Robust Controllability of Temporal Constraint Networks under
Uncertainty

Hoong Chuin LAU
School of Information Systems
Singapore Management University
hclau@smu.edu.sg

Jia LI
School of Information Systems
Singapore Management University
jli@smu.edu.sg

Roland H.C. YAP
School of Comuting
National University of Singapore
ryap@comp.nus.edu.sg

Abstract

Temporal constraint networks are embedded in many
planning and scheduling problems. In dynamic prob-
lems, a fundamental challenge is to decide whether such
a network can be executed as uncertainty is revealed
over time. Very little work in this domain has been
done in the probabilistic context. In this paper, we
propose a Temporal Constraint Network (TCN) model
where durations of uncertain activities are represented
by random variables. We wish to know whether such a
network is robust controllable, i.e. can be executed dy-
namically within a given failure probability, and if so,
how one might find a feasible schedule as the uncer-
tainty variables are revealed dynamically. We present
a computationally tractable and efficient approach to
solve this problem. FExperimentally, we study how the
failure probability is affected by various network prop-
erties of the underlying TCN, and the relationship of
failure rates between robust and weak controllability.

1 Introduction

Reasoning about Temporal Constraint Networks is
a common task in Al. Typically, we want to verify if
a plan or schedule is temporally consistent. Temporal
Networks with Uncertainty are used to model temporal
networks with two kinds of events or time-points. To
make explicit the temporal nature, in this paper we
will mostly talk about a time-point to refer to an event
at a particular time. Time-points which are under the
control of the planner are considered as “executable”
and are the decision variables. The uncertainty arises

from the remaining time-points which are the result of
external factors not under the control of the planner,
the “observables”. Different problems arise depending
on how observables affect the executable time-points
which leads to the notions of strong, weak and dynamic
controllability.

Most papers on temporal networks with uncertainty
deal with execution under 100% confidence. This may
be too conservative. In practice, this can lead to waste-
ful resource allocation or infeasible networks. In this
paper, we study uncertainty in a probabilistic context
for networks where each contingent (uncertain) edge is
represented by a random variable. We call such net-
works Robust Temporal Constraint Networks because
they allow one to ensure the feasibility of the network
within a specified degree of confidence. Among the
three forms of uncertainty (strong, dynamic and weak),
it is dynamic controllability which is the most inter-
esting from a practical point of view. However, the
problem of dynamic controllability in a probabilistic
setting is difficult because it would seem that with a
continuous probability distribution, the number of sce-
narios would be infinite or exponential with discrete
probabilities. We propose, under some assumptions
on the relationship between controllable and uncon-
trollable (contingent) time-points, a computationally
tractable approach for verifying and executing the dy-
namic controllability problem on robust temporal con-
straint networks. The strength of this approach is that
we need very little information about the uncertainties,
only the mean and variance of the uncontrollable time-
points is needed. We then investigate the effect of net-
work properties on the failure probability and compare
dynamic against weak controllability. We remark that

our approach also works when the uncontrollable time-
points do not have bounds' but some small changes
with definitions will be needed and we would also need
to know information about the probability distribution.

2 Related Work

Temporal constraint networks were introduced by
[DMP91]. The widely popular Simple Temporal Con-
straint Network (STN) is formulated as a 4-tuple
(V,E,1,u), where V is the set of nodes representing
time-points, £ is the set of edges denoting binary con-
straints on the temporal duration between two time-
points, | and u are functions defining the lower and
upper bounds of the durations. A STN can be repre-
sented using a DAG. Each directed edge (i,7) € £ is
labeled by an interval [;;, u;;] which represents the con-
straint 1;; < V; = V; < wu;;. A tuple X = {z1,...,2,}
is a solution if the assignment {Vi = x1,...,V, = x,}
satisfies all the constraints in £. A STN is consistent
if there exists at least one solution.

Simple Temporal Network with Uncertainty
(STNU) [VGI6] extends STNs to model the uncertain
(or uncontrollable) duration between time-points. A
STNU distinguishes a subset C' of £ which are the
contingent edges representing uncertain durations —
these can only be measured/observed after a certain
time-point has been reached, i.e. Ve¢;; € C, the
duration of ¢;; can take any value inside the interval
[lij,uij]. Let S be the set of all possible scenarios
ranging over all the possible values of C. A STNU
is defined to be strongly controllable if there exists a
solution such that it satisfies all the constraints in £
irrespective of all the scenarios in S. A STNU is weakly
controllable if for each possible scenario in S there
exists a solution. A STNU is dynamically controllable
if a solution can always be built up incrementally
based on the outcomes of contingent edges in the past,
but not on those in the future.

