MULTI-PERIOD MULTI-DIMENSIONAL KNAPSACK PROBLEM AND ITS APPLICATION
TO AVAILABLE-TO-PROMISE

Hoong Chuin LAU and Min Kwang LIM
School of Computing
National University of Singapore,
8 Science Drive 2, Singapore 117543
lauhc@comp.nus.edu.sqg

Abstract

This paper is motivated by a recent trend in logistics
scheduling, called Available-to-Promise. We model this
problem as the multi-period multi-dimensional knap-
sack problem. We provide some properties for a special
case of a single-dimensional problem. Based on insights
obtained from these properties, we propose a two-phase
heuristics for solving the multi-dimensional problem.
We also propose a novel time-based ant colony opti-
mization algorithm. The quality of the solutions gener-
ated is verified through experiments, where we demon-
strate that the computational time is superior com-
pared with integer programming to achieve solutions
that are within a small percentage of the upper bounds.
Keywords: Multi-dimensional knapsack problem, Lo-
gistics, Tabu search, Ant colony.

1. Introduction

The motivation of this work arises in an e-Commerce
ordering system or an e-Market place where customer
requests arrive dynamically (through, say the web).
The key requirement of the so-called Available-to-
promise capability is that suppliers can ”promise” to
meet batches of online customer requests with the avail-
able inventories (in the warehouse) over a certain plan-
ning horizon. Each request comprises a collection of
items, the quantity of each item, and a specific period
when this request needs to be fulfilled. A request may
be fulfilled at some period later (but not earlier) than
the prescribed period. A late penalty cost will be in-
curred which is period-dependent (usually, the later the
fulfilment the higher the penalty). Hence the net profit,
defined as the total revenue minus the total penalty
cost, is also period-dependent.

For available-to-promise to be practically useful, sup-
pliers must be able to examine the current inventory
profile and make online decisions whether they can
promise fulfilment. Given the NP-hardness of the un-
derlying problem, global optimality is unlikely to be
found quickly. This paper proposes and compares two
heuristics that obtain near-optimal solution quickly.

We model the problem as a generalization of the
multi-dimensional knapsack problem (MKP), which we
call the multi-period multi-dimensional knapsack prob-
lem (MPMKP). MPMKP can be seen as a generaliza-
tion of the well-studied dynamic capacitated lot-sizing
problem in manufacturing, where there is a single cus-
tomer and a single item to supply. This problem has
been extended in different ways, including the work
of Lau and Song (2002) which consider extension to
multiple customers and time windows. In this paper,
we consider multi-customer, multi-item composite de-
mands with monotonically decreasing profit function.

Our objective here is to maximize the net profit by
fulfilling a subset of all requests over the discrete plan-
ning horizon subject to item availability constraints.
This problem can be modeled as an MPMKP, where a
request can be regarded as an object to be added to
an MKP of certain period while the available quanti-
ties of all items at the beginning of this period can be
regarded as the capacity constraint of this knapsack.
Each period’s MKP is related to the one of the next
period in that the remaining inventory of any item at
the end of this period is carried forward to the next
period given that this period is not the last one of the
discrete planning horizon.

We assume that the reader is familiar with the con-
cepts of tabu search and ant colony optimation.

This paper is organized as follows. In the next sec-
tion, we present a brief literature review and notations
used in the paper. We begin by studying a special case,
the multi-period single-dimensional knapsack problem.
Some combinatorial properties and a heuristic with per-
formance bound for this special case are presented.
Next, we propose two meta-heuristic approaches for
the MPMKP: an efficient Tabu Search, and a novel Ant
Colony Optimization algorithm that handles the notion
of time explicitly. The quality of the solutions obtained
is verified through extensive numerical experiments on
extended benchmark problems.

