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Abstract

In this paper, we propose the Robust Temporal Constraint Network

(RTCN) model for simple temporal constraint networks where activity

durations are bounded by random variables. The problem is to determine

whether such temporal network can be executed with failure probability

less than a given 0 ≤ ε ≤ 1 for each possible instantiation of the random

variables, and if so, how one might find a feasible schedule with each

given instantiation. The advantage of our model is that one can vary

the value of ε to control the level of conservativeness of the solution.

From the scheduling perspective, this offers planners the flexibility to

generate plans whose minimum makespan vary with ε; and where non-

renewable resources are available, one can find optimal resources needed

to achieve a given makespan within a given confidence level. We present

a computationally tractable and efficient approach to solve these RTCN

problems. Experimentally, we study the effects the density of temporal

constraint networks have on its makespan under different confidence levels.

We also apply RTCN to solve the stochastic project crashing problem.
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1 Introduction

In many practical real-world scheduling problems, we are faced with a dynamic

environment in which activities often take uncertain time durations. The study

of the effects of temporal uncertainties has huge commercial interest, especially

in the area of project management where the duration bounds of activities may

not be precisely known nor even definable by standard probability distribution

functions. Hence, it is in the interest of project managers to determine the

precise probability within which a project may be completed by a given deadline.

Similarly, AI planners are interested to check if a plan is temporally con-

sistent. Considering activities with temporal uncertainties, as the number of

activities grows, the total number of possible scenarios will grow at an expo-

nential rate. Again, there is a need for an efficient method to verify temporal

consistency under uncertain temporal conditions. In most literature, the con-

cern is to determine whether a network is 100% consistent (i.e. with all temporal

constraints satisfied) under uncertainty. This may be too conservative, and often

results in wasteful resource allocation to meet the that requirement.

In this paper, we extend the temporal constraint networks literature in two

aspects. First, we propose the robust temporal constraint network model where

each contingent (uncertain) edge is represented by an upper and lower bounds

which are themselves random variables. All existing network models can be

seen as special cases of this proposed model. Second, we treat the level of

consistency as an input parameter. In doing so, we offer the user the flexibility

to determine the level of conservativeness in guaranteeing schedule feasibility.

We demonstrate experimentally that cost savings can be obtained by adjusting

the level of conservativeness.
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In the following subsections, we present a literature review on existing tem-

poral constraint network models, followed by a discussion of proactive and re-

active scheduling approaches for uncertain temporal activities. We will then

survey recent advances on robust optimization. All these considerations lead us

to present the main contribution of this paper, which is a unified temporal con-

straint network model for reasoning and optimization on temporal constraints

under uncertainty.

1.1 Literature Review

The idea of a network representation of temporal constraints was first devel-

oped by [Dechter et al. 1991]. The widely popular Simple Temporal Constraint

Network (STN) may be described as a 4-tuple 〈V, E , l, u〉, where V is the set of

nodes representing time-points, E is the set of edge denoting binary constraints

on the temporal duration between two time-points, l is the lower bound function

l : E → < ∪ {−∞} and u the upper bound function u : E → < ∪ {+∞} which

maps each edge to a lower and upper bounds of the interval of possible durations.

STN can be represented using a directed acyclic distance graph. Each directed

edge (i, j) ∈ E is labelled by the upper and lower bounded interval [lij , uij ]

which represents the constraint lij ≤ Vj −Vi ≤ uij . A tuple X = {x1, . . . , xn} is

a solution if the assignment {V1 = x1, . . . , Vn = xn} satisfies all the constraints

in E . STN is consistent if there exists at least one solution.

STN assumes that temporal distance between time points is deterministic.

This may not be practical in situations when temporal duration of activities is

uncertain and is affected by various external agents. Simple Temporal Network

with Uncertainty (STN-u) model [Vidal & Ghallab 1996] attempts to address

this issue by allowing uncertain (or uncontrollable) temporal distance between

time points within an interval [lij , uij ]. STN-u is a 5-tuple 〈V, E , l, u, C〉. C ⊆ E
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are set of edges defined as contingent links representing causal processes of un-

certain duration. Thus, ∀cij ∈ C, the temporal distance of cij may take any

value inside the interval [lij , uij ]. We define S as the set of all possible scenarios

from the combination of values that C can take. STN-u is defined to be strongly

controllable if there exist a solution such that it satisfies all the constraints in

