
An Intelligent Brokering System to Support
Multi-Agent Web-Based 4th-Party Logistics

Hoong Chuin LAU Yam Guan GOH

The Logistics Institute Asia Pacific, National University of Singapore
lauhc@comp.nus.edu.sg g0201003@nus.edu.sg

Abstract

An intelligent agent-based framework that supports
fourth-party logistics (4PL) operations on the web is
proposed in this paper. In our system, customers specify
job requests over the web dynamically. An e-Market
Place allows intelligent third-party logistics (3PL)
agents to bid for customers’ job requests. The intelligence
lies on the e-Market Place to optimally decide which
agents’ bids should be satisfied based on a set of pre-
determined factors (pricing, preferences and fairness).
We model the underlying brokering problem as a Set
Packing Problem (SPP), which is an NP-hard
optimization problem. An iterative greedy approximation
algorithm is proposed to solve the SPP, and experimental
results show its effectiveness against the classical greedy
method proposed by Chvatal.

1. Introduction

The term "fourth-party logistics" (4PL) is a trademark
owned by Accenture (formerly known as Andersen
Consulting) [1]. It refers to the evolution in logistics from
suppliers focused on warehousing and transportation
(commonly known as third-party logistics providers or
3PL) to suppliers offering a more integrated supply chain
solution. With the advent of the Internet era in the late
1990s, 4PL grew in popularity as web and other IT
technology provided the leverage.

With the Internet, literally all data of logistics activities
such as customer demands, warehousing, inventory and
transportation information can be made available
electronically. This opens the possibility for logistics
activities to be streamlined and optimized across company
boundaries on a macro basis. For this vision to be realized,
3PL operators will form alliance or consortium, which is to
be managed by a 4PL provider whose role is to provide
optimized plans and schedules for the member companies.
One such management function is to efficiently and
intelligently match the demands of customers with the
available capacities of the 3PLs in real-time.

In this paper, we propose an intelligent and robust
system for the customers, 3PL agents and 4PL to work

seamlessly together over the web. In our system,
customers submit their job requests via the web to an e-
Procurement server. The consolidated jobs at the e-
Procurement server will then be transmitted to the e-
Market Place server, which serves as a broker that allows
3PL agents to submit bids on combinations of customers’
jobs. Agents may join and leave the system dynamically.
Successful bids are then communicated to the 3PL agents
and the customers dynamically.

The system is developed using a hybrid of
technologies, including web technologies, multi-agent
systems, and optimization. Central to the intelligence of
this system is a model for solving a complicated logistics
optimization problem faced by the 4PL provider. The
underlying computational problem is in determining the
winning set of bids based on 3 factors, namely: pricing,
preference and fairness. This problem can be modeled as a
Set Packing Problem (SPP). The proposed algorithm to
solve the SPP is based on an iterative greedy method
whereby each iteration builds a new cover based on part
of the best solution obtained so far. In addition, the
effectiveness of two different heuristic approaches
(deterministic and probabilistic) for divergent measure and
partial cover construction used in the iterative greedy
algorithm were compared and investigated. Experimental
results obtained had shown that these iterative greedy
approaches yield better solutions than the classical
greedy algorithm, indicating the effectiveness of our
approach.

2. Literature Review

The web technology used in deploying the web-based
enterprise systems and applications is based on Java™ 2
Platform, Enterprise Edition (J2EE™) [4], which simplifies
enterprise applications by developing them on
standardized, modular components, by providing a
complete set of services to those components, and by
handling many details of application behavior
automatically without complex programming.

Multi-agent systems have its root in distributed
artificial intelligence [10]. An intelligent agent is a
computational entity (such as a software program) that is
autonomous in that it operates intelligently and rationally

in an environment. In this multi-agent framework, agents
interact with one another to cooperate in solving complex
logistics problems. In our earlier related work [7] for
example, we represent each 3PL by an agent, and 4PL as a
supervisor agent.

