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Abstract—Making software systems service-oriented is becoming the practice, and an increasingly large number of service systems

play important roles in today’s business and industry. Currently, not enough attention has been paid to the issue of optimization of

service systems. In this paper, we argue that the key elements to be considered in optimizing service systems are robustness, system

orientation, and being dynamic and transparent. We present our solution to optimizing service systems based on application-level QoS

management. Our solution incorporates three capabilities, i.e., 1) the ability to cater to the varying rigidities on Web service QoS in

distinct application domains and of various users in a robust and heuristic manner, 2) the ability to formulate the overall system utility of

a service system perceived by a particular system end user and to suggest its maximization using a utility model incorporated into a

three-dimensional weighting scheme, and 3) the ability to dynamically achieve a higher perceived system utility of a service system via

transparent negotiations. The calculation of the system utility encompasses a negotiation algorithm and a robust search algorithm for

selecting heuristically best Web services. The effectiveness of the proposed algorithms and our solution is demonstrated by simulation

experiments and our demo deployment, SSO.

Index Terms—Optimization of services systems, quality of services, service selection, composite services, system utility, negotiation,

robust.

Ç

1 INTRODUCTION

SERVICES represent a type of relationships-based interac-
tions (activities) between at least one service provider

and one service consumer to achieve a certain business goal
or solution objective—[2]. Web services technology as a de
facto realization of services computing and a key enabler of
its disciplines has evolved into a system development logic
that focuses on the effective selection and integration of
distributed, heterogeneous, and autonomous system com-
ponents in the form of individual Web services for building
new systems. Such integrations rely on the capability of
assembling individual system components over certain
control and dataflows into service systems. Usually, a
number of competing Web services are able to offer the
functionality of a system component, and very likely, these
Web services have different nonfunctional characteristics,
or quality of service (QoS).

Network QoS parameters such as bandwidth, latency,
jitter, and loss have long been studied by the researchers in
the network area. QoS of networks pertains to the features
of each network layer defined by the layered network
model. QoS of Web services, on the other hand, is a set of
characteristics defined specially for the particular middle-
ware that allows software exposed as network reusable
“services.” To date, much work within the area of QoS of

Web services has been in the context of satisfying QoS
constraints and meeting QoS agreements on multiple
individual QoS characteristics of Web services, such as
execution time, execution cost, reliability, availability, and
reputation. Such research works have facilitated service
selection based on multiple individual QoS requirements.
There has also been in-depth research into QoS aggregation
and QoS-aware service composition. However, not enough
attention has been paid to a system perspective in studying
the quality of service systems and how that can contribute
to optimizing service systems.

System optimization is a principle in services computing
[1], [3] and can be seen as a foundation for building valid
and efficient systems in the service-oriented paradigm. Most
often, the quality of a service system is among the top
concerns of system users, and therefore, constitutes a main
objective for optimization of service systems. Techniques
currently available for managing Web service QoS do not
seem to provide a complete and general solution to
optimizing service systems from the QoS perspective for a
number of reasons. The reasons we have listed below are not
meant to be exhaustive. Reason 1: Some QoS functions of
service systems are best controlled at the application level
from a system perspective instead of at the Web service
level. For example, the flexibility on the timeliness of data
delivery by the system can purely be dependent on the
nature of the application domain itself. From this perspec-
tive, system optimization on service systems plays an
indispensable role in engineering service systems. Reason 2:
One purpose of services computing is to ease the job of the
programmers, designers, and business operation managers
in building software systems. An operation manager in an
SOA-oriented business, when participating in the design of
a service-oriented IT system, needs to know the expected
performance of the system under a given resource level
without micromanaging the constituent services. In view of
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such needs, a general solution to optimizing service systems
is very much in need.

We argue that there has not been a general approach
proposed to system optimization of service systems. We
argue that the key elements in a general approach to
optimizing service systems must include at least robustness,
system orientation, and being dynamic and transparent:

1. Robustness: The ability to cater to the varying
rigidities on Web service QoS in distinct application
domains and of various users using a robust solution
in a heuristic manner;

2. System orientation: The ability to formulate the
overall system utility of service systems in the
system perspective of a particular system end user
and suggest its maximization to that end user; and

3. Being dynamic and transparent: The ability to dyna-
mically achieve higher perceived system utility of
service systems (again heuristically) by adjusting
QoS levels of different components of the system in a
transparent way to the system end user.

In this paper, we try to contribute to the issue of
optimizing service systems by presenting a general solution
that accommodates the above three key elements. In
particular, our contributions in this work include 1) support-
ing robust statements such as “If the quality of an application
is better than�with the probability of 1� ", the expectation is
considered fulfilled,” 2) making it system-utility-enabled to
take care of the distinct characteristics of measuring
usefulness by the end users, and 3) encompassing dynamic
and transparent negotiation to achieve the maximal useful-
ness of the system for its system end users.

The broad implication of the above contributions can be
seen as twofold, i.e., proposing key aspects in system-level
studies of service systems in the discipline of services
computing and providing practitioners in the service
industry with an option in improving the quality of
service-based IT solutions. Our work has helped to identify,
for the research community of services computing, the
distinguishing system-level characteristics of software
systems that are enabled by a service-oriented paradigm.
Such distinguishing system-level characteristics can be used
to form a basis of a bread of research focusing on the
system-level study of service systems. Our work has also
approached such characteristics in a way that accommo-
dates the need and perspective of IT practitioners who are

ready to adopt services computing. From the point of view
of the IT industry, our work shall be useful to business
operation managers who play an important role in design-
ing, managing, engineering, and fine-tuning service-based
software systems. With our work, the goal in achieving the
utility of software systems can be seamlessly integrated into
their service management practices. For example, in order
to achieve IT automation, they can incorporate our research
results into their service solution evaluation framework to
fine-tune the solution they have produced for a best utility
to the business.

The remainder of the paper is organized as follows: In
Section 2, we detail three contributions of our proposal of an
application-level QoS management for service systems and
walk through a scenario to exemplify the idea of optimizing
service systems. In Section 3, we describe a model of service
systems in the context of optimizing service systems. Then,
we elaborate the technical aspects of our solution. In Section 4,
we present an algorithm for robust and system-utility-based
optimization in our solution. In Section 5, we validate our
solution by both simulation-based experiments and a demo
deployment called SSO. In Section 6, we review the current
research on WS QoS research for a comparison. We conclude
the paper in Section 7.