E irrespective of all possible scenarios in S. STN-u is weakly controllable if for

each possible scenario in S there exist a solution. STN-u is dynamically con-

trollable if there is a solution that may depend on the outcomes of contingent

links in the past, but not on those in the future. Consistency algorithms and

tractable classes for STN-u were identified in [Vidal & Fragier 1999]. Execution

algorithms for STN-u considering the tradeoff between flexibility and efficiency

were presented in [Morris & Muscettola 2000]. [Tsamardinos 2002] recently in-

troduced the notion of probabilistic temporal networks where there is no bound-

ing intervals, but instead a set of conditional probability density functions are

introduced. They address a scheduling problem that maximizes the probability

of correct execution. Their approach does not guarantee that a global opti-

mum will be found. Another AI approach in dealing with uncertain temporal

duration is through fuzzy representation. Fuzzy Simple Temporal Constraint

Network [Marin et al. 1997] is denoted by V = 〈V, C〉 where C represents the

set of fuzzy binary temporal constraints defined between any 2 temporal nodes

in V . Every fuzzy binary constraint Cij restricts the possible relative values of

Vi and Vj , i.e., Vj − Vi ≤ Cij . Cij is represented by a possibility distribution

Πij over the continuous time scale T . Thus, there exists a pool of solutions

for each degree of possibility. The successful integration of FTCN model into

temporal planners [Castillo et al. 2004] to obtain flexible temporal plans shows

we can integrate easily network-based model of representing uncertain temporal

constraints into AI planners.
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1.2 Proactive and Reactive Scheduling

Scheduling of activities under uncertain temporal constraints is an emerging

research topic (See, for example, [Policella et al. 2004]). There are two funda-

mental approaches. A reactive approach locally revises the schedule to account

for future events that may violate a temporal constraint in the initial plan. A

proactive approach, on the other hand, uses available information about the

temporal behavior of the activities and generates off-line a predictive schedule

that hedges against temporal constraint violations during the execution of the

schedule.

In this work, we propose a proactive strategy with a twist. Instead of gener-

ating a fixed schedule that seeks to work well in all scenarios, we are interested,

given a probability value, to find a policy which is parameterized by the un-

certainty variables, such that under any possible projection (i.e. realization of

the uncertain variables), the policy will guarantee an executable schedule that

is temporally consistent with that probability. Such policy, if it exists, implies

that no matter how the uncertain variables are realized, we can always find a

feasible schedule where the network will be temporally consistent with the given

probability. Hence, by setting the probability value to 1 and fixing the uncertain

variables to be constant, we are in effect solving the weak controllability STN-u

problem described above.

1.3 Robust Optimization

In the literature, there are several proposals of robust optimization. Some leads

to harder problems to solve (see, for example, [Kouvelis & Yu 1999] which shows

that their robust version of the shortest path problem is NP-hard). In our opin-

ion, successful applications of robust optimization should have two important

characteristics:
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(a) Preserving the computational tractability both theoretically and most im-

portantly practically of the nominal problem. From a theoretical perspec-

tive it is desirable that if the nominal problem is solvable in polynomial

time, then the robust problem is also polynomially solvable.

(b) Being able to find a guarantee on the probability that the robust solution

is feasible under some mild assumption of probability distributions.

In view of these criteria, certain robust optimization models have been pro-

posed in immunizing uncertain mathematical optimization against infeasibility

while preserving the tractability of the model (See [Ben-Tal & Nemirovsk 2000],

[El-Ghaoui et al. 1998] and [Bertsimas & Sim 2003, Bertsimas & Sim 2004]). More

recently, [Chen et al. 2004] proposed a robust optimization framework for solv-

ing approximate solutions for stochastic optimization models with chance con-

straints. Their solution approach is based on second-order cone programming.

The model permits more sophisticated uncertainty sets that is mapped from

random variables.

1.4 Our Contribution

Inspired by the work in [Chen et al. 2004], the motivation of the paper is to

develop a unified proactive model that incorporates a broad class of uncertain

temporal constraints. More specifically, we propose a model that allows the

durations of activities to be bounded on both ends by random variables.

This paper proceeds as follows. We will describe in detail the new Robust

Temporal Constraint Network (RTCN) model in the Section 2. In Section 3,

we will describe a robust optimization approach in tackling the RTCN problem.