In [3], the authors modeled the intelligent matchmaking
behavior of an agent as a constraint satisfaction problem.
In [5], a two-layered multi-agent framework is proposed for
brokerage between buyers and sellers. The brokerage is
processed in two layers for efficient linking between
buyers and sellers: the competition layer and the
constraint satisfaction layer. In the competition layer, the
seller agents, as requested by the buyer agents, are
selected through the competition in the competition layer.
In the constraint satisfaction layer, the CSP solver finds an
optimal solution by choosing the best brokerage to satisfy
various preferential requirements for users. In [6], the
authors propose that each bid and job corresponds to a
point in a multi-dimensional attribute space and the
“distance” between each pair of bid and job request is a
measure of how each pair matches. However, in our
implementation, the term “gain” is used to represent
“distance”, as by its intuitive meaning, a higher value of
“gain” will denote better matches, and vice versa.

In the combinatorial auction setting that has been
discussed in [9,10] and many other papers, each bidder
can bid on combinations of indivisible items, and her bids
are implicitly joined with non-exclusive OR, meaning that
any number of her bids can be accepted. Winner
determination in this case is the problem of deciding which
bids win so as to maximize the sum of the bid prices, under
the constraint that every item is allocated to at most one
bid. The underlying problem is the weighted set packing
problem (SPP), which is known to be NP-complete.
Although combinatorial auctions are a subject of intense
study, much of it has focused on algorithms for finding an
optimal (or approximately optimal) set of winning bids
subject only to pricing considerations. In this paper, we
extend the considerations to multiple criteria; and
particularly, we focus our attention on pricing, customer
preferences and fairness (load balancing). These factors
may not be of importance in combinatorial auctions in
general, but plays an important role in 4PL operations.

In [11], the authors consider two other closely studied
relatives of SPP: the Set Partitioning Problem (SPA) and
the Set Covering Problem (SCP). A specific algorithmic
implementation in SCP is presented in [8]. It proposes an
iterative greedy solution approach for solving large scale
SCP with application to airline crew scheduling, which our
algorithm is largely based on, except that our application is
based on SPP. Comparatively little attention has been paid
to methodical evaluation and experimental comparison of
these algorithms. In this paper, besides comparing our
method with a plain naive greedy algorithm, we will also be

comparing four different variants of an iterative greedy
method. Extensive computational experiments were
conducted to determine the best method in terms of
solution quality.

3. System Overview

In this section, we give an overview of the proposed
system. The Administrator manages the e-Market Place
and hence the brokering process. An Agent represents a
3PL provider. The Customer refers literally to one who
submits a job request, which comprises a customer ID, job
specification, and customer’s preferences for pricing and
3PL agent. A bid consists of a set of job requests that a
particular agent can fulfill. Figure 1 gives an overview of
the proposed system.

Figure 1. System Overview

The following is a normal scenario that describes the

entire workflow of the system:

1. Customer submits a job request to the system.
2. Agent registers itself with the e-Market Place.
3. Administrator connects to the e-Procurement Server

to download newly arrived jobs.
4. These jobs are broadcast to all registered agents.
5. Registered Agents submit their bids.
6. Administrator will intelligently assign jobs to bids.
7. Detailed information on the assignments is pushed to

the agents and (via the e-Procurement Server) to the
Customers.

8. Agent can decide to de-register with the e-Market
Place at any time.

AGENT_
N

Customers

Submit
Jobs

Administrator

Manages

E-PROCUREMENT

SERVER

E-M ARKET

PLACE

AGENT_
1

4. The Broker Model

In this section, we propose the broker model for the e-
Market Place. It focuses on modeling 4PL operations,
while ignoring the game-theoretic incentive aspects
commonly discussed in combinatorial auctions papers.