Page 1

2. Literature Review and Preliminaries

While many research works are available in the lit-
erature for MKP, to our best knowledge, there is no
published research work for the MPMKP. Shih (1979)
presented a branch and bound algorithm for MKP. An-
other branch and bound algorithm was developed by
Gavish and Pirkul (1985) where various relaxations of
the problem were used, their algorithm was compared
with the exact algorithm of Shih (1979) and was found
to be faster by at least one order of magnitude. Other
previous exact algorithms, with only limited success
reported, include dynamic programming. Loulou and
Michaelides (1979) presented a greedy method based
on Toyoda’s primal heuristic (1975). Balas and Mar-
tin (1980) used linear programming by relaxing the in-
tegrality constraints and heuristically setting the frac-
tional solution to become integral while maintaining
feasibility. Pirkul (1987) presented a heuristic algo-
rithm which makes use of surrogate duality. Freville
and Plateau (1994) presented an efficient preprocess-
ing algorithm for MKP. Freville and Plateau (1997)
presented a heuristic for the special case, the bidimen-
sional knapsack problem, their heuristic incorporated a
number of components including problem reduction, a
bound based surrogate relaxation and partial enumer-
ation. A number of papers involving the use of tabu
search to solve MKP have appeared such as Dammeyer
and Voss (1993) and Aboudi and Jornsten (1994).

Before we present the mathematical formulation of
the MPMKP, we introduce some notation:

T : number of periods in the planning horizon
N : total number of requests over the planning horizon
M : total number of items
tJ : the prescribed period where request j is due to be
fulfilled
ai; : order size for item ¢ in request j
b;+ : incoming quantity of item ¢ at the beginning of
period t
pj¢ : net profit if request j is fulfilled in period ¢.

In this paper, we assume that the profit function
pj: of any request j is a concave function with respect
to t(1 < t < T) and partial delivery is not allowed.
MPMKP becomes a linear program (which is easy to
solve) if partial deliveries are allowed. The maximum
profit of the request j will be attained at period t/
and the profit decreases monotonically from period t/
onwards with increasing time. Without loss of general-
ity, we assume that for any request j, p; i > pj iy if
t? < T. Since we assume that the inventory of any item
can be carried forward at no additional cost and there
is no inventory capacity constraint at the warehouse,
there is no need to consider early fulfillment, and hence
we assume pj; = 0 for all 1 < ¢ </ if ¢/ > 1. The
MPMKP can be mathematically formulated as:

N T
max Z = Zj:l > im1 Pjtje s.t.

N
> aijie+ s =bi+sip1 1<i<M1<t<T()
j=1
T
driyp<l 1<j<N (2)
t=1

where z;; € {0, 1}, 8,0 =0,s; > 0. If z;, = 1, it means
that request j is fulfilled at period ¢, otherwise, it is not
fulfilled at period ¢. The s;; is a slack variable, i.e., the
remaining inventory level at the end of period ¢ for item
1. Without loss of generality, we also assume that the
initial inventory level at the beginning of the planning
horizon is zero for all M items, i.e., s;0 = 0. Constraints
(1) are inventory balance constraints. Constraints (2)
mean that each request can be fulfilled at no more than
one period.

From the above formulation, it is obvious that if T' =
1, the MPMKP is reduced to an MKP. If T" = 1 and
M =1, it is reduced to the well known 0-1 knapsack
problem (KP). Since the KP is NP-hard, the MPMKP
is NP-hard.

3. Multi-period single-dimensional knapsack
problem

In this section, we will study a special case, the multi-
period single-dimensional knapsack problem (MPKP).
We first provide some basic properties of the continu-
ous relaxation in subsection 3.1. By using these prop-
erties, we propose a heuristic with performance bound
for solving MPKP in subsection 3.2.

3.1 Continuous relaxation

Consider the continuous relaxation of the MPKP (i.e.
xj¢ is a real number and 0 < x;; < 1), which is denoted
by C-MPKP. In the following, we will characterize the
structure of an optimal solution for C-MPKP.