Section 4 will describe experimental results on random instances of RTCN, and

apply our model to solve the stochastic project crashing problem.
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2 Problem Definition

In this section, we formally define the RTCN problem. We denote a random

variable by x̃ with the tilde sign. Bold face lower case letters such as x represent

vectors and the corresponding upper case letters such as A denote matrices.

Definition 1 A Robust Temporal Constraint Network is represented by a 5-

tuple N = 〈V , E ,L,U , ε〉

L: Lower Bound Function that maps each edge (i, j) to its lower bound random

variable l̃ij

U : Upper Bound Function that maps each edge (i, j) to its upper bound random

variable ũij

V: Set of nodes representing timepoints

E: Set of directed edges where each edge represents the following uncertain tem-

poral constraint:

lij ≤ Vj − Vi ≤ uij , ∀(i, j) ∈ E , l̃ij = lij , ũij = uij (1)

ε: Threshold probability of temporal constraint violation

Our proposed model captures uncertainties by labeling each edge with a

pair of upper and lower-bound random variables
[
l̃ij , ũij

]
. It is assumed that

we know the mean and variance of these random variables, but we do not need

to be concerned with the actual probability distribution functions. A projection

refers to a fixed scenario where all upper and lower bound random variables are

instantiated to fixed values. Equation 1 means that under a fixed projection,

the duration between Vj and Vi must be within the bound [lij ,uij ].

Definition 2 A RTCN R is said to be robust controllable (or simply control-

lable) iff over all possible projections occurring according to their respective
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probability distributions, the probability that there exists an assignment (fea-

sible schedule) {V1 = x1, . . . , Vn = xn} that satisfies all the constraints in E is

at least 1 − ε.

We can view ε as the upper bound probability that at least one of the

temporal constraints specified in (1) is violated. In other words, it defines the

desired level of conservativeness we allow for temporal constraint violations.

Note that when ε = 0, the set of feasible schedules are the ones which satisfy

(1) under the worst case scenario. As we increases ε, we are in fact increasing

the size of the set of feasible robust schedules.

The RTCN Feasibility problem is defined as: given an RTCN instance, de-

termine whether it is robust controllable. This problem is equivalently stated as

the problem of finding a robust policy such that the probability that a feasible

schedule can be derived from the policy with probability 1− ε over the set of all

projections. The RTCN Optimization problem is to find a policy that optimizes

a given objective function while preserving robust controllability. In this paper,

we focus on the optimization of the makespan of the network.

Note that the RTCN problem is a core problem underlying many real-world

planning and scheduling problems. For example, in robust scheduling, one is

concerned with minimizing the total makespan of the machines where job ar-

rivals or processing times are uncertain. The value of ε defines the robustness

of the RTCN in the sense that the higher the value of ε the more robust the

network will be against uncertain temporal constraint violation. However, cer-

tain RTCN may not be robust controllable when its constraints are too tight.

In such cases, planners may decide to take more risk of temporal constraint

violation by increasing ε to obtain a robust controllable RTCN.

STN and STN-U are unified under RTCN as shown below:

Observation 1 Given a binary constraint from STN a ≤ Vj − Vi ≤ b, the
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equivalent uncertain bounded temporal constraint is modelled as follows:

0 ≤ l̃ij ≤ Vj − Vi ≤ ũij ≤ +∞

P
(
l̃ij = a

)
= P (ũij = b) = 1

Observation 2 Given a contingent binary constraint from STN-U, the equiv-

alent uncertain bounded temporal constraint is as follows:

l̃ij ≤ Vj − Vi ≤ l̃ij

P(l̃ij) =





0 for l̃ij < a

1 for a ≤ l̃ij ≤ b

0 for l̃ij > b,

3 Solution Approach

We will show in this section how a computationally tractable optimization tech-

nique due to [Chen et al. 2004] can be applied to solve the RTCN problem.

We first consider an uncertain linear constraint,

ã′x ≥ b (2)

in which the vector ã is subjected to random perturbation. We are interested

in finding feasible solutions such that,

P(ã′x ≥ b) ≥ 1 − ε, (3)

which can be computationally challenging. In robust optimization, we solve for

solutions under the following “robust counterpart”,

a′x ≥ b ∀a ∈ GΩ, (4)

where GΩ is a compact uncertainty set parameterized by Ω, which directly con-

trols the robustness of the solution.
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The form of uncertainty set depends on our knowledge of the probability

distributions. [Chen et al. 2004] introduced new deviation measures that help

us design uncertainty sets from knowledge of probability distributions. These

deviation measures will determine the shape and size of the uncertainty set

in order to fulfil the chance constraint. We will adopt the same approach in

mapping probability distributions of the primitive uncertainties to the uncer-

tainty sets used in our robust optimization framework. Hence, in the subse-

quent paragraphs, we will briefly highlight and explain some of the results of

[Chen et al. 2004].

