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Abstract – Given stock allocation in an inventory system, it is 
necessary to do reallocation periodically to address inventory 
imbalance and maximize availability. In this paper, we allow 
two opportunities to perform reallocation within a 
replenishment cycle. We derive a mathematical model to 
dynamically determine when to reallocate and how to 
reallocate. Experimental results show that multiple-
reallocation achieves better performance compared with 
single-reallocation approach found in literature. More 
interestingly, we believe the logic of our model can be used to 
design optimal periodic resupply policies. 
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1.  INTRODUCTION 

 We consider an arboreal inventory system in which a 
central depot serves n bases. Military systems such as 
aircrafts and tanks are deployed at the bases. These 
systems break down because the underlying components, 
which are called LRU (line replaceable units), are either 
worn out over time and/or damaged during usage. Stocks 
are allocated at the depot and bases to insure continuity of 
operations. When an LRU fails at a base, a spare replaces 
it if one is available; otherwise a backorder is incurred. In 
military practice, due to the limited space at the bases, the 
failed LRUs are usually sent back to depot for repair. In 
the mean time, an order is placed by the base to the depot 
to send a spare. A spare will be sent to the base if one is 
available; otherwise there is a backorder at the depot. After 
the failure is repaired, it will be sent to the depot inventory 
to fulfill future demands. 
 As demands are stochastic, inventory imbalance will 
occur and tends to grow with time. This imbalance 
ultimately reaches a situation where some bases hold 
excess inventories, while others face critical shortage. To 
correct the imbalance, stocks need to be reallocated. To 
increase the efficiency and reduce unavailability, we also 
allow excess inventories at some bases to be reallocated 
laterally to others with shortage. In this paper, we are 
concerned with a two-instant reallocation scheme within a 
system replenishment cycle. This work is in response to 
the open challenge post by Cao and Silver [2] to consider 
two or more possible reallocations within a cycle. In 
practice, this problem is also faced by planners who need 
determine the time between periodic reallocations. 
 Although the (s-1,s) replenishment policy is generally 
assumed in the literature (i.e. depot will send a spare to the 
base once a failure occurs) it is almost impossible to 
supply continuously in practice, especially in a naval 

environment. The depot has to send spares to offshore 
bases and bring the failures back for repair periodically. 
Hence, it is important to determine when and how to 
distribute stocks to the bases periodically in the cycle.  

Given that we have two reallocation instances, it is 
important to determine when each reallocation should 
occur. If we perform the first reallocation too early, it may 
prevent early backorders but could lead to growth of 
backorders before the next reallocation or during the 
remaining time in the cycle. Conversely, performing 
reallocation later presents two problems: First, it may 
cause high levels of early backorders. Second, late 
reallocation may leave no time to do the second 
reallocation. Furthermore, the time interval between the 
first and the second reallocations is also important: if it is 
too short, failures brought back to depot for repair may not 
have been completed and consequently the depot has too 
few spares to perform the second reallocation; if the time 
interval is too long, it causes higher levels of backorders at 
bases between reallocations. Therefore, the key issue is 
how best to synchronize the two reallocations. 

Many papers have analyzed resource reallocation, 
periodic resupply and risk pooling effect. Eppen and 
Schrage [4] analyze an echelon-structure inventory system 
considering external lead times and random demands. In 
their model, the bases place orders directly to the outsider 
supplier but the supplier sends all stocks to the central 
depot after the external lead time. The depot will then 
reallocate the received stocks to bases according to the 
demands during external lead time. They claim that this 
method of reallocation yields a risk-pooling effect during 
lead time. Jackson and Muckstadt [6] propose an optimal 
allocation procedure for a two-period problem with a two-
echelon structure. They formulate the problem using the 
joint probability distribution of the first period demands at 
the retailers. However, since they do not permit lateral 
resupply between retailers, they experience difficulties in 
trying to ascertain how much stock to allocate to each 
retailer. Jackson [5] introduce a concept of “pooled-risk 
period”, and used a (s-1, s) policy for replenishment. This 
is continued until the central stock is depleted. The latest 
period of allocation is called the “pooled-risk period”. In 
contrast, Jönsson and Silver [7] fix the reallocation time at 
the beginning of the last period of the system order cycle, 
and propose a complete reallocation policy at that time 
allowing transshipments among bases. Complete 
reallocation means that no inventories are kept at the depot 
after reallocation. Tsao and Enkawa [13] present a “two-
phase push control policy” for considering the optimal 
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reallocation instant in a two-echelon inventory system. 
Their method predetermines a fixed reallocation instant in 
all replenishment cycles, independent of the dynamic 
behavior of the inventories at the retailers. Cao and Silver 
[2] recently propose a heuristic method to dynamically 
determine optimal reallocation period in each 
replenishment cycle and perform reallocation. 
 The abovementioned papers deal with consumable 
items. In a military context, it is important to perform 
reallocations of spare parts periodically because they are 
often very expensive and affect system availability greatly 
([3], [9]). System availability is usually measured in terms 
of Expected Backorders (EBO) (e.g. [1], [8], [11]). To our 
knowledge, there are few works on redistribution of spare 
parts in multi-echelon systems, except a brief mention of 
the problem in [11] and a feature within a proprietary 
commercial tool OPUS [10].   