Lemma 1 Consider an optimal solution for C-MPKP
and let © = {t1,ta,...,t5} where 1 <t; <ty < ... <
tr < T denote the set of periods with zero remaining in-
ventory level at the end of the respective periods. Then,

1. Every request partially or fully satisfied at period
t, fort =1,...,t1, was a request which was due at
period t.

2. For any i > 2, any request fully or partially satis-
fied at period t;_1+1 was due at one of the periods
1,...,t;_1+1. Any request satisfied at some period
ti—1+ 1<t <t; was due at period t.

Proof. Suppose that X = {x;] 1 < j < N, 1 <
t < T} is an optimal solution to C-MPKP, and let
t1 <ty < ... <t be the periods, if any, such that the
remaining inventory level at the end of any period t;

Page 2

is zero and the remaining inventory level at any period
t #t;(1 <i<k)is positive.

If k=0, it is trivial. Hence we assume that k& > 0.

For t1, suppose that there is some request 5 due in
period t, and satisfied at period t;, where 1 < t, <t <
t1. Since pj:, > pjt,, and the remaining inventory
at the end of period t, is positive, we could remove
some part of the request j from period ¢; and fulfill it
at period t,, thus contradicting the optimality of X.
Therefore, the result in part (1) is correct. A similar
argument proves part (2).

By using the results in Lemma 1, we propose the
following greedy algorithm for solving C-MPKP. Note
that each request can be partially or completely satis-
fied at some period.

Greedy algorithm A: (solving C-MPKP)
while (there are some wunsatisfied requests and
some inventories) do

1. Find request j* and Tj~ such that

maz { %| request j can be completely or par-

Pj*Tj*

ayjx -

tially satisfied in period t }.

2. Satisfy request j* at period Tj« as much as
possible.

8. Update the inventory of each item at the be-
ginning of each period and the list of unsatis-
fied requests.

The feasible solution obtained by using the above
algorithm may be not an optimal one for C-MPKP.
But, if the profit function is a single point function,
ie, pjy = 0if t # t/, we can show in the following
that the solution obtained by using Greedy Algorithm
A is an optimal one for C-MPKP. In practical terms,
this means that late fulfillment does not add any profit.
Even for this special profit function, the corresponding
MPKP is a generalization of the 0-1 knapsack prob-
lem. Although the single point profit function for any
request is very special, any solution approach for solv-
ing it should also consider the coordination between
different periods, i.e., to decide whether the remain-
ing inventory at current period should be used to fulfill
some request due in current period or carried forward
to fulfill some other request due in later period.

Lemma 2 If the profit function for each request is a
single point function, C-MPKP is optimally solved by
Greedy Algorithm A.

Proof. Note that the optimal solution structure de-
scribed in Lemma 1 is further simplified if the profit
function for each request is a single point function, 7.e.,
the satisfied requests at each period ¢ are due in at
period t. If £ = 0, it is trivial. In the following, we
assume that k£ > 0 and call periods (1,...,t1) as cycle
1, ..., periods (tx—1+1,...,tx) as cycle k, and periods
(ty +1,...,T) as cycle k + 1.

We prove this lemma by induction on 7', the total
number of periods.

For T' = 1, the problem becomes the continuous re-
laxation of the 0-1 knapsack problem. If we replace any
satisfied request by any other unsatisfied request, the
total profit will not be increase. Hence it is true.

Suppose that for any T < n — 1(n > 2) the lemma is
true. We shall show that it is also true for T' = n.