3.1 Perturbation Model for Lower and Upper Bound Ran-

dom Variables

Instead of arbitrary data dependency for the lower and upper bounds random

variables, (l̃ij , ũij), the framework of robust optimization restricts data to be

affinely dependent on a collection of independent random variables. In the same

spirit, we represent the bound uncertainties as (l̃ij , ũij) affinely dependent on a

set of independent random variables, {z̃k}k=1:N as follows,

l̃ij(z) = l0ij +
∑N

k=1 ∆lkij z̃k

ũij(z) = u0
ij +

∑N
k=1 ∆uk

ij z̃k

where l0ij and u0
ij are the mean values associated respectively with the lower and

upper bound random variables and ∆lkij and ∆uk
ij , are the directions of pertur-

bation in respond to the primitive uncertainty z̃k. Each random variable z̃k has

mean zero and support in [−zk, z̄k], zk, z̄k > 0. We call {z̃k}k=1:N , the primitive

uncertainties. Hence, under the affine demand uncertainty, we can express the

model involving uncertainties solely by using the primitive uncertainties, z̃.

Affine perturbation is certainly a more restricted way of relating multivariate

random variables. However, despite its simplicity, it is still a formidable model.
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For instance, if the bounds are independent, we will associate every uncertain

data with a primitive uncertainty. The bounds may be collectively dependent

of certain independent factors such as weather conditions, resource availability,

in which case, the parameters will be correlated.

3.2 Deviation Parameter z̃

Operations on random variables with known distributions is generally cumber-

some and does not appeal to algorithms design in optimization. For instance,

to decide whether the α-quantile of a linear sum of random variables exceeds

certain value is usually computationally intractable. The key idea in robust opti-

mization is to approximate probabilistic constraints with tractable formulations

by incorporating mild distribution information such as the support and devi-

ation parameters. [Chen et al. 2004] introduce two new parameters: forward

and backward deviation parameters, which could be exploit in our proposed

approach to obtain nontrivial probability bounds against temporal constraint

violation.

Let z̃ be a random variable with zero mean and Mz̃(s) = E(exp(sz̃)) be

its moment generating function. They define the set of values associated with

forward deviations of z̃ as follows,

P(z̃) =
{

α : α ≥ 0, Mz̃

(
φ

α

)
≤ exp

(
φ2

2

)
, ∀φ ≥ 0

}
. (5)

Likewise, for backward deviations, they define the following set,

Q(z̃) =
{

α : α ≥ 0, Mz̃

(
−φ

α

)
≤ exp

(
φ2

2

)
, ∀φ ≥ 0

}
. (6)

Furthermore P(c) = Q(c) = <+ for any constant c.

For known distributions, we define the forward deviation of z̃ as p∗z̃ = inf P(z̃)

and the backward deviation as q∗z̃ = inf Q(z̃). [Chen et al. 2004] show that
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these values are no less than the standard deviation. Interesting, under normal

distribution, these values coincide with the standard deviation.

Theorem 1 [Chen et al. 2004] Let z̃ be a random variable with mean zero and

standard deviation, σ.

(a) p∗z̃ ≥ σ and q∗z̃ ≥ σ. In addition, if z̃ is normally distributed, then p∗z̃ =

q∗z̃σ.

(b) If z̃ is symmetric in [−1, 1], then 1 ∈ P(z̃) and 1 ∈ Q(z̃).

(c) If z̃ is bounded in [−1, 1], but not necessarily symmetric, then 1.07 ∈ P(z̃)

and 1.07 ∈ Q(z̃).

Although for most distributions we may not be able to obtain close form

solutions of p∗ and q∗, we can still determine their values numerically. For

instance, if z̃ is uniformly distributed over [−1, 1], we can determine numerically

that p∗ = q∗ = 0.58. The results of Theorem 1(b,c) suggest that if we do not

know the distributions, we can also bound the parameter of deviations from the

distribution support.