Strong controllability is the strictest form of STNU.
It is useful in applications where contingent events
cannot be observed exactly. A strongly controllable
network means that the plan can be executed with-
out regard to the contingent events. Weak control-
lability is the weakest kind of STNU and is relevant
in applications where contingent events are observable
before execution and the corresponding solution can
be computed beforehand. In other applications, con-
tingent events are only observable after they happen,
i.e. events caused by the external environment. Thus,

1[T02] argues that the bounds in STNUs are somewhat artifi-
cial and hence a probability distribution of the time-points may
be closer to real-life.

an execution strategy using dynamic controllability is
needed to produce an incremental solution based on
the subsequent revelation of contingent events. Clearly,
strong controllability implies dynamic controllability,
which implies weak controllability.

Consistency algorithms and tractable classes for the
standard STNU were proposed in [VF99], among oth-
ers. Execution algorithms for STNU trading between
flexibility and efficiency were presented in [MMOO].
Dynamic controllability was previously believed to be
hard, until a recent work by Morris and Muscettola
[MMO05] who proposed a pseudo-polynomial algorithm
which is based on constraint satisfaction. It utilizes a
ternary structure to tighten the intervals on each edge
until either inconsistency rises or there are no more
intervals to be tightened which indicates dynamic con-
trollability. The set of intervals in the latter case is
a minimum form of network equivalent to the original
network. The execution of a dynamically controllable
network will be based on the reduced network produced
by their constraint satisfaction algorithm.

Another approach for dealing with uncertainties in
temporal duration is with Fuzzy Simple Temporal Con-
straint Network [NCBS97]. This extends STNs with
fuzzy temporal constraints which is interpreted using
the techniques from possibilistic distributions. Closely
related to fuzzy networks are STNUs with preferences,
[RVY04] studies Simple Temporal Problems with Pref-
erences and Uncertainty.

Although there is a body of work on various un-
certain forms of temporal networks, there has been
little work on the most obvious kind of uncertainty,
namely a probabilistic one. The closest related work
is Probabilistic Simple Temporal Networks (PSTN)
[T02] which extends STNUs with conditional proba-
bility density functions for each uncontrollable event.
One difference between the probabilistic and our robust
networks is that the probability distributions are with
respect to a prior controllable time-point. That work
dealt mainly with strong controllability in PSTN. Sub-
sequently [TPRO3] looked the problem of determining
the probability of executing a dynamically controllable
strategy for a PSTN. Rather than a tractable poly-
nomial time algorithm, they presented heuristic tech-
niques for approximating the upper and lower bounds
on the execution probability. Under normal distribu-
tion assumptions for contingent edges, they proposed a
method based on [MVO01] to find a lower bound proba-
bility of success.

The difference with our work in this paper is that
we use a robust optimization approach which, under
some reasonable statistical conditions, provides a com-
putationally tractable algorithm for verifying dynamic

controllability on a probabilistic temporal network. We
only require partial information about the uncertainty,
only the mean, variance and bounds of the uncontrol-
lable events, rather than any complete information on
the probability distributions. Unlike PSTN, our work
does not assume having no constraints between uncon-
trollable events.

Robust optimization models have been proposed
recently for immunizing uncertain mathematical op-
timization against infeasibility while preserving the
tractability of the model, e.g. [BN0O] and [BS04]. More
recently, [CSS04] proposed a robust optimization tech-
nique for solving approximate solutions for stochastic
optimization models with chance constraints. Their
solution approach is based on second-order cone pro-
gramming which is a generalization of semidefinite pro-
gramming. The model permits more sophisticated un-
certainty sets that are mapped from random variables.
This technique provides a convenient and computation-
ally tractable solution strategy for verifying and solving
consistency of networks whose contingent edges are de-
fined on random variables. [LOSO05] first applied ideas
from robust optimization specifically to solve weak con-
trollability. In this paper, we generalize their work
to handle dynamic controllability. Essentially, the un-
derlying network model needs to be expanded to pay
special attention to distinguishing between executable
vs observable time-points, and controllable vs contin-
gent edges. Algorithmically, we are confronted with
additional dynamic issues such as dependency and on-
site executions. We also improve upon the efficiency of
the robust approach through a more refined execution
policy and a heuristic to allocate failure probabilities
among constraints.