If we replace some request fulfilled in the first cycle
by some other unfilled request or carry some inventory
consumed in the first cycle to the next cycle, the ob-
jective value of the new solution will be less than or
equal to the objective value of the solution obtained by
using Greedy Algorithm A. This can be seen from the
procedure of the Greedy Algorithm A and the fact that
any fulfilled request j must be fulfilled at period ¢/ (its
due in period). Hence, there will be some optimal so-
lution such that the first cycle is part of this solution.
The remaining problem will be reduced to a C-MPKP
over a planning horizon of n — t; periods. By using the
assumption for T' < n — 1, we complete the proof. <

3.2 A greedy heuristic for MPKP

We can generate two related MPKPs by modifying
the profit function pj; of any request j(1 < j < N).
From our assumption, we know that p;; is concave and
will attain the maximum at the period #/. Thus, if we
replace pj by pj; = pj1s, the objective value Z* of an
optimal solution will be an upper bound of Z*, the op-
timal objective value of the original MPKP. Similarly,
if we replace p;+ by the single point function pé-t =Dt
if t = ¢/ and p}, = 0 otherwise, the objective value Z'
of an optimal solution will be a lower bound of Z*.

An upper bound of Z* can be computed in the fol-
lowing way.

Lemma 3 If the profit function for any request j(1 <
j < N) is a constant function Py, we have U —
maz1<j<niPy < £ < U where U is the optimal ob-
jective value of the continuous relaxation.

Proof. As the profit of any request is constant with
respect to period t(1 <t < T'), we can delay the ful-
fillment of all requests until the last period and carry
forward all the inventories to the last period. Hence,
the MPKP is equivalent to the 0-1 knapsack problem.
Clearly, the deviation of the optimal value from the
upper bound U obtained by continuous relaxation is at
most max(1<;<nN}Pj1; since there is at most one request
that is not completely satisfied in the latter solution,
and that request contributes a profit value of at most
maz<;j<nipj1 to the objective.

The Greedy Algorithm A can be easily modified to
solve the MPKP. Henceforth, if some request cannot
be completely satisfied at any period with positive
net profit, we say that the best profit for this request
is —oo, otherwise, the best profit of any unsatisfied
request j is defined as maz{pj;| request j can be
completely satisfied at period t with positive net profit

Page 3

}. The maximizer is denoted as T;. We say that a
request is non-active if the best profit of the request is
—o0; otherwise, this request is active.

Greedy algorithm B: (solving MPKP)
1. Compute the best profit and T; for every request j.
2. Set the requests with best profit —oo to non-active.
3. while (there are some active unsatisfied requests)

do
a. Find request j* such that pja*l—TJ = maz {
J

PiT; |
ailj
request j is active and unsatisfied in period t

1.

b. Satisfy request j* completely at period T}« .

c. Update the inventory for each item at the be-
ginning of each period, the best profit and the
active status of any unsatisfied request.

It is obvious that Greedy Algorithm B is the discrete
version of Greedy Algorithm A. By using Z' and Z*
defined above, we can obtain the performance bound
of the above Greedy Algorithm B for the MPKP.

Theorem 1 Let Z* and Z™ be the objective values of
the optimal solution and the feasible solution obtained
by using Greedy Algorithm B, respectively. Then we
have Z' < ZH < 7+ < 7.

Proof. It is obvious that ZH < Z* < Z* from the
definition of Z*. About Z! < Z" we only note that
the candidates of all active requests at each iteration
of Greedy Algorithm B if the profit function of request
j(1 < j < N)is pé»t(l <t < T)is a subset of the
candidates of all active requests at the same iteration
of Greedy Algorithm B if the profit function of request
JA<F<N)ispu(l<t<T). &

4. Multi-period multi-dimensional knapsack
problem

In this section, we will provide a two-phase solution
approach for the MPMKP by using the insights ob-
tained in the previous section. The first phase is a
greedy heuristic which is a generalization of Greedy Al-
gorithm B, followed by a local improvement phase via
tabu search. We then propose another heuristic based
on ant colony optimization, and compare the results
obtained in the subsequent section.

4.1 A greedy heuristic for MPMKP

The basic idea is first to transform an MPMKP to
an MPKP, and then obtain a feasible solution of the
MPMKP by adapting Greedy algorithm B proposed for
the MPKP in section 3. This idea is not new, almost all
solution approaches for solving MKPs come from this
idea: first transform an MKP to a KP by proposing a
multiplier for each item and computing the weighted
capacity of the knapsack and the weighted weight of

each object, then provide a feasible solution for MKP
by using some solution approach for the KP.