This paper makes technical contributions in the 
following ways. First, we consider how to perform more 
than one reallocation within a replenishment cycle, and 
instead of fixing reallocation instants to certain time 
points, we propose how to determine the time point 
instants for reallocation. Second, the replenishment of 
stocks from depot to bases is periodic, i.e. stocks and 
failures can be transported only at certain time points in a 
batch. Third, transshipments among bases are allowed.  

The remainder of this paper is organized as follows. 
Section 2 lists the basic assumptions and notation. The 
mathematical model and approach are presented in Section 
3. Section 4 presents the experimental results. Finally, 
conclusions and future work are provided in Section 5. 
 

2. PROBLEM DEFINITION 

 Our resource reallocation problem is based on two 
important and simplifying assumptions. First we assume 
negligible internal lead (or transportation) times for 
moving items from the central depot to each base, and 
laterally between bases. This is consistent with [2], [5], 
[13] which assume reallocation can be achieved instantly. 
The relaxation of this assumption is straightforward. 
Second, to simplify the problem, we assume all failures are 
only repairable at the depot which has infinite repair 
capacities. The repair time is exponentially distributed 
with mean T. 
 The system replenishment cycle is H base periods, i.e. 
every H base periods, the central depot places orders to an 
outsider supplier. Therefore our reallocation decision time 
horizon is within this replenishment cycle. Demands over 
time at the bases are assumed to be independent, normal 
distributed variables with mean μi and standard deviation 
σi at base i during each period. 
 The main notation used in this paper is as follows. 
i: index of site (i = 0 for the depot) 
n: number of bases 
Si: initial stock level of LRU at site i 
H: system replenishment cycle, in base periods 
T: mean repair time of LRU 

yi(t): (random var) demands in a single period t at base i 
μi: mean value of yi(t) 
σi: standard deviation of yi(t) 
τ: index of the period at the end of which reallocation 
takes place 
Ii(τ): stock level at site i instantly before reallocation at the 
end of period τ. 
Ui(τ): stock level at site i instantly after reallocation at the 
end of period τ 
t1: time point at which the first reallocation is done 
t2: time point at which the second reallocation is done 
EBOi(t): expected backorder at the end of period t at base i 
(If reallocation takes place at t, it denotes the EBO just 
before reallocation) 
TEi: total EBO at base i at those time points, namely, just 
before each allocation and at the end of the cycle. 
 Given the initial number of stocks at each site, we 
need to determine the moment series t1, t2, at which 
reallocation takes place as well as the number of stocks at 
each site after reallocation so that we can keep the total 
EBO over all bases at those time points just before each 
allocation and at the end of the cycle as low as possible. 
Since there are two reallocation instances, we are in fact 
trying to minimize the total EBO over all bases at three 
points in time (at the end of period t1 and t2 just before the 
reallocations respectively and at the end of H periods). The 
value of the objective function depends on the times at 
which the reallocations are carried out and how the 
reallocations are done. The total EBO at base i (TEi) is the 
sum of three components, the first components being the 
expected backorders just before the first reallocation 
instant, EBOi(t1), when the first reallocation is done at the 
end of period t1, the second components being the 
expected backorders before the second reallocation instant, 
EBOi(t2), when the second reallocation is done at the end 
of period t2 and the third component being the expected 
backorders at the end of the cycle EBOi(H). Hence,  

)()()( 21 HEBOtEBOtEBOTE iiii ++=   (1) 
Our objective function, the total EBO over all bases at 
three points in time is  and our 

aim is to find t
∑=

==
n

i iTEttTETE
121 ),(

1, t2, Ui(t1), Ui(t2) such that TE is minimized. 
 

