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 Abstract – The models for multi-echelon inventory 
systems in existing literatures predominantly address failures 
due to reliability in peacetime. In wartime or even peacetime 
operational scenarios, unexpected combat damage can cause 
a large number of systems to be heavily damaged, to the 
extent that they become irreparable. In this paper, we study a 
multi-echelon spare parts support system under combat 
damage, discuss the replenishment policy and propose an 
approximate method to evaluate the time-varying system 
performance – operational availability considering the effect 
of passivation. Experiments show our model works well and 
efficiently against simulation. 
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I.  INTRODUCTION 

 The analysis and optimization of multi-echelon 
reparable inventory models go back to METRIC 
developed by Sherbrooke [17]. As military systems such 
as aircrafts, ships or tanks with complex hierarchical 
product structures break down because the underlying 
components (line replace units or LRUs) are either worn 
out over time and/or damaged during usage, to insure 
continuity of operations, an ample supply of spare parts 
must allocated to provide maintenance for damaged 
components. However, there is a cost tradeoff since 
spares, especially LRUs are expensive, consume space and 
become obsolete over time. It is more difficult in reality to 
plan for spares according to time-varying demands since 
the utilization rate and hence demand rate varies over time 
due to seasonality. Apart from military application, these 
inventory models are also of paramount importance for 
industries or services with heavy utilization of equipment, 
such as continuous chemical or petrochemical process and 
mass transit systems [5]. 
 To our knowledge, in almost all existing literatures, it 
is assumed that the demand for LRUs arises only as a 
result of reliability, such that the components will become 
obsolete or worn out over time and/or damaged during 
usage in training in peacetime. Furthermore based on the 
assumption of reliability, the demand rate is usually 
supposed to follow a Poisson or non-stationary Poisson 
distribution. 
 Contrary to demand behaviors in peacetime, during 
wartime, components and even the entire military system 
itself are subject to damage in combat, causing the failure 
of components to occur intensively at certain time points, 
especially the end of certain missions. Under combat 
damage, more than one component may be damaged 

simultaneously and most of these failures are irreparable. 
In this paper, we will present a generalized multi-echelon 
single-indenture model involving a mix of repairable items 
due to reliability and irreparable items due to combat 
damage. 
 The model for multi-echelon repairable items, both in 
the literature and in practical applications, is 
predominantly based on METRIC developed by 
Sherbrooke [17], which is being used extensively in the 
military world. In the past a few years, many extensions 
are developed to relax some of the constraints imposed on 
METRIC. For example, Graves [8] uses a negative 
binomial distribution instead of assuming Poisson 
demands by introducing variance. Díaz and Fu [5], 
Alfredsson [1, 2], Zijm and Avsar [21] extend the model to 
handle limited repair capacity. A commercial software 
OPUS developed by Systecon AB [15, 16] is an offshoot 
of Alfredsson’s model. Jung [14], Slay et al. [20] present 
models with time-varying demands by simulation and 
analytical methods respectively. Lau et al. [12] recently 
propose a model by combining limited repair capacity with 
time-varying demands. They also study the effect of 
passivation (i.e. repairable items are switched off) on 
system time-varying availability [11]. 
 Our contribution in this paper is an approximate 
method for evaluating system availability considering both 
repairable items due to reliability as well as irreparable 
items due to combat damage. The rest of the paper is 
organized as follows. In section 2, we define the problem 
by describing the spare parts support system structure, 
maintenance workflow, and replenishment policy of 
reliability and the notion of combat damage. Assumptions 
are made so as to simplify the model. In section 3, a 
mathematical model is developed to compute the time-
varying EBO analytically, which is converted into time-
varying operational availability introduced in section 4. 
Experimental results are presented in section 5 followed 
by conclusion in section 6. 

II. PROBLEM DEFINITION 

 In this paper, we address a two-echelon support 
structure of inventory system model. Our work can be 
extended easily to a multi-echelon context, since the 
underlying principles are the same. In our environment, 
one depot supports a number of sites called bases where 
identical military systems are deployed, each of which is 
composed of multiple LRUs which are assumed to be 
connected in series. 