4.1. Set Partitioning Problem (SPP)

SPP is a well-studied combinatorial optimization
problem. Given a ground set M of elements and a
collection N of subsets with non-negative weights, the
problem is to find the largest weighted sub-collection of N
that are pairwise disjoint, such that each element in M can
appear in at most one subset.

To formulate SPP as an integer program, we can view
SPP as a m-row, n-column matrix, zero-one matrix (aij), and
an n-dimensional integer vector (wj), and the problem
consists of finding a subset of columns the rows and that
they are pairwise disjoint and having the largest total
weight. Defining decision variable xj = 1 if column j is in
the solution and xj = 0 if otherwise, the SPP is formulated
as a constrained optimization problem as follows:

∈∀∈

∈∀≤∑

∑

∈

∈

)2(}1,0{

)1(1
 subject to

 maximize

Njx

Mixa

xw

j

Nj

jij

j

Nj

j

where M = {1, …, m} and N = {1, …, n} and a row i is
covered by a column j if the entry aij is equal to 1,
otherwise it is 0. Equations (1) ensure that each row is
covered by at most one column while the integrality
constraint (2) ensures that xj is equal to 1, iff column j is in
the solution.

SPP is directly related to bid allocation in the following
sense. The rows represent the submitted jobs to be
fulfilled, and the columns represent the bids for a subset
of rows (jobs). The problem is to find a set of bids having
maximum weight, which covers a given set of jobs not
more than once. The weights w is to be derived based on
three factors (Pricing, Preference and Fairness),

Weight w is representative of how good a bid is for it
to be included in the solution. Hence, it is important that
the value of w for a bid is a correct and accurate
representation of how good the match is for all the jobs
covered under the bid.

We introduce the terminology “gain” g that is
representative of how well an agent’s bid and a job match.
In formal terms, gij represents how good a match is
between bidj and jobi. Finally, we can get w value for each
column by summing up all the g values for each respective
column. In other words, wj for a particular bidj is the

summation of all gij for all jobi contained in bidj.
Mathematically, it can be expressed as:

wj = ∑

∈Mi
ijg , such that aij = 1

4.2. Gain Resolution

Gain g determines how good a match between a bid and
a job. Hence, in order for values of g to provide an
accurate reflection, it will have to be dependent on the
aggregation of these three factors: Pricing, Preference
and Fairness.

1. Pricing − The allocation of the bids should be

allocated in a manner so that the prices that the
customers have to pay for servicing their job requests
are minimized.

2. Preference − Customers have the freedom to choose
their preferred 3PL agent to fulfill their job requests.

3. Fairness − There must be fairness measure to ensure
load balancing of jobs among the 3PL agents.

Each factor is associated to its own weight wt that

determines its relative importance among other factors.
This weight component in our system provides the
flexibility in determining the relative importance of each
factor with regards to the rest. The value of gij is computed
as follows:

gij =
)()()(

)()()(
FairnesswtPreferencewtPricingwt

FairnessgPreferencegPricingg
ijijij

ijijij

++
++

In general, for an arbitrary set F, the equation is

formulated as follows:

gij =
∑
∑

∈

∈

Ff

ij

Ff

ij

fwt

fg

)(

)(

The values for wtij(f) are range from 0 to 1 inclusive.
The larger the value of wtij(f), the more important it is for
factor f, and vice versa.

4.3. Factors Resolution

The following notations are used in determining the
values for each factor.

Wti(Pricing) : weight assigned to cost by a customer for a

particular jobi.
PMaxi : maximum price a customer is willing to pay

for jobi to be fulfilled.
PMin : minimum price an agent is allowed to bid.
PBidij : price of bidj which an agent offered for jobi.

Wti(Pref) : weight assigned to preference by a
customer for a particular jobi.

PrefAgentai : indicates if jobi’s preferred agent is agenta.
Wt(Fairness) : weight assigned to fairness by the 4PL

provider.
MaxJobs : maximum upper threshold of jobs an agent

can fulfill.
JobsDonea : total jobs that agenta had so far fulfilled.