2 APPLICATION-LEVEL QoS MANAGEMENT

2.1 Distinguishing Features

QoS control in service systems can be seen as a layered
architecture, from the network QoS control during message
transmission, to the physical layer and OS-level resource
scheduling at the host, to Web server QoS management, and
finally, reaching the processing and monitoring of WS QoS.
This layered model can be illustrated as the dashed line box
in Fig. 1 [29]. Our observation is that for optimizing service
systems, the gap between WS QoS and its utility to system
end users must be filled. Our approach is to introduce an
extra layer of application-level QoS management as a
bridging layer. The design of this layer entails a number
of considerations in terms of optimizing the QoS of service
systems. Fig. 1 also shows the application-level QoS
management for service systems within the layered QoS
control architecture. This layer is expected to seamlessly
establish the linkage of WS QoS and the perceived values or
utilities by the ultimate end application use case in order to
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guarantee a satisfaction level of system end users. This layer
is designed with the following distinguishing features:

1. Being robust, which is designed to cater to distinct
domains and various end users with different
degrees of rigidities on the QoS of the service
systems. Optimization of service systems needs to
accommodate the stochastic nature of Web services
and entail an effort of providing a spectrum of QoS
offerings with certain probabilities, while maintain-
ing a satisfactory level to the system end users. This
has not been investigated before. We claim that
given uncertain QoS values, a best lower bound to
the quality of a service system is a powerful
measurement that can be used to both communicate
with the service consumers and evaluate the entire
application. In view of this, we propose a heuristic-
based service selection scheme for a robust quality
analysis of service-based applications. Multiple QoS
attributes such as execution time, reliability, avail-
ability, and cost are represented by their means and
variances. The evaluation of an application built on
certain Web services is cast as an optimization
problem under probabilistic constraints and solved
efficiently (albeit heuristically) by a local search
method that guarantees to return the best quality
level " such that the probability that the actual
quality received by the end user falls below q is
within a prescribed threshold ".

2. Being system utility enabled, which seeks to provide a
system-oriented view of a service system in terms of
its overall system utility perceived by a particular
end user. The system utility perceived varies across
different end users. Due to the budget limit and
other possible constraints, a trade-off is always
unavoidable. In this case, it is important to model
the preference of receiving higher quality of services
on one component to that of another, for example,
positioning and navigation versus video playing in
the scenario (which will shortly be described in the
next section). In other words, the utility increase due
to quality improvement on one component is more
significant than that on another. Further, for various
users or various applications, often the sensitivity
along different quality dimensions also varies, for
example, more cost sensitive or more execution time
sensitive. In this case, the utility against different
quality dimensions varies accordingly. The utility
model proposed by us distinguishes our solution by
accommodating the preferences and constraints of
the system end users. Particularly, in our solution,
we aggregate measures of a QoS dimension over all
service components as in some existing studies, e.g.,
[11], [20]. We also apply a general three-dimensional
weighting scheme to enable a combination of quality
measures over all quality dimensions. Further, the
utility functions of all quality dimensions over all
components are incorporated into the scheme to
provide a perceived system utility of the system end
user. The system utility is maximized using search-
based techniques for the intended system end user.

3. Dynamic and transparent negotiation, which, based on
the first two features, provides a transparent negotia-
tion mechanism in order to achieve a maximal overall
perceived system utility. Due to the dynamisms of the
dependent factors of Web services and of service
providers’ business strategies, Web service QoS
provisions may change from time to time for multiple
times of usages by the service system and even during
one single service invocation. Meanwhile, in the peer-
to-peer interactions among the collaborating service
systems, resource fluctuations, e.g., due to transient
overloads or resource failures, at the local server will
affect the QoS constraints imposed on the remote
services. In either case, adjustment, i.e., degradation
or upgrading, of certain QoS dimensions through
service offering reassignments may be necessary in
order to maintain a maximum perceived utility of the
system. In contract to the existing Web service
negotiation research, the negotiations among
multiple service implementations and/or among
multiple service components in our solution are
transparent to the system end users. The resource
available at the local site is determined by a local
heuristic and the QoS of the remote services is also
determined by the remote sites. Given the local
resource constraint and QoS of the remote service
offerings, our QoS (re)negotiation mechanism ensures
graceful QoS degradation and upgrading in the cases
of local or remote resource changes during runtime.

2.2 Scenario of Service System Optimization

In this section, we use Web service execution time and
execution cost as example quality attributes to motivate
the robust and system-utility-enabled application-level
quality control with a capability of dynamic and
transparent negotiation.

Here, we put forth a mobile and distributed application
that is able to answer queries of mobile device users. This
application has been implemented and used for evaluating
the deployment of our system optimization solution. A
graph that shows its possible components and optional
precedence relationships among them is given in Fig. 2.
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Imagine that someone in a (partially) autonomous vehicle
loaded with some mobile devices on a back street in the
Central Chao Yang District neighborhood of Beijing, China,
looking for an Italian restaurant. The passenger can issue a
query to the vehicle like “What are the closest Italian
restaurants to have original lasagna?” The application needs
to answer this query in a timely fashion because the vehicle
is moving and the services need to be completely delivered
before the vehicle and passenger move out of the area.

This application is an example of the class of application
domains whose QoS measurements are not a fixed value,
which require a stochastic analysis. Any Web services used
by such a service system may be executed under uncertain
environmental factors, input/output factors, and platform
factors of distinct servers. Since the dependent factors of
these quality measures are variable, a service provider
provides services at uncertain levels of QoS at different
times, and therefore, demands a variable charge.

The variations on QoS dimensions of systems may or
may not actually allow flexibility of the analysis depending
on the nature of the applications, i.e., different rigidities on
their QoS requirements. In the case of video playing, if a
small percentage of the speech or images is delayed and
distorted, the utility to the end users may not be affected. In
terms of cost, some applications allow a flexible budget. As
far as the overrun of the budget is within a certain
percentage and the probability is not too high, the cost
constraint is considered to be satisfied.

