 

value of W1 should be within [0.9, 1.0] in order to obtain the lowest number of 

unscheduled duties (Gunawan and Lau, 2010). The result of the real case study problem is 

also compared with that of the actual allocation generated manually by the hospital, as 

summarized in Table 7.  

We observe that the number of ideal scheduled duties obtained by Weighted-Sum 

Model is significantly higher than that of the manual allocation. Although the number of 

unscheduled duties obtained by Weighted-Sum Model is slightly worse than the number 

of unscheduled duties via manual allocation, we notice that the number of non-ideal 

scheduled duties is better than that of the manual allocation. One possible reason is that in 
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manual allocation, the administrator allocates non-ideal scheduled duties to any time 

slots/shifts without considering the ergonomic constraints. In our proposed model, we 

consider both the ideal schedule and ergonomic constraints.    

 

Table 7. Comparison between the manual allocation and model solutions on a real case 

 Manual allocation 
Weighted-Sum 

Model 

Number of unscheduled duties 5 8 

Number of non-ideal scheduled duties 10 2 

Number of ideal scheduled duties 135 140 

Local Search Algorithm  

In order to solve large-scale problem instances that could not be solved optimally by 

CPLEX 10.0 (Model IIb), we propose a heuristic algorithm based on local search. The 

algorithm moves from a candidate solution to a solution in its neighbourhood in the search 

space until a local optimum is found. The entire algorithm comprises of two main phases: 

(1) construction, and (2) improvement. The greedy heuristic is used to initialize a solution 

in the first phase, while the local search algorithm with different types of neighbourhood 

structures is used to improve the solution in the second phase. Each phase is presented and 

described in detail below. 

Construction Phase 

Let  








KJ
iiii lllL ,...,, 21 be the set of duties scheduled for physician i during the entire 

week. The optimal solution of Model I is used as the initial solution of Model IIb. 

However, this optimal solution might be infeasible for Model IIb since some duties 

violate the ergonomic constraints. Figure 6 gives our proposed algorithm to generate the 

initial feasible solution. The main idea is to remove the heavy duties that violate the 

ergonomic constraints.  

Figure 7 shows an example of the algorithm trace. Here, we use the following 

indexes to distinguish the duties: 0 for heavy duties that do not violate the ergonomic 

constraints, while 1 for heavy duties that violate the ergonomic constraints. Duties with 

index 1 are then removed and have to be rescheduled. For example, Duty6 on Shift2 of 

Day5 is not considered as a heavy duty. The index of Duty6 is still zero since it does not 

violate the ergonomic constraint when it is compared to Duty1 on Shift1 of Day5. On the 

other hand, Duty1 has to be set to one due to the constraint violation with the previous 

duty, Duty2 on Shift2 of Day4 (as partially shown in Figure 7). 

After conducting the above mentioned procedure, the number of unscheduled duties 

can be large. A list of physicians who have a certain number of unscheduled duties, 
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denoted as the excess_list, is generated. We then proceed to the next phase, the 

improvement phase to further improve the initial feasible solution generated in the 

construction phase. 

 

 

(1) Set the initial index of each duty Ll scheduled on day Jj shift Kk for physician Ii to zero 

(2) For each physician Ii do (Checking procedure) 

(3) Check whether the first two consecutive duties  21, ii ll violate the ergonomic constraint. If yes, set the index of 

duty
1
il to one 

(4) Check whether two consecutive duties  1, m
i

m
i ll  12where  KJm violate the ergonomic constraint. If yes, 

set the index of duty
m
il to one  

(5) Check whether two consecutive duties  1, m
i

m
i ll  12where  KJm violate the ergonomic constraint. If yes, 

set the index of duty
m
il to one 

(6) Check whether the last two consecutive duties 






  KJ

i

KJ

i ll ,
1

violate the ergonomic constraint. If yes, set the 

index of duty
KJ

il to one 

(7) Remove all duties with index one 

Figure 6. Construction Algorithm 

 

 

 

 

 

 

 

 

 

 

 
*heavy duties 

Figure 7. Checking procedure  

Improvement Phase 

After the initial solution is built in the construction phase, Local Search Approach with 

different strategies is applied in the improvement phase to schedule unscheduled duties as 

many as possible. Here, we propose 2 different strategies. Each strategy consists of a 

combination of two neighbourhood structures (N1 with either N2 or N3) as represented in 

Figure 8. 
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(1)  Set outer_loop = 0 

(2)  While outer_loop < max_outer_loop 

(3)    Set inner_loop = 0 

(4)    While inner_loop < max_inner_loop 

(5)       Apply N1 

(6)       inner_loop := inner_loop + 1    

(7)    Set inner_loop = 0 

(8)    While inner_loop < max_inner_loop 

(9)       Apply N2 or N3 

(10)      inner_loop := inner_loop + 1 

(11)   outer_loop := outer_loop + 1  

 

Figure 8. Improvement Algorithm 

Neighbourhood1 (N1) 

The idea of N1 is to re-allocate some scheduled duties and schedule unscheduled duties in 

order to minimize the number of unscheduled duties. The procedures and an example of 

N1 are described in Figures 9 and 10, respectively. 

