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Abstract 
 

An intelligent agent-based framework that supports 
fourth-party logistics (4PL) operations on the web is 
proposed in this paper. In our system, customers specify 
job requests over the web dynamically. An e-Market 
Place allows intelligent third-party logistics (3PL) 
agents to bid for customers’ job requests. The intelligence 
lies on the e-Market Place to optimally decide which 
agents’ bids should be satisfied based on a set of pre-
determined factors (pricing, preferences and fairness). 
We model the underlying brokering problem as a Set 
Packing Problem (SPP), which is an NP-hard 
optimization problem. An iterative greedy approximation 
algorithm is proposed to solve the SPP, and experimental 
results show its effectiveness against the classical greedy 
method proposed by Chvatal. 

 
1. Introduction 
 

The term "fourth-party logistics" (4PL) is a trademark 
owned by Accenture (formerly known as Andersen 
Consulting) [1]. It refers to the evolution in logistics from 
suppliers focused on warehousing and transportation 
(commonly known as third-party logistics providers or 
3PL) to suppliers offering a more integrated supply chain 
solution. With the advent of the Internet era in the late 
1990s, 4PL grew in popularity as web and other IT 
technology provided the leverage.   

With the Internet, literally all data of logistics activities 
such as customer demands, warehousing, inventory and 
transportation information can be made available 
electronically. This opens the possibility for logistics 
activities to be streamlined and optimized across company 
boundaries on a macro basis. For this vision to be realized, 
3PL operators will form alliance or consortium, which is to 
be managed by a 4PL provider whose role is to provide 
optimized plans and schedules for the member companies. 
One such management function is to efficiently and 
intelligently match the demands of customers with the 
available capacities of the 3PLs in real-time. 

In this paper, we propose an intelligent and robust 
system for the customers, 3PL agents and 4PL to work 

seamlessly together over the web. In our system, 
customers submit their job requests via the web to an e-
Procurement server. The consolidated jobs at the e-
Procurement server will then be transmitted to the e-
Market Place server, which serves as a broker that allows 
3PL agents to submit bids on combinations of customers’ 
jobs. Agents may join and leave the system dynamically. 
Successful bids are then communicated to the 3PL agents 
and the customers dynamically.  

The system is developed using a hybrid of 
technologies, including web technologies, multi-agent 
systems, and optimization. Central to the intelligence of 
this system is a model for solving a complicated logistics 
optimization problem faced by the 4PL provider.  The 
underlying computational problem is in determining the 
winning set of bids based on 3 factors, namely: pricing, 
preference and fairness. This problem can be modeled as a 
Set Packing Problem (SPP). The proposed algorithm to 
solve the SPP is based on an iterative greedy method 
whereby each iteration builds a new cover based on part 
of the best solution obtained so far. In addition, the 
effectiveness of two different heuristic approaches 
(deterministic and probabilistic) for divergent measure and 
partial cover construction used in the iterative greedy 
algorithm were compared and investigated. Experimental 
results obtained had shown that these iterative greedy 
approaches yield better solutions than the classical 
greedy algorithm, indicating the effectiveness of our 
approach. 
 
2. Literature Review 
 

The web technology used in deploying the web-based 
enterprise systems and applications is based on Java™ 2 
Platform, Enterprise Edition (J2EE™) [4], which simplifies 
enterprise applications by developing them on 
standardized, modular components, by providing a 
complete set of services to those components, and by 
handling many details of application behavior 
automatically without complex programming.  

Multi-agent systems have its root in distributed 
artificial intelligence [10]. An intelligent agent is a 
computational entity (such as a software program) that is 
autonomous in that it operates intelligently and rationally 



in an environment. In this multi-agent framework, agents 
interact with one another to cooperate in solving complex 
logistics problems. In our earlier related work [7] for 
example, we represent each 3PL by an agent, and 4PL as a 
supervisor agent. 

In [3], the authors modeled the intelligent matchmaking 
behavior of an agent as a constraint satisfaction problem. 
In [5], a two-layered multi-agent framework is proposed for 
brokerage between buyers and sellers. The brokerage is 
processed in two layers for efficient linking between 
buyers and sellers: the competition layer and the 
constraint satisfaction layer. In the competition layer, the 
seller agents, as requested by the buyer agents, are 
selected through the competition in the competition layer. 
In the constraint satisfaction layer, the CSP solver finds an 
optimal solution by choosing the best brokerage to satisfy 
various preferential requirements for users. In [6], the 
authors propose that each bid and job corresponds to a 
point in a multi-dimensional attribute space and the 
“distance” between each pair of bid and job request is a 
measure of how each pair matches. However, in our 
implementation, the term “gain” is used to represent 
“distance”, as by its intuitive meaning, a higher value of 
“gain” will denote better matches, and vice versa.  