4.3.1. Factor Pricing

The price that a customer has to pay for servicing his
job requests should be taken into consideration in
determining the allocation of bids. In our system, we will
allow customers to specify their maximum price that they
are willing to pay in fulfillment for each of their job
requests. They also have to specify the weight value for
each job request submitted in order to signify its
importance with respect to other factors. On the other
hand, the Administrator sets the minimum price an agent
can bid for all jobs.

The gain value for the Pricing factor, gij(Pricing), is
formulated as:

gij(Pricing) = Wti(Pricing)

−
−

−×
PMinPMax
PBidPMax

i

iji
1

4.3.2. Factor Preference

Our system also allows customers to specify their
preferred 3PL agent to fulfill their job requests. Similarly,
they also have to specify the weight value attached to this
factor. In addition, PrefAgentai is subject to:

PrefAgentai =

otherwise ,0
 prefers if ,1 ai agentjob

The gain value for the Preference factor, gij(Pref) is

formulated as:

gij(Pref) = Wti(Pref) × PrefAgentai

4.3.3. Factor Fairness

A fairness measure in the distribution of jobs among
the agents is enforced by the Administrator. The
Administrator sets the weight for the Fairness factor and
the maximum upper threshold of jobs an agent can fulfill.
The gain value for the Fairness factor, gij(Fairness) is
formulated as:

If MaxJobs ≥ JobsDonea,

gij(Fairness) =

 −×

MaxJobs
JobsDoneMaxJobsFairnessWt a)(

Otherwise, gij(Fairness)= 0.

5. Algorithm

5.1. Notations

In order to describe our solution approach, we use the
following notations:

Indexes i, j denote a generic row and column,
respectively. Set S denotes the set of columns in the
working solution.

S = { j | xj = 1 for some j ∈ N }

Candidates has the following meaning:

Candidates = { j | j ∉ S and j ∈ N }

value(S) returns the objective value of SPP and it is

formulated as follows:

value(S) = ∑ ∑
∈ ∈Ni Sj

jijwa

Conflict(j) denotes the set of columns which do not
contain any overlapping rows with respect to column j.
That means if column j is contained in the solution, the set
of columns in Conflict(j) cannot be included in the
solution. Moreover, if Conflict(j) = {}, this means that we
can include column j as part of the solution. Another
interesting property is: if a column j′ is in the set
Conflict(j) , then there is also a column j in the set
Conflict(j′). For this situation, columns j and j′ are said to
be in “conflict”.

Conflict(j) = { j′ | aij = 1 and aij′ = 1 for some j′ ∈ N }

AJobs(j) returns the set of rows that are covered only
by column j. This set of rows i returned can be considered
the opportunity cost if column j is not part of the solution
as they will not be covered by the rest of the columns.

AJobs(j) = { i | aij = 1 and aij′ = 0 for all j′ ∈ N }

Unfilled(j) returns the set of rows that cannot be
covered if column j is in the solution.

Unfilled(j) = { i | i ∈ AJobs(j′) for some j′ ∈ Conflict(j) }

5.2. Overall Method

Given a problem instance, the algorithm extracts an
initial core from the set of columns given in the input. The
algorithm consists of the iterated application of the
following three steps:

1. An approximate solution to the actual SPP core

constructed by a greedy construction heuristic.
2. A local search optimization algorithm is applied to the

resulting solution.
3. Some columns that occur in the best solution found in

all iterations up to now are selected for forming the
initial partial solution for the next iteration.

The algorithm SPP is illustrated below, where Sbest

represents the best cover found so far and S denotes the
actual partial cover.