 When a military system breaks down due to a 
damaged LRU within it, depending on the nature of fault, 
repair will either occur on-site immediately if the fault can 
be rectified at the base; or it will be sent to the depot and 
an order is placed by the base to be supplied from the 
depot. At the base, the malfunctioned LRU will be 
removed and replaced by a good component should one be 
available, and the system becomes serviceable after a short 
delay, the time to remove and replace the failed LRU. 
Otherwise, a backorder is generated and the failed system 
has to wait for a spare part to arrive. When repair is 
completed, the working LRU will be sent to its originating 
support base to function as spares. In either case, the 
organization does so by supplying a serviceable item for a 
malfunction on a one-for-one basis. This policy is based 
on the fact that for low demand, high cost items such as 
LRUs, the EOQ tends to a size of one [5, 19]. 
 Combat damage occurs at certain time points, 
especially at the end of certain missions. There are a 
number of combat damage types associated with different 
types of assault. Each combat damage type causes a 
different set of LRUs within a system to break down under 
a given probability distribution. These LRUs are 
irreparable and have to be discarded. However, spares are 
still required to remove and replace these failures in order 
to sustain a high availability for future missions. Another 
dimension of combat damage is attrition where the entire 
military systems are wiped off beyond repair. Hence, these 
systems also have to be discarded as a whole and 
consequently the total number of available systems will 
decrease over time assuming no external supply or 
procurement. 
 The spares allocated at the sites will be used to fulfill 
the demands of LRUs engendered by both reliability and 
combat damage. As discussed earlier, while one can 
assume that under reliability, a system is down due to 
failure of only one LRU, this assumption breaks down 
under combat damage. Hence, the standard FCFS (First 
Come First Serve) replenishment policy may no longer be 
good since a single LRU spare cannot be used to recover 
the down system. Consequently in this paper we propose 
the setting of priority to meet the demands caused by 
reliability, such that a spare will first be used to recover 
the system due to reliability (since it requires only that 
spare unit to become operational again)  
 In this paper, the following (fairly standard) 
assumptions are made: 
1) There are infinite repair resources, i.e. a failed system 

can be repaired at once. 
2) All repairable LRUs can be repaired at the depot, i.e. 

no external repair. 
3) Continuous resupply, i.e. an LRU can be sent between 

the depot and bases immediately at any time. The 
transport time for each item is a constant. 

4) The repair time of an item follows an exponential 
distribution. 

5) The remove-and-replace time for each item follows an 
exponential distribution. 

6) FCFS replenishment of a spare for reliability or 
combat damage respectively, but with priority over 
reliability.  

 Note that our problem is further complicated by (1) 
time-varying utilization rate and (2) the effect of 
passivation [11, 13]. These are included to model real life 
requirements as follows. (1) Military system usage 
typically varies from one mission to another and transit 
rapidly from peace to wartime. Hence, planners are 
interested to predict and plan for a short period, during 
which exercise/mission schedules (and hence utilization 
rates) are known. (2) When a system fails or damaged 
during mission, the down LRU is removed and all the 
remaining system LRUs are switched off until the system 
has been restored to maximize component life. This makes 
the demand varying not only over time, but also the 
derived availability of past time points, and consequently 
more difficult to predict analytically. 
 As with existing literatures, EBO (Expected 
Backorder) and Ao (operational availability) are both good 
system performance, here we will use Ao to denote the 
time-varying Ao.  

III. MATHEMATICAL MODEL 

A. Notations 
 We keep consistency with and extend the notations of 
those in [1, 9, 10]. We use j to index the sites, j=0 for the 
depot and j = 1, …, J for the bases. As done in [1, 11, 12], 
the types of LRUs are indexed by k, k = 1, …, K. Other 
notations include: 
 
Input Variables 
T:  length of planning horizon 
MTBFk: mean time between failures of LRU k 
TAT0k: mean repair time of LRU k at the depot 
TATjk: mean repair time of LRU k at base j 
OSTk: transport time for LRU k between the depot and 
base 
MTTRjk: mean time to remove and replace LRU k at base j 
NRTSjk: probability that LRU k cannot be repaired at base j 
Nsysj:  number of military systems deployed at base j 
QPMk: quantity of LRU k that a military system has 
UR(t): utilization rate across all bases at time t 
s0k: number of spares of LRU k at the depot 
sjk: number of spares of LRU k at base j 
tq

CD: time when combat damage occurs, q = 1, 2, …, Q 
Najq: number of system attrition at base j at time tq

CD 
r: index of damage type, r = 1, 2, …, R 
Mjqr: number of system damaged at base j under damage 
type r at time tq