3 QoS-BASED OPTIMIZATION OF SERVICE

SYSTEMS

In this section, we discuss in details of application-level QoS
Management for service systems.

3.1 Model of Service Systems

A service system can be seen as a collection of service
components, each requiring completion of certain tasks.
These service components are organized into some struc-
ture within the service system in order to achieve a goal. A
service system can thus be formalized as a collection of
tuples, each of which consists of a distinct system
component and its corresponding number of occurrences
within the system, i.e.,

ss ¼ fhc1; o1i; . . . ; hcn; oni; hcnþ1; onþ1ig: ð1Þ

The ith instantiation of a particular service system
(referred to as instantiation i of SS) is a collection of Web
service assignments to each distinct system component j, i.e.,

ssi ¼ fhsi1; c1i; . . . ; hsij; cji; . . .g: ð2Þ

If the average number of possible assignments for a
component is M and the number of components is N; i can
range from 1 to M �N . The only constraint on assignments
is that one component needs one and only one Web service
assignment. There is not such a constraint that one Web
service can only be assigned to one system component. In
other words, the same Web service can be used multiple
times in a service system.

A number of QoS attributes for Web services have been
proposed in the existing research on QoS, e.g., execution
time, execution price, reputation, successful execution rate,

and availability. Some WS QoS attributes are tightly
coupled with infrastructure and some are not.

3.2 Robust Service Selection

Most existing researches on QoS have not taken a robust
approach to evaluating Web services against some or all of
the quality criteria. In other words, all existing evaluations
have taken a deterministic perspective when studying the
quality of Web services, which is normally not useful
enough when dynamic resource constraints are present. For
example, the execution time of certain Web services
provided by a software asset may fluctuate due to the
processing load on the server that hosts the Web service, or
the reliability of the Web service may only be known as a
probability. Calculating only a bound value of the quality is
not able to provide enough information.

Therefore, the probability issue in Web service QoS must
be taken into consideration for a solution to optimizing
service systems. One approach is to model the measure-
ment of the QoS level of Web services on a particular QoS
dimension as a random variable with a given mean and
variance value. In this section, we propose a service
selection scheme for optimizing service systems based on
a robust analysis of quality of services. Multiple quality
attributes including execution time, reliability, and avail-
ability may be considered from the perspective of a system
end user within the overall capacity and constraints/
preferences of the service system. These quality attributes
are depicted as probability models with certain means and
variances. Service selection is cast as an optimization
problem with probabilistic characterization. This optimiza-
tion problem is solved by a robust local search that returns
the best quality level q such that the probability that the
actual quality received by the system end user falls below q
is within a given threshold ". The approach that we present
in the paper solves the problem of optimization of service
systems at two levels as follows:

. What is the best lower bound on quality measure-
ment of a service system within a given probability?

. Which set of assignments of Web services to the
service components in the service system yields the
best quality (even in the worst scenario) within a
given probability?

Robust optimization has been applied to deliver promis-
ing results in immunizing uncertainty in optimization
against infeasibility while preserving the tractability of the
model. A robust local search framework can efficiently solve
resource constraint scheduling problems with data uncer-
tainty. Given a value 0 < " � 1, the robust objective value,
i.e., the optimal value if we allow an "-chance of not meeting
it, assuming that certain data values are defined on bounded
random variables given by ~z, can be computed [29].

Let

V ðx; ~zÞ ð3Þ

denote the random variable representing the objective value
for solution x under uncertainty ~z. The robust local search
scheme is based on the definition of a robust fitness
function associated with ", shown in (4):

fðx; ~z; "Þ ¼ E½V ðx; ~zÞ� þ
ffiffiffiffiffiffiffiffiffiffiffi
1� "
"

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ar½V ðx; ~zÞ�:

p
ð4Þ
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Let V � denote the solution value yielded by the local
search with respect to the above fitness function. Then it can
be shown that (5) is also true. A detailed description of the
algorithm design and its implementation are provided in
Section 5:

P ðV ðx; ~zÞ � V �Þ � 1� ": ð5Þ

3.3 Enabling System Utility for End Users

End users of service systems observe the quality of service
systems from a system perspective that is a collective effect
of the local quality values of all individual component
services encompassed by the system. A system perspective
of a system end user also entails a utility measure that spans
across all quality dimensions of the system and relies on the
preferences and constraints of the particular end user.
Utility theory has been applied to model Web service
requests in [22]. Here, we propose a comprehensive utility
model to model the overall system utility perceived by a
particular end user based on QoS measurements. We have
designed a three-dimensional weighting scheme for com-
bining quality measures over all quality dimensions and
over all components. It uses the utility model for optimizing
the service system. Our utility model is described below.

Using the standard multiattribute decision analysis [10],
a component could have defined upon it a vector of QoS
metrics q, shown as in (6),

q ¼ fq1; q2; . . . ; qmg; ð6Þ

within which q1; q2; . . . qm represent the individual QoS
dimensions. Such q is also known as decision variable vector
in optimization problems. For the ith instantiation of the
service system, all its assignment utilities form a vector,
shown in (7). A utility vector that corresponds to all QoS
dimensions of the jth component in an instantiation i of a
service system, i.e., �fj, can be written as (8), where fjmð�Þ is
the mth QoS dimension of jth component. Each elemental
function in this vector may or may not be dependent on each
other. Based on this, a utility matrix that corresponds to the
ith composite Web service instance can be written in (9):

Ui ¼ ðuðsi1ÞT ; uðsi2ÞT ; . . . ; uðsijÞT ; . . . ; uðsinÞT Þ; ð7Þ

uðsijÞ ¼
�fj ¼ fj1ðqij1Þ � � � fjmðqijmÞ � � �

� �
:

ð8Þ

In our combinational and aggregational study of applica-
tion-level QoS, utility is examined in a comprehensive way
by applying a three-dimensional weighting scheme. This
three-dimensional scheme is based on 1) a collection of two
dimensional weighting vectors, in particular, a sequence of
weighting vectors Wj, as shown in (11), each of which
corresponds to the weighting functions for all QoS dimen-
sions of the jth component and 2) a weighting vector WF , as
shown in (12), which corresponds to the weights for all the
components of the service system. The weighting scheme is
introduced to model the overall utility V , written as (10).