FUNCTION SPP()

S ← {};
SBest ← ComputeCover();
SConfirm ← AssignNonConflict();
FOR 1 … number_of_iterations DO

S ← GREEDY(S);
 S ← LOCAL_SEARCH(S);
 IF (value(S) = value (SBest)) THEN
 SBest ← S;
 ENDIF
 S ← PARTIAL_COVER(S, SBest);

ENDFOR
RETURN SBest + SConfirm;

5.3. Greedy Heuristic

Our greedy heuristic GREEDY is given below. The
algorithm constructs a solution (a cover), starting from a
(possibly empty) partial cover S. Columns are added to
(resp. removed from) S until no columns can be added
without conflicting with the rest of the columns in S.

FUNCTION GREEDY(set S)

WHILE (NOT Conflict(S, Candidates)) DO
 S ← S + SelectAdd(Candidates);
 IF (Remove()) THEN

S ← S – SelectRemove(S);
 ENDIF
 ENDWHILE
 RETURN S;

Conflict(S, Candidates) returns true when there is a
column j in Candidates that does not conflict with any
columns in S, otherwise it returns false. Following that,

Select_Add(Candidates) selects a column j with the
largest associated weight that does not conflict with any
columns in S.

Divergent measure is implemented in GREEDY to
escape the trap of local optimality through the use of
Remove() and SelectRemove(S). Remove() determines
whether columns should be removed from S. With a
probability of 0.3, it returns true, otherwise false.

Finally, Select_Remove(S) selects a “bad” column in S
for removal. There are basically two different approaches
to accomplish this task. They are:

1. Determinis tic − Returns a column j in S with maximum

UnfilledJobs(j)
2. Probabilistic − Selection of a column j′ from S is based

on the following probability that is associated with
each column:

P(selecting j′) =
∑
∈

′

Sj

jbsUnfilledJo
jbsUnfilledJo

)(
)(

For the second approach, the columns in S are
evaluated in descending order of the column’s probability,
and its returns the first column that is evaluated to be true
based on its probability.

5.4. Local Search

The local optimization procedure LOCAL_SEARCH
improves a solution by introducing a better column into
the solution not found in set S. The algorithm
LOCAL_SEARCH is illustrated below. TempSBest
represents the temporary best cover found so far, while
TempS represents the temporary working partial cover.

FUNCTION LOCAL_SEARCH(set S)
TempSBest ← S;

 FOR EACH COLUMN j in Candidates DO
 TempS ← RemoveConflict(S, j);
 TempS ← TempS + {j};
 TempS ← GREEDY(TempS);
 IF (Value(TempS) ≥ Value(TempSBest)) THEN
 TempSBest ← TempS ;
 ENDIF
 ENDFOR
 RETURN TempSBest;

The RemoveConflict(S, j) method remove the set of
columns in Conflict(j) from set S. Essentially, each time a
column j in Candidates is introduced into solution S, the
new value of Value(S) is checked against the highest
obtained Value(S) so far. If the Value(S) obtained is
higher, as a result of the introduction of column j, then j
will be adopted into solution S.

5.5. Selecting SPP Partial Cover

In the first iteration of SPP, the heuristic GREEDY
constructs a cover starting from the empty set; in the
following iterations, GREEDY builds a cover starting from
a subset of the best cover found so far. For a column j, we
keep track of the number chosen(j) of times that j has been
part of a best solution. PARTIAL_COVER is as follows:

 FUNCTION PARTIAL_COVER(set S, set SBest)

E ← {};
 FOR EACH COLUMN j in SBest DO
 IF (AJobs(j) ≥ UnfilledJobs(j)) THEN
 E ← E + {j};
 END IF
 ENDFOR
 SELECT_PARTIAL_COVER(S, E);
 RETURN S;

SELECT_PARTIAL_COVER considers the set E of so-
called elite columns, consisting of those columns j of the
best solution SBest such that AJobs(j) ≥ UnfilledJobs(j) .
Then, SELECT_PARTIAL_COVER selects from E the set
of columns having low chosen(j) based on one of the
following methods:

1. Deterministic − Set of columns j′ from E is selected if:

chosen(j′) <
csizeE

jchosen
Ej

×

∑
∈

().