3 Problem Formulation

Notationally, a random variable is denoted by z.
Bold face lower case letters such as x represent vec-
tors and the corresponding upper case letters such as
A denote matrices.

Definition 1 A Temporal Constraint Network (TCN)
is represented by a 4-tuple N = (Vx, Vo, Er, E) where
Vy: Set of nodes representing executable time-points
Vo : Set of nodes representing observable time-points
Er: Set of controllable edges where each edge represents
the following temporal constraint:

lij <V;=V; < Uq‘j,V(i,j) €Er, Vi € VxWVo,V; € VxUVo

(1)
Er: Set of contingent edges whose durations are repre-
sented by the following function:

V;—Vi =dij, Y0,j) € Er,Vi € V¥ UVo,V; € Vo (2)

In this paper, we will make use of bounded inter-
vals for the contingent edges. This frees us from the
requirement for a probability distribution, though it is
possible to also make further use of one. However, it
is straightforward to relax this condition and not re-
quire the durations of contingent edges to be within an
interval.

It is important to note that this proposed model is
different from [LOS05] in that it distinguishes the set
of executable points from observable points as well as
controllable edges from contingent edges. Note that
each contingent edge is incident on an observable time-
point, and hence the end nodes of contingent edges are
contained in the set of observable time-points. Note
also that each observable time-point is associated with
a unique contingent edge, since two contingent edges
ending with the same observable time-point will in gen-
eral cause the network to be inconsistent. We model
the duration of each contingent edge (i, j) with a ran-
dom variable d;; (or simply d; since it is unique to
j), where we assume the mean and variance are known
but not necessarily the underlying probability distribu-
tions. The remaining time-points are executable time-
points whose values can be determined by the planner.

A schedule refers to an assignment of the executable
time-points {V4 =t1,...,V, =t,} which are in V.
An execution policy specifies how a schedule can be
incrementally generated over time as the durations of
contingent edges become known. More specifically,
it outputs the decision of the time to execute each
Vi € Vx given information on known contingent edges.
We denote the decision for each such V; as V;(d).

Definition 2 A TCN R is said to be robust control-
lable (or simply controllable henceforth) iff for a given
0 < e < 1, the probability that an execution strategy
produces a schedule satisfying all the constraints in Er
is at least 1 — e. The problem of deciding, given a
TCN and €, whether the network is robust controllable
is known as the RTCN problem.

In this paper, we will focus mainly on the problem
of robust dynamic controllability. In the experiments,
we also present how to solve robust weak controllability
using our approach.

Note that for dynamic controllability, the partial so-
lution should depend only on the values of previous
contingent edges at any time-point. Hence, for each ex-
ecutable point V;, we define a dependency set D(V;) to
be the set of duration random variables related to pre-
vious contingent edges with respect to V;. Intuitively,
this is determined by examining the constraint [l;;, u;;]
between V; and each observable time-point Vj, where
V; is related if u;; < 0 which means V; will always

happen before V;. Furthermore, to improve computa-
tional efficiency subsequently, we want these lower and
upper bounds to be as tight as possible. To obtain
[lij, usj] for every pair of V; and V;, we adapt the algo-
rithm by Dechter et al. [DMP91] for finding minimum
network in an STN. Although this algorithm was used
for a different purpose, the result of the algorithm was
to obtain the tightest relation for every pair of time-
points based on an interval for each edge. Our modified
algorithm is described as follows.