These weighting vectors reflect the facts 1) that for the
same set of QoS dimensions, the relative weightings of these
QoS dimensions can be distinct within different subfunc-
tions of a service system, 2) that such relative weightings
can also vary with the QoS values, and 3) that the

weightings of distinct components within the service
system can be different:�

�f
T

1 � � � �f
T
j � � �

�
; ð9Þ

V ¼ Ui �W; ð10Þ

Ui ¼

ui1
. . .
uij
. . .

0
BB@

1
CCA ¼

W1 � �f
T

1

� � �
Wj � �f

T
j

� � �

0
BB@

1
CCA; ð11Þ

WF ¼ ð _w1 � � � _wj � � �Þ: ð12Þ

3.4 Transparent QoS Negotiation

WS QoS negotiation refers to the process of making trade-off
on WS QoS metrics among multiple service entities in order
to achieve a maximum utility possible, perceived by the
system end users. Static WS QoS negotiation happens
during service discovery for the purpose of feasibility
assessment of a service system. Dynamic WS QoS negotia-
tion happens when specified failure conditions are violated,
e.g., when the end user’s perceived utility of the service
being executed has to drop at runtime. Two distinct reasons
might have caused such a drop. The provider of particular
Web service may experience high load and decide to drop
the quality level. Alternatively, the scarce of the server
resource at the end user side may also require reducing the
QoS of the services of the service system.

WS QoS negotiation can take place at different levels. A
pool of Web services can be configured to be managed by
one single (virtual) service provider, who appears to the end
user as a provider who is in charge of all the implementa-
tions within the pool. In this case, negotiation can autono-
mously be initiated by the virtual service provider to do QoS
capacity pooling for the services within the pool. We refer to
this as service pool negotiation. Service pool negotiation is
switched on transparently to the user whenever sharing QoS
capacity is helpful in improving the utility.

Distinct components of a service system most probably
show different variation characteristics in each QoS attribute.
Since the functions of each component may be of a different
utility to the user, trade-offs among components are
necessary before or during the service execution to maximize
the overall perceived utility of the service system. This
negotiation is referred to as component negotiation. Compo-
nent negotiation relies on service pool negotiation. The
negotiation results at the service pool level are used to
analyze the best trade-off among multiple components.
Component negotiation maintains its transparency to the
user as far as the perceived utility has not violated the failure
conditions. Negotiation may result in degradation or
upgrading of the perceived utility. However, the best utility
possible with the current QoS capacity is guaranteed. In this
case, the end user will not get involved in the negotiation. An
exception to this is that the specified constraints in one or
more QoS attributes are validated. In this case, the user will
be notified and participate in the negotiation.

Both service pool negotiation and component negotiation
use the same negotiation algorithm. Let N denote the
number of services that are involved in a service pool or a
service system and that have resource allocation conflicts.
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Let xk denote the resource demand of service k and vkðxÞ
denote the payoff of service k if the resource allocation
strategy of x ¼ ðx1; . . . ; xNÞ is selected. An example of
payoff is the service execution time due to allocated CPU
computing resources. xkðiÞ and xðiÞ denote the allocation of
resource(s) at the ith iteration. Let ~x ¼ ð~x1; . . . ; ~xkÞ denote
the resource allocation if no agreement is reached. The
negotiation algorithm can be described as the following.

Algorithm 1.

1. i ¼ 0;

2. Each service submits an initial resource

request xkðiÞ;
3. IF the resource allocation strategy

x ¼ xðiÞ is feasible Quit;

4. ELSE {

5. L1:

6. Select one service to degrade (upgrade)

its demand to the next level that

achieves the minimum decrease (maximum

increase) of payoff;

7. IF no services can be selected {

8. x ¼ ~x and Terminate;

9. }

10. ELSE

11. x ¼ xðiþ 1Þ;
12. IF xðiþ 1Þ is feasible Quit;

13. ELSE {

14. i ¼ iþ 1 and go to L1;

15. }

16. }

4 ROBUST AND UTILITY-BASED OPTIMIZATION

We have chosen a heuristic approach of local search to
optimizing service systems mainly out of performance
consideration. When service providers have limited capa-
city, the problem is NP-hard. To solve such an NP-hard
problem, approaches like Integer Programming, which rely
on an enumeration method of branch and bound, will be
much more time-consuming comparing to local search.
The stochastic version of the problem adds complexity on
top of that and gives us more incentives to take a heuristic
approach. We propose an algorithm to perform robust
search for a heuristically good system. Our purpose is to
hedge uncertainty in Web service offerings via a robust
model (versus a conventional optimization model). The
algorithm is given in Algorithm 2. Given 1) a service
system composed of service components, 2) the mean and
variance values of all possible Web service assignments,
and 3) a value of ", which can been seen as a level of risk,
the algorithm will return a collection of Web service
assignments to the components of the service system that
has the best quality value, or V �.

In essence, we perform a robust local search on the
neighborhood set of assignment list. An assignment list is
defined as a precedence-constraint feasible assignment of
Web services to the components. The algorithm first
performs some preprocessing. It finds the component
assignments that are dominated by some other assignments.
For example, if the Web service assignment fluctuates vastly

and the average quality value is not high, i.e., with a larger
variance and a smaller mean, it will not be picked to be part
of the assignment list being searched for. Such assignments
will be removed during the preprocessing.

The algorithm then explores different assignment lists by
local moves in which one assignment is switched in the
assignment list. The switch that maximizes the quality is
selected as the next local move. We set the maximum number
of local moves as Max_Iteration. When the algorithm stops, it
outputs the best quality value and its associated assignment
list for the service system with the given conditions. Local
moves direct the search to approach the assignment list with
the maximum V � value. In particular, local moves must
move from a feasible or a nonfeasible solution to a feasible
solution that has a larger V � value than the currently
achieved best value V �. Since the feasible solution regions
may not be connected in the search space, local moves that
are restrained to one feasible solution region will fail to reach
feasible solutions in other unconnected feasible solutions.
We, therefore, diversify the exploration of assignment lists in
the feasible solutions by the local search move from a feasible
solution to a nonfeasible solution.