)(

where E.size() is the number of elements in E and c is a
constant which is arbitrarily set to 10 in our
implementation.

2. Probabilistic − Selection of a column j′ from E is based
on the probability:

P(selecting j′) =
∑

∈

′
−

Ej

jchosen
jchosen

)(
)(

1

6. Experimental Results

We have shown that the divergent measure and
selection of partial cover for our algorithm can be
implemented by either a probabilistic or deterministic
approach. By enumerating these different combinations of
approaches, we can have up to four variant algorithms as
follows:

1. Probabilistic Divergent Search & Probabilistic Partial

Cover (PP)
2. Deterministic Divergent Search & Deterministic Partial

Cover (DD)

3. Probabilistic Divergent Search & Deterministic Partial
Cover (PD)

4. Deterministic Divergent Search & Probabilistic Partial
Cover (DP)

We compare experimentally the above set of algorithms
with Chvatal’s greedy algorithm [2] with respect to the
solution quality. In our implementation of Chvatal’s
algorithm, we select each column based on the highest
weight per row covered by the inspected column.

We generated test cases as follows. For simplicity, we
assume that all jobs do not have any stated preferred
agent and the Fairness factor is set to “Not Important”
(i.e. 0). Hence, the value of Gain g is totally determined by
the Pricing factor. The Pricing factor is calculated based
on randomly generated bid prices that range from PMin to
PMaxi., and Wti(Pricing) is assigned a random value from
0 to 1. The results of each set of experiments are based on
runs made on 50 different data sets, with total iterations
fixed at 100 for the iterative greedy approach.

In the table shown in Figure 3, the first column
contains the abbreviation of the algorithms used. The
second column displays the average total weight of the
solutions based on the 50 runs and the last column
denotes the number of best solutions obtained among the
five algorithms. In Figures 2 and 3, the experiments are
conducted with each test case containing 100 columns
(bids) and 200 rows (jobs). The number of rows each
column can cover is randomly generated from 1 to 10.

Experiments Ave Total Wt. Best Sol Out of 50

Chvatal 65.14 2

PP 69.57 7

DD 69.07 10

PD 70.37 22

DP 69.24 10

Figure 2. Experimental Evaluation

In addition, we explore experimentally how the solution

quality changes with respect to the number of iterations
for our greedy heuristics. In the following graph, the x-axis
represents the number of iterations (up to 1000) and the y-
axis, the average total weight obtained for 50 runs.

The results of the experiments indicate that our
iterative greedy approach produces much superior results
compared to the Chvatal’s classical greedy approach. All
our four variants of the iterative approach are closely
matched in terms of solution quality, although we observe

that PD outperforms the rest of the algorithms in terms of
number of best solutions produced.

Figure 3. Iterations Results

7. System Execution

In this section, we briefly describe our system in
execution.

Firstly, the e-Market Place Server can be initialized via the
user interface as shown in Figure 4 (which is self-
explanatory):

Figure 4. e-Market Place Server User Interface

Customers will submit their job requests to the e-
Procurement Server through a web browser (see Figure 5).
In our implementation, the customer can input preferred
pricing and agent for their job requests; the degree of

importance of these factors are specified through the radio
boxes: “Not Important”, “Somewhat Important” and “Very
Important”. Internally, we assign a value of 0 for “Not
Important”, 0.5 for “Somewhat Important” and 1 for “Very
Important”. These values are used in the computation of
gain g, which was discussed in Section 4.