CD 
pkr:probability that LRU k is damaged under damage type r 
 
Intermediate Variables 
DR0k(t): incoming demand rate of LRU k at depot at time t 
DRjk(t):  incoming demand rate of LRU k at base j at time t 
λ0k(t): effective demand rate of LRU k at depot at time t 
λjk(t): effective demand rate of LRU k at base j at time t 
EBO0k(t):  EBO of LRU k at the depot at time t 



EBOjk(t):  EBO of LRU k at base j at time t 
 
Decision Variables 
Aoj(t):  operational availability of the systems at base j at 
time t 

B. Time-Varying EBO function 
 We first divide the time horizon into N periods 
indexed by n, n = 1, …, N, so that (a) the utilization rate in 
each period is constant, (b) the number of “up” military 
systems can be regarded as constant (c) the time when 
combat damages occur {t1

CD, t2
CD, …, tQ

CD} ⊆ {t1, t2, …, 
tN} where tn is the time at the end of period n and we set t0 
= 0. 
 Assume that EBO(0) = 0 for all stock positions and 
Ao(0) = 100%. From [11], the incoming demand rate of 
LRU k at base j at time t considering passivation is 
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 The following intermediate variables are introduced 
for the purpose of computation. 
P0k(t): random variable representing number of LRU k in 
the pipeline of the depot at time t 
Pjk(t): random variable representing number of LRU k in 
the pipeline of base j at time t 
RP0k(t): random variable representing number of LRU k in 
the repair pipeline of depot at time t 
RPjk(t): random variable representing number of LRU k in 
the repair pipeline of base j at time t 
OSPjk(t): random variable representing number of LRU k 
in the order-and-ship pipeline to base j at time t 
fjk(t): fraction of LRU k at base j contributing to the EBO 
at the depot 
cdjk(t): number of combat damaged LRU k at base j at time 
t 
CD0k(t): cumulative number of combat damaged LRU k at 
the depot by time t 
CDjk(t): cumulative number of combat damaged LRU k at 
base j by time t 
 In addition, we will use EBO(s|λ) to denote EBO 
given stock level s when the mean pipeline is λ. Following 
standard probability, this quantity is computed as 
∑ >

=−
sx

xXsx }Pr{)(  where X is the pipeline random 

variable with mean λ. 
Since the spares at sites will be used to fulfill the 

demands by both reliability and combat damage, the 
failures caused by combat damage will be credited into 
pipeline, which influences EBO based on stockage. 
Therefore from [11] we know with combat damage, 
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 In the following section, we will provide the details 
on how the above formulae can be computed and 
implemented. 

C. Derivation of Intermediate Variables 
 From [11], we know that the expected number of 
demands in the pipeline at time t can be computed by a 
dynamic form of Palm’s theorem [4]. So 
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 Next we present how to compute the number of 
combat damaged LRUs. Since we assume the combat 
damaged LRUs are irreparable, and since the depot has to 
provide its stocks for these failures in order to recover the 
military system, those damaged LRUs can be regarded as 
though they are always in the pipeline, so that the number 
of combat damaged LRUs will be accumulated. Unlike 
demands due to reliability that arise over time, the failures 
due to combat damage take place at the end of missions in 
a batch. Hence, it is obvious that CDjk(0) = 0 and for n 
(≥1): 

)()()( 1 njknjknjk tcdtCDtCD += −
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where the computation of cdjk(t) is as follows. If t ∉ {t1
CD, 

t2
CD, …, tQ

CD}, cdjk(t) = 0. Otherwise, there must exist a q* 
so that tq*

CD = t and we have  
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Finally the cumulative number of combat damaged LRUs 
at the depot by time t is given by 
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 Due to the effect of passivation, when an LRU fails, 
the whole military system is down, causing no further 
demands of other LRUs within it. While we need not 
compute the demand due to this system before it is 
recovered the down LRU still contributes to the EBO since 
and as long as it is down. Hence we compute fraction by 
using demand instead of demand rate 
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 Finally, using these formulae we can compute the 
expected number of items in the pipeline at both the depot 
and bases followed by EBO until the ultimate time-varying 
EBO for each LRU at each base, which is used to convert 
into our objective – time-varying availability – which is 
introduced in next section. 