Model of Uncertainty, U. We assume that the primitive uncertainties of

the demands {z̃k}k=1:N , have parameters of deviations, (pk, qk) satisfying,

pk ∈ P(z̃k), qk ∈ Q(z̃k) ∀k = {1, . . . , N}.

The associated uncertainty set is as follows,

GΩ =
{
z : ∃v, w ∈ <N

+ , z = v − w,

‖P−1v + Q−1w‖2 ≤ Ω,−z ≤ v − w ≤ z̄
}

,
(7)

where P = diag(p1, . . . , pN ) and likewise, Q = diag(q1, . . . , qN ).

Theorem 2 [Chen et al. 2004] Let

y(z) = y0 +
N∑

k=1

ykzj .
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The robust counterpart of

y(z) ≥ 0 ∀z ∈ GΩ,

is equivalent to




y0, . . . , yN :

∃u0 ∈ <, u, t, s ∈ <N

y0 ≥ Ωu0 + t′z̄ + s′z

uk ≥ qk(yk − sk + tk) ∀k ∈ {1, . . . , N},

uk ≥ −pk(yj − sk + tk) ∀k ∈ {1, . . . , N},

‖u‖2 ≤ u0

t, s ≥ 0.





(8)

In addition, if y0, . . . , yN satisfy the robust counterpart (8), then

P(y(z) ≥ 0) ≥ 1 − exp(−Ω2/2).

3.3 Solving RTCN Problem

In the RTCN Feasibility problem, we are interested to know whether the prob-

ability that a temporal constraint network being controllable is at least 1 − ε.

This problem can be cast as a two stage stochastic optimization problem with

chance constraint. In the first stage, the primitive uncertainties z̃ = z are re-

alized and hence, the temporal bounds, l(z) and u(z). In the second stage, we

check whether the temporal network is consistent, in other words, whether the

set,

χ(z) = {V : lij(z) ≤ Vj − Vi ≤ uij(z) ∀(i, j) ∈ E} ,

is feasible. The goal is to check whether,

P({χ(z̃) 6= ∅}) ≥ 1 − ε. (9)
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We can represent a policy as assignment of V1(z), . . . , Vn(z) for all realization

of z̃ = z and the equivalent feasibility problem of (9) is whether there exists

such policy V (z):

P








Vj(z̃) − Vi(z̃) − lij(z̃) ≥ 0

∀(i, j) ∈ E

Vi(z̃) − Vj(z̃) + uij(z̃) ≥ 0

∀(i, j) ∈ E








≥ 1 − ε. (10)

Unfortunately, finding such policy is generally difficult. The size of the policy

is potentially infinite if the underlying distribution is continuous. Even if the

distributions are discrete, the size of the policies is generally exponential in N .

Hence, to break the bearer of computations, we need to restrict the class of

policy to consider. In linear decision rule, we restrict the policy, V (z̃) to be

affinely dependent on the primitive uncertainties as follows,

V (z̃) = V 0 +
N∑

k=1

V k z̃k.

Incorporating Theorem 2, and choosing Ω =
√
−2 ln(ε/(2|E|)) a sufficient con-

dition for RTCN feasibility is find whether there exists a linear decsion rule,

parameterized by

V 0, . . . , V N ,
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that satisfy the following




V 0, . . . , V N :

∃v́ij
0 , v̀ij

0 ∈ <, v́ij , v̀ij , t́
ij

, t̀
ij

, śij s̀ij ∈ <N ,

∀(i, j) ∈ E

V 0
j − V 0

i − l0ij ≥ Ωv́ij
0 + t́

ij ′
z̄ + śij ′z

∀(i, j) ∈ E

v́ij
k ≥ qk(V k

j − V k
i − lkij − śij

k + t́ijk )

∀k ∈ {1, . . . , N}, (i, j) ∈ E

v́ij
k ≥ −pk(V k

j − V k
i − lkij − śij

k + t́ijk )

∀k ∈ {1, . . . , N}, (i, j) ∈ E

‖v́ij‖2 ≤ v́ij
0 ∀(i, j) ∈ E

V 0
i − V 0

j + u0
ij ≥ Ωv̀ij

0 + t̀
ij ′

z̄ + s̀ij ′z

∀(i, j) ∈ E

v̀ij
k ≥ qk(V k

i − V k
j + uk

ij − s̀ij
k + t̀ijk )

∀k ∈ {1, . . . , N}, (i, j) ∈ E

v̀k ≥ −pk(V k
i − V k

j + uk
ij − s̀ij

k + t̀k)

∀k ∈ {1, . . . , N}, ∀(i, j) ∈ E

‖v̀ij‖2 ≤ v̀ij
0 (i, j) ∈ E

t́
ij

, t̀
ij

, śij , s̀ij ≥ 0 ∀(i, j) ∈ E





(11)

is feasible.