Figure 5. Job Submission User Interface

The job requests are stored in the database at the e-
Procurement Server. Once the e-Market Place Server
establishes connection with the e-Procurement Server to
commence the bidding process, these jobs will be
uploaded to the e-Market Place Server and in turn the e-
Market Place will broadcast the jobs to the registered 3PL
agents. After the bids allocation process had completed,
jobs allocation results will be downloaded from the e-
Market Place to the e-Procurement Server. An example of
bid allocation is shown in Figure 6. Here, the rows
represent customer jobs while the columns represent
agent bids. A (bid, job) pair is colored by either a dark or a
grey-colored cell, where an orange cell means that the job
has been successfully allocated to the bid, while a grey
cell means it has not1. The value within each cell stores the
gain value gij, for the corresponding bidj and jobi. One
may obtain details by clicking on the value in the cell,
which will pop-up a window displaying information such
as the weight wt for each of the factor.

1 In case the black & white printed page cannot distinguish the
two shades, Bids 100, 102, 103, 105, 111, 113, 118 and 119 are
successfully allocated while the rest are not.

61.38

71.15
73.31

74.25 74.61 74.9 75.1

60
62
64
66
68
70
72
74
76

1 50 100 250 500 750 1000
Iterations

Ave Wt

Figure 6. Bid Allocation User Interface

8. Conclusion

In this paper, we designed and implemented a J2EE™
based system for an intelligent 4th-party logistics operator
coordinating the activities of many 3rd-party logistics
providers against online job demands. We introduced a
novel heuristic method for solving the underlying logistics
optimization problem. The results of the experiments had
indicated that our iterative greedy approach generally
produce better solution quality than the classical
Chvatal’s greedy approach. We also concluded that the
PD approach is generally more effective among the
algorithms evaluated. Future works are given as follows.

In our system architecture, the 3PL agents are served
by a 4PL provider (e-Market Place) in the procurement of
customers' jobs and a combinatorial auction takes place
where by the agents bid any combination of jobs
intelligently with respect to its available resources.
Currently in our implementation, we do not model game-
theoretic aspects of agent behavior. A possible future
improvement is to incorporate that into the model.

Another improvement is to improve the bids allocation
algorithm. Current implementation only takes into
consideration on pricing, fairness and preference factors.
Other factors could be considered. New heuristic methods
such as genetic algorithm and probabilistic search to solve
SPP can be explored and benchmarked against the current
implementation.

References

[1] D. Bauknight and J. Miller, “Fourth Party Logistics: The
Evolution of Supply Chain Outsourcing”, CALM Supply Chain
& Logistics Journal, (1999)

[2] V. Chvatal. “A greedy heuristic for the set-covering
problem”, Mathematics of Operations Research, 4(3):233--235,
(1979)

[3] E. Freuder and RWallace, “Suggestion Strategies for
Constraint-Based Matchmaker Agents”, In Principles and
Practice of Constraint Programming, CP'98, (1998)

[4] J2EE Documentation, http://java.sun.com/j2ee/

[5] J. Jung and G. Jo, “Brokerage between buyer and seller
agents using Constraint Satisfaction Problem models”, Decision
Support Systems, Volume 28, Issue 4, (2000)

[6] P. Keskinocak, R. Goodwin, F. Wu, R. Akkiraju, S. Murthy,
“Decision Support for Managing an Electronic Supply Chain”,
Electronic Commerce Research, Volume 1 (2001)

[7] H. C. Lau and Y. T. Lo, “A Multi-Agent Framework for
Supporting Web-based Intelligent Fourth-Party Logistics”, Proc.
Int'l Conf. on Integrated Logistics, Singapore (2001)

[8] E. Marchiori and A. Steenbeek, “An Evolutionary Algorithm
for Large Scale Set Covering Problems with Application to
Airline Crew Scheduling”, EvoWorkshops, (2000)

[9] T. Sandholm. Algorithm for optimal winner determination in
combinatorial auctions. Artificial Intelligence, 135:1-54, 2002.

[10] S. de Vries and R. Vohra, “Combinatorial Auctions: A
Survey”, Technical Report, Northwestern University, (2000)

[11] G. Weiss (ed.), Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence, Reading, MIT Press,
Massachusetts, (1999)