In our following Greedy Algorithm C, the multiplier
of item m(1 < m < M) at period ¢ is simply defined
as the used inventory r,, for item m if there is at least
one request satisfied at period ¢, otherwise, we simply
define the multiplier for each item is 1. Therefore, the
multiplier does not depend on the request. It is the
same for all requests at period ¢t. Suppose that u,,:(1 <
m < M, 1 <t <T) are the multipliers for item m in
period t. The weighted weight w;; of request j in period

t is defined as:
M
Wit = E Uit Qi -
i=1

We call request j active in period ¢ if request j can be
satisfied at period ¢ with positive net profit. Otherwise,
we call the request j non-active. Similarly, if request j
can be satisfied in at least one period with positive net
profit, we call it active, otherwise, we call it non-active.

Greedy algorithm C: (solving MPMKP)

1. Set the active status for all requests.
2. Compute the multipliers for all resources at each
period.
3. while (there are some active unsatisfied requests)
do
a. Find request j* and period t* such that
L — max{ 22| request j is active and un-
grt* gt

satisfied in period t }.

*

b. Satisfy request j* at period t*.

c. Update the inventory for each item, the mul-
tipliers for all items at period t*, and update
the active status of each unsatisfied request.

4.2 Tabu Search Improvement for MPMKP

By using Greedy algorithm C' described in subsec-
tion 4.1, we obtain an initial feasible solution for the
MPMKP. In the following we propose a tabu search
improvement phase. First, we will introduce two op-
erators (moves), namely the relocate operator and the
exchange operator.

Relocate Operator: Suppose request i(1 < i < N)
is satisfied at period ¢;(1 < ¢; < T). We remove
this request from period ¢; and satisfy it at period
t' # t;(1 <t < T). If this can be done feasibly, we
define the profit saving of this relocate operation as
(piv — pit,), otherwise, we define the profit saving of
this relocate operation as —oc.

Exchange Operator: Suppose there are two re-
quests ¢ and j which are satisfied at periods ¢; and
t;(# t;), respectively. We remove request i from pe-
riod t; and satisfy it at period t;, at the same time,
we also remove request j from period t; and satisfy

Page 4

it at period t;. If this can be done feasibly, we de-
fine the profit saving of this exchange operation as
(pit; + pjt.) — (Pit; + pje;), otherwise, we define the
profit saving as —oo.

Tabu List: It is a list of moves executed during the
last L steps where L is the length of the list. The status
of each move is either tabu or non-tabu. If a move is
in the tabu list, the status of this move will be tabu,
otherwise, its status is non-tabu.

Aspired Criteria: Each move A is associated with
an aspired profit value x4 initialized to zero. When a
move is being executed, there are two possibilities. If
x4 =0, we call move A aspired and update x4 = max{
current total profit + profit saving of A, 0}. I x4 > 0,
we call move A aspired if current total profit + profit
saving of A > x4 and update x4 = max{ current total
profit + profit saving of A, xa}.

4.3 Ant Colony Optimization for MPMKP

Ant Colony Optimization (ACO) (Dorigo and Di
Caro (1999)) is a meta-heuristic inspired from the ob-
servation of nature, in this instance the foraging behav-
ior of a colony of ants. Typically the pheromone trail,
a key component in the ACO operation, is specified
using a node-to-node matrix, which is not appropriate
for scheduling problems involving time. We propose in
this paper a new scheme for the pheromone trail that
explicitly handle the notion of time to improve the per-
formance of ACO for scheduling problems.

Intuitively, a natural extension of ACO to scheduling
problems is what we call Scheme A, where in addition
to the standard pheromone trail presenting a value from
one node to another, one adds a third dimension of time
to the pheromone trail structure. However, Scheme A
suffers an obvious problem in that it is computationally
intensive. This can be derived by considering a generic
ACO implementation using x iterations, y ants, and n
nodes. The performance of such algorithm is O(zyn?),
since the operation incurs a n? pheromone trail com-
putation. By adding the time dimension of size T', the
algorithm complexity becomes O(zyn?T).