With such considerations, we design the local move in
the following way: If an assignment list is feasible, the
algorithm randomly picks a component and then picks
from among the available Web service assignments to swap
with the current assignment to the component. If the new
assignment list yields a larger V � value, this is accepted by
the algorithm as the next local move. In order to explore the
entire search space, a small probability to accept an
infeasible solution is introduced. In Algorithm 2, this small
probability is set to be 0.01. The current minimum value at
each local move is stored in V �.

Algorithm 2.

1. L1: for each component of the composite Web

service do

2. Remove the assignments that cannot be part of

the result to be output;

3. Generate a composite Web service assignment

list AL randomly;

4. IF AL is feasible, compute V �now;V � ¼ V �now
5. ELSE Go to L1;

6. FOR i ¼ 1 to Max_Iteration do{

7. L2: Select one component c in AL randomly;

8. Randomly select another assignment

a0 of c;

9. Swap Web service assignment a of c with a0

and form AL0;

10. IF AL0 is feasible{

11. Compute V �now;

12. IF V �now � V � Go to L2

13. ELSE V � ¼ V �now and AL ¼ AL0

14. }

15. ELSE{

16. p ¼ rand(0,1);

17. IF (p < 0.01) AL ¼ AL0

18. ELSE Go to L2;

19. }

20. }
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5 EVALUATION

5.1 Robust and System Utility Analysis

In this section, we present simulation experiments by
applying Algorithm 2 to find an optimized service system
against the time dimension of QoS. We run this algorithm
against randomly generated service precedence graphs,
each with sets of available Web service assignments for its
service components. The algorithm is implemented in Java
and the results have been obtained by running the
algorithm on a P4 2.9 GHz computer with 1.5 GB of RAM.

Below are the details of the experiment setups. A total of
50 service precedence graphs have been generated. The
numbers of distinct software function components of
generated precedence graphs vary over five values, i.e.,
10, 20, 30, 40, and 50. Ten different precedence graphs are
generated for each number of components. For each
precedence graph generated, we also randomly produce
multiple Web services that can be assigned to each service
component, respectively. The total numbers of service
offerings vary from 50 to 150.

We have considered three schemes in terms of the
relationship between the capacity of service providers and
the demand of service components in the context of multiple
service system on the same network. Scheme SSC, we assume
that there is roughly the Same amount of demand for each
component and a Similar number of Web service offerings
for each component. Each service provider is Capable of
handling all incoming requests on service offerings, which is
usually the case in normal situations. Scheme SSL, we
assume that there is roughly the same amount of demand for
each component and the number of Web service offerings for
each component is roughly the Same. Each service provider
has a Limited capacity in handling incoming requests. But
the capacity of all service providers in combination is
adequate for the incoming requests. Scheme VSL, we
consider that the amount of demand for each component
may Vary and the number of Web service offerings for each
component is roughly the Same. Each service provider has a
Limited capacity in handling incoming requests. But the
capacity of all service providers in combination is adequate
for the incoming requests.

We have used the following five variance values: 0.1, 0.3,
0.5, 0.7, and 0.9, and the following three mean values:
3 (ms), 5 (ms), and 7 (ms), which give a total of 15 different
variance and mean combinations. We have randomly
chosen a variance and mean combination for a Web service
offering. Max_Iteration in Algorithm 2 is set to 1,000.

The first part of the experimental study of robust search
is on the search results in terms of the execution time of
the optimized service systems. The results shown in Fig. 4
are the averages of those of all 10 precedence graphs with
the same number of components. Three solid lines in the
figure are charted against the resultant execution time of
the precedence graphs with 10, 20, and 30 service
components, respectively. For each type of precedence
graphs, the robust execution time decreases as the values
of " increase. The higher level of risk the user of the service
is willing to take, the shorter execution time the service
system can possibly get. Using traditional approaches
solely based on the expected values of components’
execution time, we can get the resultant execution time
of the service system as a fixed value over all different "
values for a given precedence graph, which are shown as
dashed lines paired with the corresponding robust analysis
results in Fig. 3. We can see that a fixed value is at the
same level as the robust value with " ¼ 0:5.

We observe in the figure that service precedence graphs
with more software function components experience longer
robust execution time. This is the case when the same
experiments are repeated a number of times (in our case,
three times) and the mean values of the Web service
assignments are picked randomly. We can also observe that
service systems with a larger number of components
demonstrate a steeper slope on the corresponding line.

If we compare the robust analysis with the worst-case-
based analysis, which is sometimes required (e.g., for life
critical applications), the robust analysis provides a quanti-
fied trade-off analysis on the upper bound execution time
and the possibility of not reaching this upper bound. Such
analysis results help the service user to make a decision on
the desired service selection options.

In two other experiments, we fix the complexity of the
problem and experiment on optimizing service systems
with 40 components. The value of " is set to 0.2 and mean is
set to be 3 ms. We use scheme SSL and the number of service
offerings keep unchanged for different runs of experiment.
The capacity of each service providers is set to be 50 calls.
Fig. 4 shows that the execution time of the optimized service
system periodically jumps up as the current demand for a
component increases, indicating a drop of the quality of the
optimized system. For example, when there are between 50
and 100 concurrent calls from the service systems in the
network, the quality of the optimized service systems
maintains at a level around 124 ms. Over 100, the execution
time increases to a level around 134 ms. Then it maintains at
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around 134 ms until the number of concurrent calls reaches
200, when the execution time again increases to a level
around 153 ms. This is due to the limited capacity of the
service providers.

Once a threshold is reached, the quality has to be
compromised because when a server is fully loaded, the
assignment to this service provider is not considered
feasible and another assignment (possibly with lower
quality) has to be made, and thus, reduces the quality level.

We simulate the VSL scheme in a similarly way. The
value of " is set to 0.2 and mean is set to be 3 ms. In this
experiment, we have assumed that service demand of
various components follows a normal distribution statisti-
cally with a mean of 50 and standard deviation of 10. Fig. 5
shows that the execution time of the optimized service
system jumps up as the current demand for a component
increases, indicating a drop of the quality of the optimized
system. But the jump up does not seem to necessarily follow
a fixed periodic pattern. Generally speaking, it remains at a
level for a while before it jumps up again. This is due to the
limited capacity of service providers. When a provider is
fully loaded, no assignment will be made to the service
offerings on this provider even if they have the best quality.
Since the demand follows a normal distribution, there is not
a clear pattern in terms of when the execution time of the
optimized system gets increased or the quality gets dropped.