3. MATHEMATICAL MODEL 

3.1 Before the First Reallocation 
 Given the initial stock allocations at all sites, the 
expected backorders over all bases at time t1, just before 
reallocation can be calculated according to the definition 
of EBO as follows: 
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t ii tyX denotes the demands of LRUs at base i 

during time interval [0, t1], which is a normally distributed 
random variable with mean E(Xi) = t1μi, and variance 
Var(Xi) =  t1σi

2. Therefore, after standardization, EBO1 can 
be expressed by: 
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where  is the unit normal loss 

function and φ(z) is the probability density function of 
standard normal distribution. 
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3.2 The First Reallocation 
 When t = t1, we will do reallocation. The spares will 
be distributed from depot to bases and among different 
bases while failures at all bases will be sent back to depot 
for repair in the meantime. From our assumption, 
reallocation will be achieved instantly and repair service 
will start at the depot just after reallocation. Given the 
inventory levels at all sites before reallocation Ii(t1) (i = 0, 
1, …, n), our goal is to find the inventory levels at all sites 
after reallocation Ui(t1) (i = 0, 1, …, n) such that EBO over 
all bases by t2 just before the second reallocation will be 
minimized. That is, the reallocated spares will be used to 
last until the next reallocation. Mathematically, EBO over 
all bases by t2 can be expressed as: 
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We know I0(t1) = S0 and Ii(t1) = Si – Di(t1) for i = 1, …, n 
where . So Equation (5) can be changed 

into: 
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 Using a Lagrange multiplier λ, the optimization can be 
represented as 
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 Differentiating with respect to Ui(t1) (i = 1, …, n) and 
setting the result to zero, we obtain 
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where  is the right-hand tail area of the 

standard normal distribution. So according to the property 
of standard normal distribution, 
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where c is a constant, independent of i. 

 Using Equation (9) to sum over i and using equation 
(6) leads to 
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3.3 The Second Reallocation 
 Using the same method as above, for the second 
reallocation, our purpose is to find Ui(t2) (i = 0, 1, …, n) so 
that EBO over all bases at the end of the cycle will be 
minimized. In addition, since there is no opportunity to do 
reallocation once more, we will completely redistribute all 
stocks on hand at the depot to bases by t2. Assuming 
complete redistribution at the second reallocation instant, 
we have U0(t2) = 0. 
 Our objective function is: 
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And we have the constraints 
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 We know Ii(t2) = Ui(t1) – Di(t2) for i = 1, …, n where 
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time at the depot follows an exponential distribution with 
mean T. So the probability that an item has been finished 
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Using equation (6), equation (13) can be further changed 
into: 
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 As the above method, using a Lagrange multiplier and 
differentiating with respect to Ui(t2) (i = 1, …, n) and 
setting the result to zero, we obtain: 
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3.4 Compute Optimal EBO 
 Using Equation (10) and (15), we can compute the 
optimal spare allocations of LRU after each reallocation. 
However, we still have not specified how to compute 
EBO2 by Equation (4) and EBO3 by Equation (11). In 
addition, U0(t1) is still included in Equation (10), i.e. the 
inventory level at each base after the first reallocation 
depends on different inventory levels left at the depot. 
 From Equation (15), we know no matter how many 
spares are left at the depot after the first reallocation, under 
the complete redistribution assumption for the second 
reallocation, the term U0(t1) will disappear, i.e. the 
inventory level is independent of U0(t1). Therefore, in 
order to reduce EBO just before the second reallocation at 
t2, U0(t1) should be set to zero according to Equation (10). 
That is, we also adopt complete redistribution for the first 
reallocation. Thus, 
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 Substituting Ui(t1) in Equation (4) by Equation (16), 
we can compute the EBO2 just before the second 
reallocation for a given value of Y1. However, Y1 is a 
normally distributed random variable with mean  
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 Respectively, using Equation (11) and (15), we can 
also construct the formula of EBO3 for a given value of Y, 
in which Y is a normally distributed random variable. Y = 
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 Weighting EBO3 for a given value of Y by the density 
of Y and integrating over Y, we have 
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And using the same method as EBO2, we obtain 
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3.5 Dynamic Reallocation Approach 
 Using Equation (3), (19) and (21), we can calculate 
our objective function TE, the expected backorders over 
all bases at three time points for a given reallocation 
instant pair t1 and t2. 