In this paper, we propose the following Scheme B for
solving scheduling problems: Modify the pheromone
trail from a node-to-node trail to a node-to-period trail.
This pheromone trail will specify the attractiveness of
placing a node in a time-period. The computational
complexity becomes O(zynT'). Since the number of
time-periods 7' is typically small compared to the num-
ber of nodes n, we achieve a computational speedup.
Furthermore, this structure is logically better when
dealing with time, since it directly informs the algo-
rithm where the best period to place nodes is. This
scheme makes sense for problems like MPMKP where
sequencing of nodes (within a knapsack) is not a con-
cern.

The computation of the transition probabilities is
given as follows:

nit = %7 lf¢]t207
’ 0, otherwise,
Moo
o=

where 7;; represents the local heuristics for moving
from node ¢ to node ¢; ¢;; represents the sum tightness
of all items (1 < ¢ < M) on request j; and ¢;; represents
the cumulative quantity of item ¢ left at the beginning
of period t, after subtracting quantities that have been
allocated in previous periods.

5. Experimental Results

We now present numerical experiments to verify the
algorithms presented in Secion 4.

The OR Library (http://www.ms.ic.ac.uk/jeb/pub/)
contains 0-1 MKP instances generated with varying
size and tightness, denoted by the parameter a. The
problems are divided into 9 sets, each with a given M
(the number of items) and n (the number of requests).
There are 30 test cases within each set, the first 10 are
generated with o = 0.25, the next 10 with a = 0.5,
and the last 10 with oo = 0.75. The parameters used in
each test case are generated as follows (U is a random
number generator with two input values representing
the lower and upper bounds):

ai; = U(O,lOOO)

by = a) ajac{0.2505,0.75}
i=1
M

pit = Y ai/M+500U(0,1)
=1

Since this set of benchmark is for 0-1 MKPs, they
can only be used as test cases for the single-period
multi-dimensional knapsack problem. We extended to
7-period MPMKPs (equivalent to 7 days for a week).
For example, in the following table, we show how to
generate a set of 9 test cases from the 30 test cases in the
mknapchX (4 < X < 9) test sets. The first test case
is generated using the first 7 test cases in mknapcbX
(abbrev. mX). The rest of the test cases are generated
by choosing other 7 test cases from the mX test set as
described in Table 1. As there are n requests due in
each period ¢(1 < t < 7), the profit for any of these
n requests in period t is the same as the OR library.
We define the profit function pjy = 0 if ' < ¢ and
Pjt = Pjt — Ol(t/ - t)pjt if t/ Z t.

In the interest of space, we will present experimental
results for only one set of 250-request 30-item m8 test

Page 5

Table 1 The nine test cases generated from mX

Instance mX test case chosen | «

mX-1-n-M | 1,2,3,4,5,6,7 0.25
mX-2-n-M | 2,3,4,5,6,7,8 0.25
mX-3-n-M | 3,4,5,6,7,8,9 0.25
mX-4-n-M | 11,12,13,14,15,16,17 | 0.50
mX-5-n-M | 12,13,14,15,16,17,18 | 0.50
mX-6-n-M | 13,14,15,16,17,18,19 | 0.50
mX-7-n-M | 21,22,23,24,25,26,27 | 0.75
mX-8-n-M | 22,23,24,25,26,27,28 | 0.75
mX-9-n-M | 23,24,25,26,27,28,29 | 0.75

cases. Suffice to say that all other test cases conducted
exhibit very similiar behavior. We denote the objec-
tive value of our TS and ACO heuristics by Zrg and
Z ac respectively (rounded to the nearest integer). To
measure the quality of our solutions, we compare with
upper bound values obtained by CPLEX, denoted by
UB!. The run times are denoted by Trg and Tac re-
spectively (in seconds). The result illustrates that both
TS and ACO can quickly obtain near-optimal (within
6% deviation of the upper bound).