Next, we have performed experiments to study the
performance and sensitivity of the algorithm. For perfor-
mance study, we run Algorithm 2 over precedence graphs
of 30 components, each with 15 service offerings. For
sensitivity study, we run Algorithm 2 over 50 precedence
graphs with 10, 20, 30, 40, and 50 function components,
respectively. The value of " is set to 0.2. We use scheme SSC
and the number of service offerings keep unchanged for
different runs of experiment. We vary the maximum
number of iterations (Max_Iteration) in the algorithm
between 200 and 1,600. We measure the execution time of
the algorithm and the quality of the search results (in terms
of the mean execution time of the optimized service
systems). The results are shown in Figs. 6 and 7.

As Fig. 6 shows, the execution time of the algorithm
increases proportionally with the increase of the value of
Max_Iteration. Since for each iteration, the amount of time
spent on checking the neighborhood of a solution keeps the
same if the number of service offerings keep the same, the
time spent on searching for a solution will bear a linear
relationship with the value of Max_Iteration. Fig. 7 depicts
the change of solution quality when we increase the value
of Max_Iteration.

Each line in the graph presents solutions to a class of
problems with certain complexity. For example, the top line
corresponds to problems of optimizing service systems with
50 components and the bottom line corresponds to
problems of optimizing service systems with 10 compo-
nents. We see that a general downward trend with each
line, which tells a smaller execution time (or an improved
quality) of the solution when the value of Max_Iteration
increases. This is true for problem instances with any level
of complexity (i.e., service systems with from 10 through to
50 components).

We can also observe that as the value of Max_Iteration
increases, the decrease on the execution time of the resultant
service system more or less stops at some point. In other
words, the quality of the solution no longer increases with
the increase of Max_Iteration after certain point. This is
generally true for problems with different complexities,
although the stop happens at different stages. In the cases of
10, 20, and 30 components, this seems to happen when
Max_Iteration reaches 1,000. In the case of 40 components,
quality improvement stops when it reaches 1,400. In the case
of 50 components, the quality seems to continue improving
as it reaches 1,600. We show that Max_Iteration affects the
quality of the optimization solution until a certain point,
which depends on the complexity of the problem.

Finally, we measure the distance between the solutions
found by our local search algorithm and the “optimal”
solution. For this purpose, we run Algorithm 2 over
50 precedence graphs with 10, 20, 30, 40, and 50 function
components, respectively. The value of " is set to 0.2. The
maximum number of iterations (Max_Iteration) in the
algorithm is set to be 1,600. We measure the quality of
the search results (in terms of the mean execution time of
the optimized service systems).

We also run simulated annealing, with the maximum
number of iterations set to 25,000, on the same set of
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with limited capacity (normal distribution) of providers.

Fig. 6. Algorithm running time.

Fig. 7. Quality of resultant service system with different Max_Iteration

values.
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precedence graphs. The purpose in doing this is to achieve
solutions with as high as possible quality. We then compare
solutions produced by our system with the ones generated
by simulate annealing. The results are shown in Fig. 8.

For all experiments, we repeatedly run the algorithm on
10 different precedence graphs and take the average over
the results on all the precedence graphs. In Fig. 8, LS-1600
series corresponds to the solutions generated by our system
and SA-25000 series corresponds to the solutions generated
by simulated annealing. In all cases, the solutions found by
LS-1600 are suboptimal and worse than the solutions found
by SA-25000. In other words, the time efficiency costs us the
quality of the results.

We see that in the cases where the component numbers are
low, the quality difference is also relatively small. For
example, in the case of 10-component, the difference is only
2 percent out of 38 ms. As the number of components
increases, the quality difference becomes more obvious. In
the case of 50 components, the difference is 15 percent out of
183 ms. This is due to the increase of cost on searching for an
“optimized” solution of a problem instance with a higher
complexity. In other words, a larger number of iterations will
be needed to find a solution of the same quality comparing to
the cases with smaller numbers of components.

It is more important that the heuristics can be applied to
reach a reasonably good-quality solution with a reasonable
time complexity for a problem instance of a high complexity.
In service applications that need in-time quality adjustment,
which we are focusing on in this paper, it is most probably
not worth improving the quality by ambitiously increasing
the number of iterations after a certain point. The reason is
that the increase on the quality has usually decreased to a low
level with a slow speed at this point.

5.2 Transparent Negotiation

In this section, we show experimental results of utility study
when the transparent QoS negotiation architecture is
applied. An end application’s utility is specified by the
parameters of its execution model. For illustration purpose,
we model execution time as the single negotiable parameter,
i.e., we only show the utility perceived by the application
resulting from the negotiation on execution time. The utility
uT;jð�Þ is then quantified as uT;jðtÞ ¼ ðtmax

j � tjÞ=ðtmax
j � tmin

j Þ,
where tj is the execution time of the jth component on a
particular negotiated Web service offering and tmax

j and tmin
j

are the maximum and minimum execution time of the jth
component among all negotiated Web service offerings,
respectively. As expected, a shorter execution time corre-
sponds to a better utility.

We use the negotiation algorithm listed in Algorithm 1 to
(re)compute the set of QoS levels for all components of the
service system in order to maximize the weighted sum of
their utility. Here, the overall utility is modeled as the
weighted sum of the utility of each individual Web service
shown as in (13), where Vi denotes the overall utility of the
service system,wj is the weight of the jth component with a
particular negotiated resource, wmax

j
is the maximum

weight of the jth component mong all negotiated resources,
and uT;j is the utility of the jth component with a particular
negotiated resource. Recomputing the QoS levels may
involve lowering the utilities of some individual Web
services to accommodate more important components.
However, the aim is to maximize the overall utility
perceived by the end application.