Recall that a STN is a graph where each edge (i, j)
is labeled by an interval [l;;, u;;]. In [DMP91], an STN
G = (V, E) is associated with a directed edge-weighted
graph G4 = (V, E4) called distance graph. Each edge
(i,7) is labeled by a weight a;;, representing the in-
equality ¢t; —t; < a;;. For each edge (4, j) with [l;;, ui;]
in G, the corresponding edges in G4 is edge (4,7) la-
beled with u;; and edge (j,¢) labeled with —I;; (The
weight of an edge in distance graph could thus be neg-
ative). Graphs G and G are basically equivalent since
ll'j S tj — tl' S Uiy is equivalent to tj — tl' S Ui and
t;—t; < —l;;. Now suppose we run an all-pair shortest-
path algorithm on the distance graph G4 and let d;; de-
note the shortest distance for each edge (4, 7). Then an
important corollary is: given a consistent STN G, the
equivalent STN M, each of whose edge (4, j) is associ-
ated with [—d;;, d;;] is the minimal network representa-
tion of G. A minimum network is the most economical
representation of original STN whose intervals cannot
be tightened any more.

We run the above algorithm and associate each pair
of observable time-point V; and executable time-point
Vi with an interval [u, w] where u = —d;; and w = d;.
The value of v and w could be of any sign because the
weight of an edge in the distance graph could be either
positive or negative. Thus if we examine the relation
u < V; — V; < w, we have following cases,

1. If u > 0, we have V; —V; > 0. It means the observ-
able time-point V; never happens after executable
time-point V;. Thus d; € D(V;).

2. If w <0, we have V; —V; < 0. It means executable
time-point V; never happens after observable time-
point V;. Thus d; ¢ D(V;).

3. If u < 0Nw > 0, the chronological ordering of V;
and V; is not clear. We assume d; ¢ D(V;) for this
case.

Hence, the policy V;(d), which is used to decide
when to execute each V;, can be expressed in terms of
a function on D(V;). Finding such a policy is generally
difficult. The size of the policy space is potentially infi-
nite if the underlying distribution is continuous. Even

------ » Contingent link

z € [0,15] —— Conirol link

= € [10,20]

@- 5

[60, 70]

Figure 1. Example of a TCN

if the distributions are discrete, the size of the policy
space is exponential. Hence, to ensure tractable com-
putation, one needs to place a further restriction on
the class of policies. Here, we restrict the policy V;(d)
to be an affine function of the set D(V;) with decision

variables V;:

Vi(d) = Vio+ Y _ Virdy, di € D(V;) (3)
Thus, Vl(fi) expresses the relationship between an
executable time-point and observable time-points un-
der dynamic controllability. Although an affine func-
tion is somewhat restrictive, finding a feasible policy is
still a non-trivial problem. The variables V;y and Vj
are the auxiliary decision variables in our model. In our
resulting model, these constraint on V; are required for
all paths in the graph G to V; with non-empty D(V;).
Note that for an observable timepoint V; with contin-
gent edge (4, j), we have V; =V, + Jij.

3.1 Example

We illustrate with an example as shown in Fig 1.
Here, Vx = {V1, V3, Vs} and Vo = {Va2, V,}. The con-
trollable edges (2,3), (4,5), (1,5) are defined by inter-
vals [15, 25], [20, 30], [60, 70] respectively. The contin-
gent edges (1,2) and (3,4) are defined by random vari-
ables d; and dy, having support in [10, 20] and [0, 15] re-
spectively. Given D(V3) = {d1} and D(V5) = {d1, d2},
the execution policy is:

(Vs(d) = Vao + Vardy . >)
Vs(d) = Vso + Vs1dy + Vsada

We can view € as the upper bound on the probability
that at least one temporal constraint in (1) is violated.
In other words, it defines the desired level of conser-
vativeness we allow for temporal constraint violations.
Note that when € becomes 0, the set of feasible sched-
ules are the ones which satisfy (1) under the worst case
scenario. As we increases €, we are in fact increasing
the size of the set of feasible schedules.

Thus when a TCN is not robust controllable because
its constraints are too tight, the planner can decide to
increase the risk of temporal constraint violation by
increasing the value of e.

4 Solution Approach

In this paper, we make use of a new robust optimiza-
tion result proposed in [CSS04], described briefly as fol-
lows. Consider an uncertain linear constraint, @'« > b
in which the coefficient vector a is subjected to ran-
dom perturbation. We want to find feasible solutions
such that, P(@’z > b) > 1 —e. In robust optimization,
this is transformed to what is known as the “robust
counterpart” given by

axr>b VacGq, (5)
where Gq is a compact uncertainty set parameterized
by Q, which directly controls the robustness of the so-
lution. Intuitively, as seen later, €2 is inversely propor-
tional to €, which determines the size of the uncertainty
set Go. The larger the uncertainty set, the more scenar-
ios are taken care of, and thus the safer is the resulting
solution.