TE = TE(t1, t2) = EBO1 + EBO2 + EBO3  (22) 
Our purpose is to find such t1 and t2 (0 ≤ t1 < t2 ≤ H) that 
TE is minimized. Given a replenishment cycle of H 
periods, the total number of different combinations of pair 
(t1, t2) is , noticing that the first reallocation can take 
place at the beginning of the cycle. Hence, we can 
compute TE for  possible pairs of (t

2
1+HC

2
1+HC 1, t2) to 

determine the minimal TE and corresponding (t1, t2). 
 However, if the second reallocation instant is the end 
of the cycle, we do not make good use of two reallocation 
chances. TE will be the same as that in [2] with only one 
reallocation because our objective function is the expected 
backorders just before reallocation. [2] proves that TE will 
decrease first and then increase as t2 increases for a given 
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t1, so our dynamic heuristic approach can be stated as 
follows: 
for (t1 = 1; t1 < H – 1; t1++) { 
 for (t2 = t1+1; t2 < H; t2++) { 
  if (TE(t1, t2) > TE(t1, t2+1))  
  // postpone the 2nd reallocation until at least the 

end of the next period. 
   continue;  
  if (TE(t1, t2) ≤ TE(t1, t2+1)), reallocate for the 2nd 

time now. Compute TE(t1, t2) and break 
 } 
} 
Compare TE(t1, t2) for different t1 and choose the minimal 
one with corresponding t1 and t2.  
 

4. EXPERIMENTAL RESULT 

 We use the test case provided in [2] and compare the 
results with those allowing single reallocation, as seen in 
[2]. In our experiment, one depot supports 5 bases (n=5). 
The length of the replenishment cycle is 30 periods 
(H=30). For convenience in experimentation, the 
coefficient of variation (CV = σ/μ) of demand is assumed 
to be the same at all bases. First we focus on the identical 
independent demand distributions at all bases. We set 
μi=μ=50 and CV= 0.4, i.e. σi=σ=20 for all i (i = 1, …, n). 
The stock level at each base i is set to Si=Hμi=1500. Also, 
using the method and test case in [2], we determine the 
stock level at depot to be 57033.2

1
2

0 == ∑ =

n

i iHS σ , 

where 2.33 represents the probability of 1% chances that 
the total system demands in a cycle H exceeds the total 
stocks at the depot and all bases. We set the mean repair 
time at the depot to be T=10 (this is not needed in [2] 
where all demands are consumable).  

 

  
Fig. 1: Comparison of EBO vs. time for two-reallocation and single-

reallocation 
 We implement both our method and that in [2] so that 
we can compare them with each other to see the effect of 
multiple reallocations during a cycle. The results are 
shown in Fig. 1. From Fig. 1, we can see firstly that given 
the first reallocation instant, the total EBO TE decreases 
and then increases as the second reallocation instant t2 
increase. This is consistent with what we mentioned in the 

above section. Therefore, the time interval between 
reallocations can be neither too short because of fewer 
repaired failures at the depot nor too long because of more 
failures at bases. Secondly, we can see from Fig. 1 that TE 
decreases and then increases as the first reallocation 
instant t1 increases. This is indicated by comparing TE(0, 
t2), TE(4, t2) and TE(27, t2). The curve of TE(4, t2) is 
below that of TE(0, t2), indicating it better to do the first 
reallocation at t1=4 than t1=0 while the curve of TE(27, t2) 
is above that of TE(4, t2), indicating it worse to do the first 
reallocation at t1=27 than t1=4. Comparing all 
combinations of (t1, t2), we find the optimal reallocation 
instants pair is (16, 23) with TE = 7e-10. Thirdly, we can 
see from Fig. 1 that multiple reallocations can reduce the 
total EBO compared with single reallocation. From Fig. 1, 
the optimal reallocation instant in [2] (i.e. NRL’05 curve) 
is at t=25 with TE = 5.4874. We can also see that our first 
reallocation instant should be before t=25. This is because 
if we reallocate at later than t=25, there will be a large 
number of backorders at bases according to NRL’05. That 
is why the curve of TE(27, t2) is above the line EBO = 
5.4874. More interestingly, we compare NRL’05 with 
those whose first reallocation takes place at t1=25. The 
results are shown in Table 1. 