We assume that we have components a, b, and c in a
service system whose QoS levels, due to the limited
resource, have to be negotiated in order to satisfy the user
best. The (mean) execution times, the corresponding utility
levels, and the weights of these components are shown in
Table 1. We also assume that each of these components is
required by this service system, at least at a degraded QoS
level, and therefore, the Web service offerings used by all
components are always accepted by the QoS Negotiation
module. Using the utility levels and weights listed in
Table 1, we illustrate the behavior of the negotiation using
the negotiation heuristic of Algorithm 1. In this experiment,
we kept the number of components fixed and decreased the
computation power of the local server, i.e., its CPU speed,
dedicated to the service system. This triggers a renegotia-
tion with the SSO on the preferred QoS of the services of the
service system. The result of renegotiation is a degraded
QoS or an increase in the execution times. We then
observed the corresponding decrease in component utility
levels and the overall utility level. Fig. 9 shows the
execution time (calculated using means) of the service
system and its components resulted from negotiation
versus the CPU speed. Fig. 10 plots the normalized utility
levels versus the CPU speed.

As shown in Fig. 9, the mean execution time of component
b keeps at the best level of 4 ms as the CPU speed decreases. It
only starts degradation to the next level of 8 ms when the
CPU speed drops to 20. As for components a and b, their
execution time continuously increases from 8 to 12 ms, then
16 ms, and finally, 27 ms as the CPU under testing slows
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TABLE 1
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down. We see the summation of execution times at CPU
speed of 26 higher than those of two slower CPU speeds.

UT ¼

X
j¼a;b;c

wj � uT;j,X
j¼a;b;c

wmax
j : ð13Þ

As shown in Fig. 10, components a and c quickly degrade
to QoS level 0.5 and then 0 as soon as all better levels are no
longer possible. This indicates that to keep component b fast
at around 4 ms is more important than the summation of the
three execution times, which is in consistency with what the
utility functions tell. We have this result primarily because
components a and c are less critical, so the loss in the total
utility due to their degradation is not as great. Also shown
in the figure is the overall utility, calculated as the weighted
summation of the utility levels of individual components.

Following this result, we further examine how much the
negotiation results depend on the parameter choices of
utility, weight, and execution time as shown in Table 1. We
intend to prove the general validity of the system
independently of the specific characteristics of the deploy-
ment environment using the following experiments. We
prepare parameter values with different characteristics,
respectively, for utility level, weight, and execution time.
As shown in Table 2, the utility levels vary from one
constant value (b-4) to changing in various ways: linear (a-
b-c), polynomial (b-1 and b-2), and staircase (b-3). The
parameter of weight, as shown in Table 3, can become
increasingly dominant as utility changes (b-1), or gradually
become dominant from subdominant (b-2), or roughly
remain tied with others (b-3), or stay at the same dominant
level (b-4). For execution time, as shown in Table 4, one
component may take obviously longer (b-2), shorter (b-1),
or the same execution time than the other components.
While testing the impact of each individual parameter, the
other parameters are fixed to the same choice, which
correspond to the gray columns in the tables.

We list the solutions calculated by our system under the
given varying parameter choices and compare them with
the optimized solutions. The results are shown in Figs. 11,
12, and 13. We can see that in all cases, the quality of the
solutions generated by our system is not seen to be affected
by the parameter choices. We can measure the quality of
solutions by “precision,” i.e., the percentages of utilities in
our solutions out of those of the optimized solutions.
Although the abstract utility values are sometimes slightly
different under different parameter choices, the utilities
found by our system are seen to be around 90 percent of the
optimized solution. (Sometimes, it does find the optimized
solutions, as shown in Fig. 11.) In other words, the relative
precision of the generated solutions remains stable at
around 90 percent in our experiment setting.
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Fig. 10. Utility levels of optimized service systems.

TABLE 2
Variations of Utility Levels for Components

TABLE 3
Variations of Weights for Components

TABLE 4
Variations of Execution Time for Components

Fig. 11. Results against parameter choices of weight.
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5.3 Deployment In-the-Field: SSO

Our implementation of the solution is named the Service
System Optimizer (SSO). It has been deployed in the field.
In this section, we show results of this optimizer interacting
with the demo mobile system that we have described in
Section 2.2 and optimizing its overall utility through robust
local search and transparent negotiation.

The SSO is deployed at an HP-Compaq desktop with
Intel Pentium 4 CPU 3.00 GHz with 1.5 GB of RAM running
Microsoft Windows XP Professional Version 2002 SP2.

The architecture of SSO is shown in Fig. 14. The SSO
serves an intermediary layer between Web service QoSs
and end users of service systems. An end user describes
system utility, constraints, and preferences on functional
requirements in the form of high-level objectives to the SSO,
which assumes the responsibility of optimizing the perfor-
mance of the service system for the end user. The
transparent negotiation service is exported to the end users
through QoS Negotiation APIs. End users use the APIs to
specify system quality levels and the corresponding utilities
to the SSO as a request to optimization. The three most
important APIs are the following:

1. request(Component, QDimension, Utility), which
takes a triplet consisting of a component, a quality
dimension, and a utility. Using this API, the system
end user submits an initial request on receiving a
utility level of a particular component and over a
particular quality dimension.

2. utilityFunction (Array), which takes an array of
triplets of a component, a quality dimension, and a
utility. Using this API, the system end user describes
the utility functions to the SSO.

3. constraint (linearFunction(Components, QDimen-
sions, Utility)), which takes a linear function over a
number of components, quality dimensions, and a
utility. Using this API, the end user specifies a utility
constraint on component(s) over certain quality
dimension(s).

QoS levels are monitored by the QoS monitoring module.
The QoS monitoring model of (virtual) service providers
supports all the other modules of SSO. Each virtual
provider runs on top of a number of Web services whose
QoS levels are explicitly represented and may vary
dynamically. The virtual service provider is in charge of
this collection of services and serves requests from a set of
components by providing a single (virtual) service.

Two other important modules of the framework are
Robust Search Module and Combinational and Aggrega-
tional QoS Management. They are responsible to customize
the QoS allocation to the Web services used by the service
system according to the rigidity of the particular applica-
tion’s QoS requirements. It converts the Web service QoSs
to the system utility that can be perceived by the service
system. The results will be used by the Static QoS
Negotiation and Dynamic QoS Negotiation for application
feasibility assessment, dynamic service pooling, and QoS
reallocation. Dynamic QoS Negotiation handles newly
arrived requests from dynamic components and QoS
reallocation to existing components due to fluctuating
Web service QoS provisions.