The form of uncertainty set depends on our knowl-
edge of the probability distributions. [CSS04] intro-
duced new deviation measures that help in designing
uncertainty sets from knowledge of the probability dis-
tributions. We will adopt the same approach in map-
ping probability distributions of the primitive uncer-
tainties to the uncertainty sets used in our robust op-
timization framework.

4.1 Uncertainty Model

As described in equation 3, we represent each con-
tingent edge with a random variable dj, specified with a
mean, variance and bounded within an interval. With-
out loss of generality, we associate di with a primitive
random variable Z; which has mean zero and support
in [—gk,ik], 2k, 2k > 0. We call {zk}kzl:N, the prim-
itive uncertainties. Under the affine policies, we can
express a model with uncertainties solely by using the
primitive uncertainties, Z.

Operating on random variables with known distri-
butions is generally cumbersome, e.g. deciding whether
the a-quantile of a linear sum of random variables
exceeds certain value is usually computationally in-
tractable. The key idea in robust optimization is to ap-
proximate probabilistic constraints with tractable for-
mulations by incorporating mild distribution informa-
tion such as the support and deviation parameters.

[CSS04] introduces two new parameters: forward and
backward deviation parameters, which we use to obtain
nontrivial probability bounds against temporal con-
straint violation.

Let Z be a random variable with zero mean and
bounded support. Then, there exists a pair of asso-
ciated deviation parameters p; and ¢z such that for
any value ¢ > 0, the probability that Z deviates from
the range of values [—¢qz, ¢pz] is exponentially small in
¢. Intuitively, this is a much stronger form of Cheby-
shev’s inequality. [CSS04] shows that indeed such pa-
rameters are well-defined and non-empty. More pre-
cisely, they show that if Z is symmetric in [—1, 1], then
one may define p; = gz = 1 and if Z is bounded in
[-1,1] but not necessarily symmetric, then one may
define pz = gz = 1.07. While there is still the difficulty
of obtaining closed form solutions for p; and ¢z, one
can determine their values numerically by simulation.
For instance, if Z is uniformly distributed over [—1, 1],
simulation shows that p; = ¢; = 0.58.

Suppose the contingent edges can be represented by
their primitive bounded random variables {Zx}r—1.n
with deviation parameters py and g, Vk = {1,..., N}.
To determine whether the network is controllable with
probability 1 — ¢, we define a uncertainty budget 2
associated with €, and a corresponding uncertainty set
parameterized by 2 as follows,

Go={z: weR), z=v-w,
[P +Q 'wl <Q,—2<v-—w< z}
(6)

,pn) and Q = diag(q1, - .., qn).

Note that the size of Gq is inversely proportional
to the value of €, meaning that the more conservative
(i.e. the smaller the value of €), the larger the size of
the uncertainty set we contend with. The relationship
between € and () will become clear later.

where P = diag(p1, . . .

The following theorem shows that checking the feasi-
bility of a system of inequalities y(z) > 0 over different
instantiations of z taken from a given uncertainty set
Gq can be formulated as a second-order cone program:

Theorem 1 [CS5504] Let

N
y(z) =0+ > ukz.
k=1

The robust counterpart of

y(z) >0 Vz € (gq, (7)

s equivalent to

Yo, --- YN :

Jug € R,v,r,s € RN

Yo > Quo+r'Z2+ 8’2

v > qr(yp — sk +11) VEe{l,...,N},
v > —pr(y; — sk + 1K) Vee{l,....N},
[vll2 < vo

r,s > 0.

(8)
where y; € R are decision variables, v,r,s are auxil-
iary variables and py, qi, Q are input parameters. In

addition, if yo,...,yn satisfies the robust counterpart
(8), then

P(y(2) > 0) > 1— exp(—02/2).

In the above formulation, ||v||2 refers to the L2 norm
and hence can be solved in polynomial time using sec-
ond order cone programming [AGO03].