Table 2 Results of test cases generated from

m8
Instance | UB Zrs Zac Trs | Tac
1-250-30 | 416534 399999 401184 145 | 18
2-250-30 | 416728 | 401153 | 405882 140 | 55
3-250-30 | 416489 399017 403577 165 | 19
4-250-30 | 775929 | 747851 752445 | 560 | 33
5-250-30 | 773089 750229 745073 599 | 33
6-250-30 | 770849 | 747512 | 749205 | 599 | 33
7-250-30 | 1075402 | 1039310 | 1031131 | 816 | 66
8-250-30 | 1078888 | 1054980 | 1045941 | 858 | 68
9-250-30 | 1078300 | 1052480 | 1039319 | 838 | 46

6. Conclusion

With SCM and JIT becoming business norms,
suppliers must be able to react to customer demands
in real-time. What we have presented in this paper
is a step in this direction. It might be pointed out
that this problem is not as interesting as its online
version from the academic point of view. Nevertheless,
we developed this methodology in consultation with
commercial companies which perform online decision
making based on aggregate customer requests arriving
over time, rather than individual arrivals. Hence, we
believe the methodology proposed in this paper is

LCPLEX took too long to obtain optimal solutions for many
of the large-scale instances, so we terminte pre-maturely after
running each instance with a maximum of 2 hours CPU time.

practical and sound.

Acknowledgement. The authors like to thank
Seet Chong Lua, Yuyue Song and Roland Yap for their
contributions on an early draft of this paper.

References

[1] Aboudi, R. and K. Jornsten. (1994). Tabu search
for general zero-one integer programs using pivot
and complement heuristic, ORSA Journal on Com-
puting, 6, 82-93.

[2] Balas, E. and C. H. Martin. (1980). Pivot and
complement—A heuristic for 0-1 programming,
Management Science, 26, 86-96.

[3] Dammeyer, F. and S. Voss. (1993). Dynamic tabu
list management using reverse elimination method,
Annals of Operations Research, 41, 31-46.

[4] Dorigo and Di Caro, (1999). Ant Colony Optimiza-
tion: A New Meta-Heuristic, Proc. 1999 Congress
on FEvolutionary Computation, 1470-1477.

[5] Freville, A. and G. Plateau. (1994). An efficient pre-
processing procedure for the multidimensional 0-1
knapsack problem, Disc. Appl. Math., 49, 189-212.

[6] Freville, A. and G. Plateau. (1997). The 0-1 bidi-
mensional knapsack problem: toward an efficient
high-level primitive tool, Journal of Heuristics, 2,
147-167.

[7] Gavish, B. and H. Pirkul. (1985). Efficient algo-
rithms for solving multiconstraint Zero-One knap-
sack problems to optimality, Mathematical Pro-
gramming, 31, 78-105.

[8] Lau H. C. and Song Y. (2002). Combining Two
Heuristics to Solve a Supply Chain Optimization
Problem, Proc. 15th Furopean Conference on Arti-
ficial Intelligence (ECAI), Amsterdam, 581-585.

[9] Loulou, R. and E. Michaelides. (1979). New greedy-
like heuristics for the multidimensional 0-1 knap-
sack problem, Operations Research, 27, 1101-1114.

[10] Pirkul, H. (1987). A heuristic solution procedure
for the multiconstraint Zero-One knapsack problem,
Naval Research Logistics, 34, 161-172.

[11] Shih, W. (1979). A branch and bound method
for the multiconstraint Zero-One knapsack prob-
lem. Journal of the Operational Research Society,
30, 369-378.

[12] Toyoda, Y. (1975). A simplified algorithm for ob-
taining approximate solutions for zero-one program-
ming problems, Management Science, 21, 1417-
1427.

Page 6