A collection of Web services, each providing a required
function of the system and each having distinctive quality
levels are installed at three other desktops that are
connected with each other and connected with the SSO by
LAN and WLAN. In our case, the service-based system is
arranged to be colocated with the SSO. However, we do not
exclude the possibility that the system be deployed at a site
different than the SSO.

To illustrate the working of the SSO, we have developed a
Web-based visualizer, which is a service-based application
that is to be optimized by the framework. The visualizer is
designed in such a way that we can demonstrate the
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Fig. 13. Results with parameter choices of time.

Fig. 14. Negotiation architecture.
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functioning of the framework through the optimization of
this particular service-based system and visualizing the
optimization results. Optimization results can be observed
from the changing quality (and utility) on each component
and each quality dimension of the system. We allow the user
to specify the weights for each component. Then, the
visulizer is able to show the fluctuations of the utility
adjusted by the optimization framework when the services
for remote navigation, control and routing, and video
playing have to be negotiated and reselected. As shown in
Fig. 15, on the top of the window, the user can specify the
weights, and in the middle, there is a simulated map. The
right area shows 1) a chart of the precision of the location
calculation, which is affected by the quality of the global
positioning service being used for navigation, 2) a chart of
the past speed values of the vehicle, which is affected by the
quality of choosing the best route, and 3) a chart showing the
quality of video playing.

Figs. 16, 17, and 18 show the charts at a particular point in
time for the prediction precision, the speed, and the buffering
time. We can see that (due to a more stringent constraint on
QoS) the QoS of the system has to degrade. Video playing
first degrades due to its low impact on the overall system
utility. This is followed by a degradation of route choosing.
Positioning and navigation remains at the same utility for
some time before degrading because it is considered the most
important component in terms of the contribution to the
overall system utility of the service system.

6 RELATED WORK

The Web service model has emerged as a new application
integration logic and B2B interaction framework. Web
services, as a new class of programmable entities, are thus
exposed to the issue of QoS. QoS for traditional Web

applications has been studied within a layered architecture
including transport, network, operating system, distributed
system, and applications.

However, such studies are not sufficient for studying
service systems. QoS of Web services has, in the past five to
six years, been investigated as a separate topic in a number
of research projects. A range of research issues regarding
QoS provisions on Web services have been studied recently,
which can be categorized as follows:

1. Methods in processing QoS to be used for Web service
selection and composition.

2. Models of Web service QoS characteristics and related
ontologies and semantic languages.

The majority of the development in the provision of
quality of service support from Web services is to solve the
issues of processing methods; and of models, ontologies, and
semantic languages. Within the first category, service
selection and composition are studied from the middleware
perspective based on WS QoS [13], [14], [21], [30]. Research-
ers have also worked on static and runtime scheduling [25],
[26], runtime QoS collection, monitoring and binding/
rebinding [8], [15], transaction support [30], privacy and
trust support [5], [7], and QoS negotiation and matching [20],
[27], [6]. These works form the basis of working toward a
general solution to optimizing service systems. A few
research efforts have taken into consideration user satisfac-
tion levels on Web service usage and end-to-end or
application QoS management [29]. Within the second
category, researchers have focused on defining models of
QoS characteristics [3], [11], [31] and related ontologies and
semantic languages [24], [16], and constraints of service
attributes [27]. Due to space limit, the research efforts listed
above are not meant to be exhaustive.

We have compared the research efforts of the two
categories against a number of important elements that we
have identified in approaching a general solution to service
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Fig. 15. Web-based visualizer application for optimization.

Fig. 16. Positioning and navigation quality.

Fig. 17. Routing quality.

Fig. 18. Video playing quality.
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system optimization. The results are shown in Table 5. The
following features are considered:

1. whether it supports service selection and service
composition,

2. whether it counts on an aggregated QoS measure of
the same QoS dimension over all components of a
service system,

3. whether it reflects utility of system users and in a
robust way,

4. whether it encompasses a transparent negotiation
mechanism for maximizing the overall perceived
system utility, and

5. whether it allows end-to-end QoS control.

If it is not obvious whether a particular feature is supported
by an effort, it is not listed. Among the works that we
surveyed, most of them support service selection and
composition and many support aggregation. However,
only a few support negotiation and end-to-end QoS.
Currently, no work has taken into consideration of system
utility and robustness.

We have approached the problem of optimizing service
system by “application level QoS management” and we
focus on the system utility perspective of an end application
use case, or a system end user in the layered architecture of
the Web service QoS stack. We claim that this is important
because providing effective QoS control from the application
level and in a system perspective has always influenced the
usability of service systems. Web services have eased the job
of building systems to achieve a user’s business objective by
translating such a problem to a problem of mapping required
business activities to Web services. Due to this reason, the
demand of providing controllability of QoS from end users or
end applications has naturally escalated. Furthermore, with
the presence of automatically discoverable, network acces-
sible, heterogeneous, and dynamic Web service, it is not the
case anymore that the level of service is always fixed—iden-
tically and uncontrollably for all end users and application
use cases. Service systems need extra control on QoS that
enables them to recognize and react to the environment.

We feel that our approach has largely relied on the
research ideas originated from the area of Web service QoS.
What we have tried in this research is to identify the core
elements that are currently lacking for deriving a general
solution to optimizing service systems, such as robustness,
system orientation, and transparency and dynamisms. Then
we propose techniques that implement these elements based

on QoS management, which also constitute our solution to

the problem.

7 CONCLUSION

In this paper, we advocate optimizing service systems and
the key elements in a general solution to optimizing service

systems. The approach we have taken is to propose an

extra layer in the Web service QoS stack to serve as a

bridge between the Web service QoS and the perceived

system utility of the system end users. We have presented

the distinguishing features of the application-level QoS

management and the mechanisms used to facilitate

searching for a heuristically good service system while

achieving such features.
In this paper, we have only explored several core issues

of service system optimization, given its vast and rich

content. Furthermore, our solution is not exhaustive. We are

trying to extend our solution to handle more complex

scenarios, which exist in the real situation but are not

considered in this paper. For example, we may want to

factor the waiting time into our utility model for various

reasons including a limited overall capacity of all service

providers and the preference of end users to high quality

but relatively busy servers.
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