4.2 Solving RTCN

We are now ready to solve the RTCN problem. Re-
call that we want to know whether the probability that
a temporal constraint network being controllable is at
least 1 — € over all uncertainty scenarios. For each sce-
nario represented by z, we check if an execution strat-
egy exists. Define the set

X(2) ={V i li; <Vj(z) = Vi(z) S wij V(i,j) € £}
The goal is to determine whether,

P{x(2) #0}) 21—« (9)

Equation 3 expresses each executable time-point
with dependencies as an affine function of random
variables associated with the relevant contingent links.
Thus, equation 9 is equivalent to determining whether
there exists a policy V(2):

Vi(2) = Vi(Z) = li; >0 Y(i,)) € Er e
P({ Vi(Z) = Vi(Z) +uij >0 V(i,j) € Er }> 2(1)
10

Note that we have 2|Ex| number of inequalities from
equation 10 (having the same form as equation 7). By
choosing = /—21n(e/2|Er|) and setting the values
of p, g by simulation, we can transform the inequalities
to their robust counterparts using Theorem 1 and solve
the resulting second order cone program in polynomial
time.

————— » Contingent link

——p Control link

Figure 2. Dependency Enhancement

5 Further Enhancements

We now present two refinements to improve the
quality of results. The first one is a more refined exe-
cution policy. The second is a heuristic to allocate the
failure probability among constraints which is intended
to decrease the total failure probability.

Execution Policy Enhancement Consider a pair
of observable time-point C' and executable time-point
B depicted in Fig. 2 where (4, C) is the contingent
edge associated with C. Suppose [u, v] is the constraint
between B and C'. When u > 0, it means B precedes
C, C is not included in the dependency set of B. When
v < 0, it means B follows C, C' is added to the depen-
dency set. However for some of the derived edges (i.e.
those not existing in the original network) it is possible
that v < 0 and v > 0. Let Z be the random variable
representing the duration of contingent edge A — C.
Previously we would exclude Z from the dependency
set of B which gives,

u<toc—tp<w
5 ¢ Dy (11)

Morris and Vidal [MV01] have analyzed this special
case, and formulated the rule that if the activity on
A — C has not happened within y — v time units, B
must also wait till y — v units expires with respect to
time-point A. Here y — v serves as a breakpoint. We
have the following policy refinement for the special case
when v < 0 and v > 0:

when zZ <y—wv u<tec—tg <0

ze Dp

when Z>y—v tp—ta>y—v (12)
u<tc—tg<vw
2¢ Dp

The refined policy says the system allows an obser-
vation time within y — v units. On the one hand, if
activity on A — C happens during the observation pe-
riod, z is added to dependency set Dp to allow more
execution flexibility, and the upper bound on B — C'is
modified to 0 because system waits for event C' to hap-
pen before deciding value of B. On the another hand,

if activity on A — C happens after the observation pe-
riod, we are unable to know the relation between B and
C. Thus, we simply exclude z from the dependency set
Dp and reserve the constraint on B — C.

Having this new policy would result in larger feasible
set because it uses a rule without which, the constraint
in equation 11 may fail to be satisfied.

Enhancing the ¢;; Allocation Given a failure
probability €, a TCN is not controllable if it fails to
satisfy the constraint 10. However, as our solution ad-
mits the possibility of failure, the network may actu-
ally be controllable with the given € failure probability
especially when replacing the given e with a slightly
larger value makes it controllable. In [CSS04], the fail-
ure probability € is divided equally among each con-
straint in order to minimize the total uncertainty bud-
get. Let €;; be the failure probability associated with
each constraint. In the following, we discuss how to re-
fine the procedure of allocating €;; to gain an improved
result.