In the combinatorial auction setting that has been 
discussed in [9,10] and many other papers, each bidder 
can bid on combinations of indivisible items, and her bids 
are implicitly joined with non-exclusive OR, meaning that 
any number of her bids can be accepted. Winner 
determination in this case is the problem of deciding which 
bids win so as to maximize the sum of the bid prices, under 
the constraint that every item is allocated to at most one 
bid. The underlying problem is the weighted set packing 
problem (SPP), which is known to be NP-complete. 
Although combinatorial auctions are a subject of intense 
study, much of it has focused on algorithms for finding an 
optimal (or approximately optimal) set of winning bids 
subject only to pricing considerations. In this paper, we 
extend the considerations to multiple criteria; and 
particularly, we focus our attention on pricing, customer 
preferences and fairness (load balancing).  These factors 
may not be of importance in combinatorial auctions in 
general, but plays an important role in 4PL operations.  

In [11], the authors consider two other closely studied 
relatives of SPP: the Set Partitioning Problem (SPA) and 
the Set Covering Problem (SCP). A specific algorithmic 
implementation in SCP is presented in [8]. It proposes an 
iterative greedy solution approach for solving large scale 
SCP with application to airline crew scheduling, which our 
algorithm is largely based on, except that our application is 
based on SPP. Comparatively little attention has been paid 
to methodical evaluation and experimental comparison of 
these algorithms. In this paper, besides comparing our 
method with a plain naive greedy algorithm, we will also be 

comparing four different variants of an iterative greedy 
method. Extensive computational experiments were 
conducted to determine the best method in terms of 
solution quality.  

 
3. System Overview 
 

In this section, we give an overview of the proposed 
system. The Administrator manages the e-Market Place 
and hence the brokering process. An Agent represents a 
3PL provider. The Customer refers literally to one who 
submits a job request, which comprises a customer ID, job 
specification, and customer’s preferences for pricing and 
3PL agent. A bid consists of a set of job requests that a 
particular agent can fulfill.  Figure 1 gives an overview of 
the proposed system.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. System Overview 
 
The following is a normal scenario that describes the 

entire workflow of the system: 
 

1. Customer submits a job request to the system. 
2. Agent registers itself with the e-Market Place. 
3. Administrator connects to the e-Procurement Server 

to download newly arrived jobs. 
4. These jobs are broadcast to all registered agents. 
5. Registered Agents submit their bids. 
6. Administrator will intelligently assign jobs to bids. 
7. Detailed information on the assignments is pushed to 

the agents and (via the e-Procurement Server) to the 
Customers. 

8. Agent can decide to de-register with the e-Market 
Place at any time. 
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4. The Broker Model 
 

In this section, we propose the broker model for the e-
Market Place. It focuses on modeling 4PL operations, 
while ignoring the game-theoretic incentive aspects 
commonly discussed in combinatorial auctions papers.  
 
4.1. Set Partitioning Problem (SPP) 
 

SPP is a well-studied combinatorial optimization 
problem. Given a ground set M of elements and a 
collection N of subsets with non-negative weights, the 
problem is to find the largest weighted sub-collection of N 
that are pairwise disjoint, such that each element in M can 
appear in at most one subset.   

To formulate SPP as an integer program, we can view 
SPP as a m-row, n-column matrix, zero-one matrix (aij), and 
an n-dimensional integer vector (wj), and the problem 
consists of finding a subset of columns the rows and that 
they are pairwise disjoint and having the largest total 
weight. Defining decision variable xj = 1 if column j is in 
the solution and xj = 0 if otherwise, the SPP is formulated 
as a constrained optimization problem as follows: 
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where M = {1, …, m} and N = {1, …, n} and a row i is 
covered by a column j if the entry aij is equal to 1, 
otherwise it is 0. Equations (1) ensure that each row is 
covered by at most one column while the integrality 
constraint (2) ensures that xj is equal to 1, iff column j is in 
the solution. 

SPP is directly related to bid allocation in the following 
sense. The rows represent the submitted jobs to be 
fulfilled, and the columns represent the bids for a subset 
of rows (jobs). The problem is to find a set of bids having 
maximum weight, which covers a given set of jobs not 
more than once. The weights w is to be derived based on 
three factors (Pricing, Preference and Fairness),  

Weight w is representative of how good a bid is for it 
to be included in the solution. Hence, it is important that 
the value of w for a bid is a correct and accurate 
representation of how good the match is for all the jobs 
covered under the bid.  