IV. CONVERSION OF EBO INTO AVAILABILITY 

A. Method of conversion 
 In [3, 13, 15, 16], a number of methods to convert 
EBO into operational availability have been proposed, 
most of which work either under steady state or are not 
accurate for large MTTR. In [11], an efficient approach is 
designed to compute the time-varying operational 
availability at base j from EBO without combat damage: 
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where µjk = 1/ MTTRjk and Amjk(0) = 100%. The 
experimental results in [11] show that the formula is 
accurate in computing operational availability at any time 
for both small and large MTTR under both stationary and 
nonstationary demand cases without combat damage. 
 With combat damage, we must modify the above 
formulae. When computing EBO, we do not take into 
account attrition since the attrited systems are irreparable 
and hence do not require any spares and there are neither 
supply nor maintenance backorders for them. However, 
when we compute operational availability – the number of 
available systems, the attrited systems must be subtracted 
from the total number of deployed systems. Hence we 
will first modify the computation of Nsysj(t). Let Nnaj(t) be 
the number of non-attrited systems at time t and we have 
Nnaj(0) = Nsysj. So 
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and 
Nnaj(tn) = Nnaj(tn-1)  if tn ∉ {t1

CD, t2
CD, …, tQ

CD} (18) 
Otherwise there must exist a q* so that tq*

CD = tn and then 
Nnaj(tn) = Nnaj(tn-1) –Najq*     (19) 

Secondly, by using Equation (15), the derived operational 
availability in fact is the availability of all systems 
excluding the attritions because they have been subtracted. 
Therefore, the final availability at time t will be 
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 Combining Equations (15) – (20), we can compute the 
time-varying operational availability with combat damage. 

B. Multiple failures by combat damage 
 In our experiments, we found that the above method 
works well under the scenario that∑ =

=
K

k krp
1

1, for each r, 

i.e. the events that each LRU is damaged in combat are 
mutually exclusive. In case where the probabilities do not 
sum to 1, i.e. when there are multiple components failures 
and they are independent of each other in a single combat 
damage, the proposed formula gives an error of more 
than50%! This is not surprising since the underlying 

model is based on classical reliability theory which always 
assumes that one system is down due to one and only one 
LRU. Equation (15) is designed based on this assumption 
indicated by EBO/Nsys. Under combat damage however, 
this assumption no longer holds and (15) does not and 
cannot reflect this fact. To our knowledge, there is no 
literature dealing with evaluation of operational 
availability under such a scenario. 
 To preserve the model as far as possible, we propose a 
fix based on normalization handle. Under a given combat 
damage type, we normalize the probabilities that each 
LRU is damaged by so that the new summation of 
probabilities becomes 1 under combat damage. By this 
method, the deviation is reduced to around 15%, which we 
believe is the best improvement possible. 
 For benchmark purpose, we also implement Monte-
Carlo simulation [6]. Compared with the analytical model, 
in order to obtain reliable performance estimates, we must 
conduct a large number of independent replications and 
compute the average number to reduce the statistical noise. 
Obviously, the larger the number of replications, the more 
accurately, but less efficiently we can obtain the 
simulation estimates. 

V. EXPERIMENTAL RESULTS 

 In our experiments, we consider a multi-echelon 
problem where each military system is composed of more 
than 50 LRUs. The experiments were conducted on a 
Pentium III 1.2 GHz machine with 512MB RAM. In all 
simulation models, we set the number of replications to be 
1000, which is a fairly standard practice in simulation 
experimentation. Note that the run time of our analytical 
approach is within seconds whereas that of simulation is 
about minutes or even hours for large-scale problems. 

A. Single failure by combat damage 
 We compare the time-varying Ao by our analytical 
method against those by Monte-Carlo simulation [6].
 First we run a small test case where one depot 
supports one base where 40 identical military systems are 
deployed, each of which is composed of seven LRUs. The 
utilization rate is given by a piecewise function as follows: 
0.0486(0-1000hr), 0.0833(1000-2000hr), 0.5833(2000-
3000hr). Combat damages occur at time 1000hr and 
2000hr when 0.432 and 0.27 systems are attrited 
respectively*. There are 6 damage types. The number of 
systems damaged under every damage type at combat 
damage time is given in Table I.  