Intuitively if the constraint system is not feasible, we
would expect it to be due to violations of only a subset
of the constraints. If we can unload excessive budget
from the more easily violated constraints and transfer
it to the less easily violated ones, then the TCN may
become controllable. Our idea is to try to improve the
solution by assigning unequal ¢; to different constraints
by some heuristics. Now the constraint on each con-
trollable edge becomes:

P ({li; < Vi(2) = Vi(Z) S wij}) 2 1 —ej V(i,j) € Er
(13)
It seems reasonable to assume that constraints with
a wider interval tend to have a larger probability P in
the above expression. Thus, we expect that constraints
with a larger u;; — [;; value are also more likely to be
satisfied. This leads to the following heuristic.
Suppose a TCN is not controllable with failure prob-
ability € but controllable with a slightly larger failure
probability ¢ given that we have allocated equal €;;
to each controllable edge (i,7). We rank controllable
edges by sorting on the interval length len;; = u;; — ;5
in decreasing length. The assumption is that a higher
rank means the the constraint is less likely to be in-
feasible. Thus we choose to increase €;; (consequently
decrease ¢;; since the larger {;; is, the smaller €; be-
comes) by a suitable predefined amount until it causes
violation again. We repeat this process by trying the
edges sequentially in their rank ordering. If at any
stage, the accumulated failure probability decreases to
the original €, we are done. Note that edges with higher

rank do not necessarily sustain a larger budget than
edges with a lower rank. The reason behind sorting
the interval list is to reach a given € more quickly due
to our assumptions that larger len;; value support a
larger budget.

6 Experimental Results

We have conducted some preliminary experiments
to study the behavior of the worst-case (i.e. mini-
mum) failure probability ¢ such that a given TCN is
still controllable. All our algorithms are implemented
in Matlab v7.0 and use the second-order cone solver
in MOSEK version 4 (http://www.mosek.com). The
hardware platform is a Pentium 4-2.4GHz processor
with 256 MB RAM under Windows XP.

6.1 Impact of Edge Density and Contingent Ratio

We first study how e is affected by the structure
of the network, in terms of edge density and contin-
gent ratio. The edge density is defined as the ratio of
the number of edges to the maximum number of pos-
sible edges for a given network. The contingent ratio
C is defined as the ratio of the number of observable
time-points to the total number of time-points, thus
C <1. We generate random instances of TCNs based
on the TimeNetManager [COS99] network generation
algorithms. This generates sets of temporal networks
controlled by a set of macro-parameters that character-
ize the topology and the temporal flexibility of the net-
works. We extend their algorithm to generate TCNs by
adding additional parameters to set contingent edges
and distribution of temporal durations.

We fix the node size to be 20, and vary edge density
(between 0.2 and 0.5) and contingent ratio C' = 0.1 to
0.4. For larger values of edge density and contingent ra-
tio, the random instances generated are almost always
non-feasible, and hence we exclude them in our exper-
iments. In our experiment, we determine the optimal
value of €, i.e. the smallest value such that the network
is still controllable, through binary search. This makes
use of the fact that if the network is controllable for a
given €, then it is also controllable for any large €. For
each setting, we ran 8 random instances and plot the
average optimal value of e.

The CPU time required is between 12 to 25 sec-
onds and the results are shown in Fig. 3. This shows
our approach is efficient, since conventional stochastic
programming approaches can take considerably longer.
From Fig. 3, we observe that:

1. As the edge density increases, € also increases in a
linear fashion; and

0.6

¥

0.5 e
C 04 - 4 — e
=2 = / —a— =02
g 03 % —a—C=03
a1

: ey

0.1

D T T T

0z 03 04 045
Edge Density

Figure 3. Impact of edge density & contingent ratio

0.z
0418
0416 —r
014 —

012 =

0.1
.08 — —a—C=03
0.06 sggiiele] &

0.04 f.______.(f
0.02

——C=01

—a— =02

Epsilon

0z 0 04 05
Edge Density

Figure 4. Effect of Enhancing the ¢ allocation

2. As C increases, the rate of increase of ¢ also in-
creases (as the slope is steeper).

Next, we repeat the same set of experiments, this
time using the € allocation strategy proposed in Section
5. The results in Fig. 4 shows that the optimal value of
€ is significantly reduced to a much smaller value com-
pared to those shown in Fig. 3. This demonstrates the
effectiveness of our proposed allocation strategy. The
CPU time required is however much longer, between
80 to 170 seconds.