4 Experimental Results

We conducted 2 experiments on the Robust Temporal Constraint Model. The

first is the study of the how the graph density of a temporal constraint network

may affect the robust model. In the second experiment, we show an application

of RTCN on the problem of project crashing under uncertain project activity du-

ration which is of huge commercial interest. All the algorithms are implemented
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in Matlab v6.0 and SDPT3 [Toh et al. 1999] is used as the optimization solver.

The platform used is a Pentium 4-2.4GHz processor with 256MB RAM under

Windows XP.

4.1 Experimental Study: Impact of Edge Density on Makespan

In this section, we investigate how the edge density (or connection degree) of a

temporal network may affect a RTCN model. Particularly, we solve the RTCN

Optimization problem of project scheduling with uncertain completion time.

The definition of edge density is the ratio of the number of edges in the network

over the maximum number of possible edges in a complete graph for a given

N number of temporal nodes. Edge density = 1, when the total number of

edges in the network is equal to N(N − 1)/2. Random temporal constraint

networks are generated based on the network generation algorithms as described

in TimeNetManager [Cesta et al. 1999]. TimeNetManager can generate sets of

temporal networks controlled by a set of macro-parameters that characterize

the topology and the temporal flexibility of the networks.

For our experiment, we fix the temporal node size = 10, grid ratio = 0.2 and

grid density = 1. Each edge is bounded by the interval [lij ,∞]. We introduce

uncertainty to the lower-bound variable by replacing lij with random variable

l̃ij where l̃ij = lij(1 + z̃ij). The forward and backward deviation parameters for

z̃ij are p* = q* = 0.1108. The upperbound for z̃ij is equal to 0.5. We define

the robust makespan, Zε as the time in which the plan can be completed with

probability at least 1− ε. For each edge density, 10 random temporal networks

are generated and we take the mean value of the robust makespan. The robust

makespan, Zε=0.1, Zε=1, Zε=5 are compared with the makespan for the worst

case scenario(ε = 0). Figure 1 shows the results of our experiment. We can

observe that (1) Higher value of ε and (2) Lower network edge density offers
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more improvements to the make-span.
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Figure 1: Effect of Density against Robust Makespan

4.2 Application: Robust Project Crashing

Next, we apply the RTCN model to solve the Stochastic Project Crashing prob-

lem. Classically, project crashing is done using simulation of a given project

activity network. For the project crashing problem, we are given a project ac-

tivity network with uncertain completion times. For each activity, resources can

be added to reduce total completion time of the project. For simplicity, we as-

sume resources are homogeneous. The goal is to find a resource allocation that

minimizes the total amount (or cost) of resources added to ”crash” the network,

i.e. to reduce the makespan to within a given time T . In the stochastic setting,

the value ε is given and the objective is to minimize the resources needed such

that the project can be completed before T with a probability of higher than

1 − ε. Under RTCN, each activity (i, j) has a lower bound uncertain duration

time l̃ij . For each activity, xij denotes the number of units of resources to reduce

a unit duration of the activity. Thus, the completion time for each activity can
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be represented by the equation:

t̃ij = (1 + z̃ij)l̃ij − xij (12)

We run the experiment on a 3-by-12 grid network. Figure 2 shows 4 graphical

plots. We compare our results against a simulation of the network with 10,000

instances.
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Figure 2: Results of Our Approach against Simulation

The first plot shows the amount of resources added to each activity. Arcs

with a darker band denotes that more resources are being added to this activity.

The second and the third graphical plots shows the estimated criticality index

of an arc and the critical distribution of the network from the simulations. The
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criticality index of an arc is calculated by the total number of times the activity

lies on a critical path over the 10,000 instances. We show the relationship

between the criticality of an arc and the amount of resources added to crash the

project using a scatter-plot where we plot each activities’ resource allocation

against its criticality index. From the figures, we can see a remarkable match

between the activities with more crashing as proposed by our robust model and

the criticality of the activities derived from simulation.
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