TABLE I 
SYSTEM DAMAGED UNDER DIFFERENT DAMAGE TYPE 

Time Type1 Type2 Type3 Type4 Type5 Type6 
1000 1.368 1.368 1.368 1.368 1.368 1.368 
2000 0.855 0.855 0.855 0.855 0.855 0.855 

 
The probability that LRU 1 under damage type 1 is 1, 
LRU 2 under type 2 is 1, LRU 3 and LRU 4 under type 3 
                                                           
* Here we allow the number of systems not only in attrition but 
in damage as well not to be integer because this number is 
estimated based on the combination of probability and forecast. 



are 0.5 respectively, LRU 5 under type 4 is 1, LRU 6 
under type 5 is 1 and LRU 7 under type 6 is 1. The results 
comparing against simulation is shown in Fig. 1. 
 

 
Fig. 1 Comparison of Time-Varying Ao between our model and 

simulation with combat damage. 
 
 From Fig. 1, we observe that our results match 
simulation results very well with short computational time. 
We also note during reliability, the availability decreases 
as time gently. However, there is a precipitation when 
combat damage occurs. 
 Next we run the test case in which there are three 
echelons. 100 military systems are allocated at each base, 
each of which comprises more than 50 LRUs. We allocate 
a number of spares at the sites. Utilization rate is given as 
0(0-10), 1(10-18), 0(18-24), 1(24-34), 0(34-48). Combat 
damages occur at time 13, 18, 34. The results are shown in 
Fig. 2. Fig. 2 shows that our results are very close to 
simulation results. In addition, we find there is no 
precipitation in Fig. 2. This is because we allocate enough 
spares so that when combat damage happens, the damaged 
LRUs can be removed and replaced by stocks almost 
immediately. This indicates in fact the drop of availability 
when combat damage takes place can be overcome. 
Planners can allocate a certain number of spares to provide 
immediate replacement of damaged components at the 
beginning of or during missions based on the existing 
information and rational forecast. 
 

 
Fig. 2 Comparison of Time-Varying Ao between our model and 

simulation with combat damage under non-zero spares allocation. 
 

B. Multiple failures by combat damage 
 Using the test cases in the previous section, we further 
set the attrition rate to be 0.6 and the number of systems 
damaged during mission to be 2. We derive three distinct 
test cases: one where there is both attrition and system 
damaged, one where there is only attrition, which is 2.6, 
and one where there are only 2.6 systems damaged. 
 First we run them without setting the priority, 
replenishing on the basis of FCFS regardless of the cause 
of demands. Fig. 3 gives a summary of the results. From 
Fig. 3, the availability under only attrition is even higher 
than those under both only system damage and both of 
them. In other words, to sustain a high availability, it is 
more preferable to attrite systems (although only some 
components within them are damaged) rather than 
repairing damaged components to restore the system. That 
is obviously preposterous to reality since military systems 
are always expensive. This demonstrates the importance of 
setting the priority to meet the failures caused by 
reliability. We run the test cases once more with priority 
and the results are shown in Fig. 4, which is observed to 
be consistent with commonsense practice. 
 

 
Fig. 3 Time-Varying Ao under combat damage without setting priority. 

 

 
Fig. 4 Time-Varying Ao under combat damage with setting priority to the 

demands by reliability. 
 



 
Fig. 5 Time-Varying Ao by normalization with multiple failures by 

combat damage under zero spares. 
 

 
Fig. 6 Time-Varying Ao by normalization with multiple failures by 

combat damage under non-zero spares. 

 In Fig. 5, we experiment with multiple failures caused 
by combat damage and compare the results generated by 
simulation, our approximation with and without 
normalization. From the results, it can be seen how the 
fundamental weakness of Equation (15) to handle multiple 
failures can be fixed with normalization. We also run a test 
case under a given spare allocation and results in Fig. 6 
show it achieves reasonably good approximate solutions. 

VI. CONCLUSION AND FURTHER RESEARCH 

 In this paper, we consider a multi-echelon single-
indenture inventory system that copes with combat 
damage occurring at certain time points. We proposed an 
approximate method to compute time-varying operational 
availability. Our model is particularly relevant in the 
context of both peacetime and wartime when heavy 
damages occur regularly during and after combat missions. 
Experimental results show our approach is accurate when 
the summation of component damage probabilities over all 
LRUs is 1 under each damage type and the replenishment 
policy. A challenging future work is to develop a more 
accurate analytical approach to model the scenario where 
the damage of LRUs is batched, i.e. dependent on each 
other, within a single combat damage. Another interesting 
research problem is to optimize the spare allocation in a 
time rolling horizon setting by reallocating the spares or 
replenishing from external provider based on the existing 

operational availability in response to dynamical changes 
and requirements with combat damage. 
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