6.2 Robust Dynamic versus Weak Controllability

In the deterministic context, dynamic controllabil-
ity implies weak controllability. It is not obvious what
how this relationship generalizes in the probabilistic
context. More precisely, we wish to investigate the gap
in the value of € between dynamic and weak controlla-
bility on the same network. Weak controllability is a
simple modification of our approach for dynamic con-
trollability since the difference lies in the dependence

0z %
018
i

016
014 /

012 / —e—WEakly
0.1 / Controllakle

w Dos

006
004 “.)/

psilon

—a— Dyanmically
Controllahle

00z —r//

01 0z 0.3 04

Contingent Ratio

Figure 5. Failure prob. of dynamic vs weak control-
lability

set. We can check weak controllability by letting each
executable time-point be dependent on all the random
variables and using the same solution approach. The
experimental results with node size 20 and edge density
0.5 are given in Fig. 5.

We observe from the results that: (i) € increases with
C for both dynamic and weak controllability; and (ii)
the rate of increase of € grows faster in dynamic than
weak controllability.

7 Conclusion

We presented what we believe to be the first com-
putationally tractable and efficient approach to handle
dynamic controllability of probabilistic temporal con-
straint networks. This approach uses the techniques
from robust optimization which have not been used
in uncertain temporal networks. Experimentally, we
demonstrate the efficacy of our approach on a range
of networks. The results obtained are aligned to intu-
ition and a couple of surprising observations have been
made. We believe that a theoretical analysis to ex-
plain the experimental results is possible, though we
have been unable to achieve it at the time of writing of
this paper.

References

[AG03] F Alizadeh, D Goldfarb (2003): Second-order
cone programming, Mathematical Programming
95(1), 3-51.

[BNOO] Ben-Tal, A. and Nemirovski, A. (2000): Ro-
bust solutions of Linear Programming problems

contaminated with uncertain data, Mathematical
Programming, 88, 411-424.

[BS04] Bertsimas, D. and Sim, M. (2004): Price of Ro-
bustness, Operations Research, 52(1), 35-53.

[COS99] Cesta, A., Oddi A., and Sussi A. (1999):
TimeNetManager - A Software Tool for Generat-
ing Random Temporal Networks, in Proc. AI*IA,
143-154.

[CSS04] Chen X, Sim M, and Sun
P. (2004): A Robust Optimization
Perspective to Stochastic Program-

[T02] Tsamardinos I. (2002): A Probabilistic Ap-
proach to Robust Execution of Temporal Plans
with Uncertainty. In Vlahavas and Spyrpoulos
(Eds), in SETN 2002, LNAT (2308), 97-108.

[TPRO3] Tsamardinos I., Pollack M. E., Ramakrish-
nan S.(2003): Assessing the Probability of Legal
Execution of Plans with Temporal Uncertainty,
Proc. ICAPS-03 Workshop on Planning under
Uncertainty and Incomplete Information.

ming.https://netfiles.uiuc.edu/xinchen/www/papers/.

Submitted to Operations Research

[DMP91] Dechter R., Meiri I., and Pearl J. (1991):
Temporal Constraint Networks, Artificial Intelli-
gence, 49, 91-95.

[LOS05] Lau H., Ou T., and Sim M. (2005): Robust
Temporal Constraint Network, in Proc. ICTAI
2005.

[NCBS97] Marin R. , Cardenas M. A., Balsa M., and
Sanchez J.L. (1997): Obtaining solutions in fuzzy
constraint networks, International Journal of Ap-
proximate Reasoning, 16, 261-288.

[MMO00] Morris, P., and Muscettola, N. (2000): Exe-
cution of temporal plans with uncertainty, in Proc
AAAT 2000, 491-496.

[MVO01] Morris, P. and Vidal, T. (2001): Dynamic
Control Of Plans With Temporal Uncertainty, in
Proc. IJCAI 2001, 494-502.

[MMO05] Morris P. and Muscettola, N. (2005): Tem-
poral Dynamic Controllability Revisited, in Proc.
AAAT 2005, 1193-1198.

[RVY04] F. Rossi, K. B. Venable, N. Yorke-Smith,:
Controllability of Soft Temporal Constraint Prob-
lems, in Proc. CP 2004, 588-603.

[VGI6] Vidal, T. and Ghallab, M (1996): Dealing with
uncertain durations in temporal constraint net-
works dedicated to planning, in Proc. ECAI 1996,
48-52.

[VF99] Vidal, T. and H. Fragier (1999): Handling con-
sistency in temporal constraint networks: from
consistency to controllabilities, Journal of Ezper-
imental € Theoretical AL 11, 23-45.