Table 1: Total EBO when the first reallocation instant is 25 
(t1, t2) TE 

(25, 26) 1.0806 
(25, 27) 1.0021 
(25, 28) 1.0897 
(25, 29) 1.2866 
(25, 30) 5.4874 

From Table 1, we can see that when the first reallocation 
instant is t=25, if we do the second reallocation 
immediately after the first one, TE can also be improved 
because more failures can be repaired as more failures are 
brought back the depot under the assumption of infinite 
repair capacities. However, if we do the second 
reallocation at the end of the cycle, it is equivalent to 
reallocate only once (recall our objective function is that 
just before reallocation). Hence, TE should be the same as 
that of NRL’05, which is proved to be 5.4874 in Table 1. 

 
Fig. 2: Comparison of EBO vs. time for two-reallocation and single-

reallocation with fewer stocks 

 Secondly, we set fewer stock levels at bases to see 
what will happen if more EBO is expected. The results are 

 - 5 -



shown in Fig. 2, where we multiply the stock level at each 
base in the previous case by 0.8. Cao and Silver [2] claim 
that because generally it is more costly to delay allocation 
beyond the best time than to do it somewhat early, it tends 
to hedge against the higher penalties by committing to an 
earlier allocation time. Fig. 2 shows firstly that the optimal 
reallocation instant for NRL’05 is t=19 with TE=931.26. 
Our optimal reallocation instant pair is (14, 22) with 
TE=0.3887 correspondingly, both the first reallocation 
instant and the second one being brought forward. This is 
consistent with the claim in [2]. Furthermore, Fig. 2 shows 
secondly that under the same reallocation instant for the 
first time, the second reallocation instant is also brought 
forward. In the previous case, when t1=0, the optimal t2 is 
t2=27 while in the current case the optimal t2 is t2=20. 
Similarly, when t1=4, t2=24 in the previous case while 
t2=23 in the current one. Thirdly, Fig. 2 shows that the 
curve of TE(4, t2) intersects with that of TE(14, t2). This 
indicates that it should not always delay the first 
reallocation and do the second one in a hurry. Reallocation 
at 4 and 15 is better than reallocation at 14 and 15. In fact, 
there is also an intersection between the curve of TE(0, t2) 
and the curve of TE(27, t2) although not obvious. 
 Next, we run a test case by relaxing the assumption of 
identical demand distributions at bases while the 
“independent” assumption is still kept. For nonidentical 
demand distributions at bases, we use the same method as 
in [2], setting the mean demand of each base i by μi = 2iμ / 
(n+1) (i = 1, …, n). The coefficient of variation (CV) of 
demands is still assumed to be the same at all bases. The 
results are shown in Table 2. 

Table 2: TE for identical demand distributions vs. nonidentical demand 
distributions 

Case NRL’05-1 Ours-1 NRL’05-0.8 Ours-0.8 
Identical 5.4874 7e-10 931.26 0.3887 
Nonidentical 4.6391 0 863.22 0.3368 

 From Table 2 we observe that the total backorders for 
nonidentical demand distributions are less than those for 
identical distributions, which is the same as the case in [2]. 
This is caused by the assumption of a common CV leading 
to a higher value of the depot stock level from 570 to 627. 
 

5. CONCLUSION AND FURTHER RESEARCH 

 In this paper, we consider reallocation in a multi-
echelon inventory system. During the replenishment cycle, 
we have two opportunities to reallocate the spares by 
redistributing the depot stocks to the bases and by lateral 
transshipment. We develop a mathematical model and use 
Lagrange multiplier to determine how to reallocate the 
spares to achieve a minimized total expected backorders 
under a given reallocation instant pair. Then we derive the 
dynamic reallocation approach to determine when to do 
the first and second reallocation respectively. 
Experimental results show that multiple-reallocation is 
better than single-reallocation. More interestingly, the 
logic of our approach is appealing and the calculations are 
easy to carry out. 

 In our model, we assume negligible internal lead time, 
and reallocation can be achieved instantly. A natural 
extension is to incorporate nonidentical, nonzero lead time 
in the problem. Another work is to extend our model to 
multiple (more than 2) reallocations, where the challenge 
is to determine the time interval between reallocations 
assuming the intervals are the same for a given time 
horizon. This would pave the way for the design of 
optimal periodic resupply policies. It is also interesting to 
study the balance between the costs of reallocations and 
shortages. Finally, it is interesting to consider 
nonstationary demand distributions, i.e. demands at each 
period are not identical with time-varying mean and 
standard deviation. 
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