 
(1)  Select physician Ii from the excess_list randomly 

(2)  Find an empty timeslot randomly, time2 

(3)  Start from Day1 Shift1, check whether the duty allocated, 
1time

il which was initially scheduled at time1, can be    

scheduled at time2 by considering both ergonomic and capacity constraints 

(4)  If 
1time

il can be scheduled at time2, find any unscheduled duty and check whether it can be scheduled at time1 

(5)  If an unscheduled duty can be scheduled at time1, update the current solution. Otherwise, return to step (1) 

Figure 9. Neighbourhood1 (N1) 
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Figure 10. Example of Neighbourhood1 (N1) 

Neighbourhood2 (N2) 

The idea of N2 is to re-allocate two different scheduled duties. Our proposed 

neighbourhood structure is in essence a kind of ejection chain move involving one 

physician and two different scheduled duties. This neighbourhood can be considered as a 

variation on the classical 3-Opt move for solving the Traveling Salesman Problem and 
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other network optimization problems. The procedures and an example of N2 are shown in 

Figures 11 and 12, respectively. 

 

(1)  Select physician Ii from the excess_list randomly 

(2)  Find an empty timeslot randomly, time3 

(3)  Find two different scheduled duties, 

 

1time
il  at time1 and 

2time
il  at time2 

(4)  Check whether 
1time

il and 
2time

il can be rescheduled at time3 and time1, respectively 

(5)  If both can be allocated, let time2 be an empty timeslot and update the solution. Otherwise, return to step (1) 

Figure 11. Neighbourhood2 (N2) 
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Figure 12. Example of Neighbourhood2 (N2) 

Neighbourhood3 (N3) 

This neighbourhood is similar to N2. Instead of re-allocating two scheduled duties, we 

focus on three scheduled duties. The procedures are described in Figure 13. Figure 14 

shows an example of Neighbourhood3 (N3). 

 

(1)  Select physician Ii from the excess_list randomly 

(2)  Find three different scheduled duties, 

 

1time
il  at time1, 

 

2time
il  at time2 and 

3time
il  at time3 

(3)  Check whether 
1time

il , 
2time

il and
3time

il can be rescheduled at time2, time3 and time1, respectively. 

(4)  If all can be re-allocated, update the solution. Otherwise, return to step (1) 

Figure 13. Neighbourhood3 (N3) 
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Figure 14. Example of Neighbourhood3 (N3) 
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Computational Results  

To evaluate the performance of the proposed algorithm, we compare the solutions 

obtained with the optimal/best known solutions. The entire algorithm was coded in C++ 

and tested on a Intel (R) Core (TM)
2
 Duo CPU 2.33GHz with 1.96GB RAM that runs 

Microsoft Windows XP. Preliminary experimentation was performed to determine 

suitable values for the parameters of algorithm. These values were chosen to ensure a 

compromise between the computation time and the solution quality. Both max_inner_loop 

and max_outer_loop are set to |I|×|J|×|K|.  

The performance of our proposed algorithm is defined by calculating the percentage 

of unscheduled duties compared against the total number of available timeslots (|I|×|J|×|K|) 

(denoted by algorithmZ ). For instance, if the number of unscheduled duties is 10 duties, while 

the total available timeslots is 20×5×2=200 slots, the percentage of unscheduled duties is 

only 5%. This percentage is then compared against the best known/optimal solutions 

(denoted by bestZ ) using equation (33). Table 8 summarizes the difference between the 

percentage of unscheduled duties by the proposed algorithm and the best known/optimal 

solutions of a particular problem set.  

%100




KJI

ZZ bestalgorithm
       (33) 

We observe that the combined N1-N3 neighbourhood yields lower deviation values 

compared with the N1-N2 neighbourhood. We also observe that when we increase the 

percentage of heavy duties, the deviation value would also be higher. It would be more 

difficult to schedule a large number of heavy duties due to ergonomic constraints. For a 

situation when the number of physicians is less and the total percentage of heavy duties is 

high (e.g. case study, Random 7 and 8), the deviations are higher due to difficulty in 

scheduling the heavy duties. 

 

Table 8. Comparing proposed algorithm with best known/optimal solutions (in terms of 

the percentage of unscheduled duties) 

Data sets Neighbourhood strategies 

N1-N2 (%) N1-N3 (%) 

Case Study 7.2 7.2 

Random 1 0.00 0.00 
Random 2 0.11 0.00 

Random 3 0.17 0.06 

Random 4 0.27 0.23 
Random 5 1.27 0.50 

Random 6 2.57 1.87 

Random 7 12.5 12.5 
Random 8 10.3 9.7 

Random 9 2.00 0.60 
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Conclusion  

In this paper, we study the Master Physician Scheduling problem, motivated by our work 

with a local hospital. To our knowledge, this is the first attempt that looks holistically at 

an entire range of physician duties quantitatively that enables hospital administrators to 

incorporate physician preferences in their rostering. Since the particular problem studied 

is representative of the Surgery Department of a large local government hospital, we 

believe our model does not require major customizations for use in other hospitals with 

similar constraints and preference structures.  

We see many possibilities of extending the work. Our approach in this paper is 

purely optimization-based, including the handling of physician preferences. It will be 

interesting to investigate how other preference-handling methods (such as CP-nets) can be 

incorporated to model complex physician preferences. Similarly, one might also consider 

fairness constraints commonly seen in hospitals (Gendreau et al., 2007). Algorithmically, 

it would be interesting to tackle large-scale problems (such as the Random 6 instances) 

with a large number of heavy duties (around 70% of the total duties) that cannot be solved 

efficiently by exact optimization models with meta-heuristic or evolutionary approaches. 

The problem can also be formulated and solved as a bi-objective optimization problem 

(preliminary work appears in Gunawan and Lau, 2010).   
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