We introduce the terminology “gain” g that is 
representative of how well an agent’s bid and a job match. 
In formal terms, gij represents how good a match is 
between bidj and jobi. Finally, we can get w value for each 
column by summing up all the g values for each respective 
column. In other words, wj for a particular bidj is the 

summation of all gij for all jobi contained in bidj. 
Mathematically, it can be expressed as: 

 
wj = ∑

∈Mi
ijg , such that aij = 1 

 
4.2. Gain Resolution 
 

Gain g determines how good a match between a bid and 
a job. Hence, in order for values of g to provide an 
accurate reflection, it will have to be dependent on the 
aggregation of these three factors: Pricing, Preference 
and Fairness.  

 
1. Pricing − The allocation of the bids should be 

allocated in a manner so that the prices that the 
customers have to pay for servicing their job requests 
are minimized.  

2. Preference − Customers have the freedom to choose 
their preferred 3PL agent to fulfill their job requests. 

3. Fairness − There must be fairness measure to ensure 
load balancing of jobs among the 3PL agents. 

 
Each factor is associated to its own weight wt that 

determines its relative importance among other factors. 
This weight component in our system provides the 
flexibility in determining the relative importance of each 
factor with regards to the rest. The value of gij is  computed 
as follows: 

gij =
)(  )(  )(
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In general, for an arbitrary set F, the equation is 

formulated as follows: 

gij = 
∑
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The values for wtij(f) are range from 0 to 1 inclusive. 
The larger the value of wtij(f), the more important it is for 
factor f, and vice versa. 
 
4.3. Factors Resolution 
 

The following notations are used in determining the 
values for each factor. 

 
Wti(Pricing) : weight assigned to cost by a customer for a 

particular jobi. 
PMaxi :  maximum price a customer is willing to pay 

for jobi to be fulfilled. 
PMin :  minimum price an agent is allowed to bid. 
PBidij :  price of bidj which an agent offered for jobi. 



Wti(Pref)  :  weight assigned to preference by a 
customer for a particular jobi. 

PrefAgentai  :  indicates if jobi’s preferred agent is agenta. 
Wt(Fairness) : weight assigned to fairness by the 4PL 

provider. 
MaxJobs :  maximum upper threshold of jobs an agent 

can fulfill. 
JobsDonea :  total jobs that agenta had so far fulfilled. 
 
4.3.1. Factor Pricing 
 

The price that a customer has to pay for servicing his 
job requests should be taken into consideration in 
determining the allocation of bids. In our system, we will 
allow customers to specify their maximum price that they 
are willing to pay in fulfillment for each of their job 
requests. They also have to specify the weight value for 
each job request submitted in order to signify its 
importance with respect to other factors. On the other 
hand, the Administrator sets the minimum price an agent 
can bid for all jobs.  

The gain value for the Pricing factor, gij(Pricing), is 
formulated as: 

gij(Pricing) = Wti(Pricing)
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4.3.2. Factor Preference 
 

Our system also allows customers to specify their 
preferred 3PL agent to fulfill their job requests. Similarly, 
they also have to specify the weight value attached to this 
factor. In addition, PrefAgentai is subject to: 

 

PrefAgentai = 




otherwise ,0
  prefers   if ,1 ai agentjob  

 
The gain value for the Preference factor, gij(Pref) is 

formulated as: 
 
gij(Pref) = Wti(Pref) × PrefAgentai 

 
 
4.3.3. Factor Fairness 
 

A fairness measure in the distribution of jobs among 
the agents is enforced by the Administrator. The 
Administrator sets the weight for the Fairness factor and 
the maximum upper threshold of jobs an agent can fulfill.  
The gain value for the Fairness factor, gij(Fairness) is 
formulated as: 

 
 

If MaxJobs ≥ JobsDonea, 

gij(Fairness) = 




 −×

MaxJobs
JobsDoneMaxJobsFairnessWt a )(  

Otherwise, gij(Fairness)= 0. 
 

 
5. Algorithm 
 
5.1. Notations  
 

In order to describe our solution approach, we use the 
following notations: 

Indexes i, j denote a generic row and column, 
respectively.  Set S denotes the set of columns in the 
working solution. 

 
S = { j | xj = 1 for some j ∈ N } 

 
Candidates has the following meaning:  

 
Candidates = { j | j ∉ S and j ∈ N } 

 
value(S) returns the objective value of SPP and it is 

formulated as follows: 

value(S) = ∑ ∑
∈ ∈Ni Sj

jijwa  

Conflict(j)  denotes the set of columns which do not 
contain any overlapping rows with respect to column j. 
That means if column j is contained in the solution, the set 
of columns in Conflict(j)  cannot be included in the 
solution. Moreover, if Conflict(j) = {}, this means that we 
can include column j as part of the solution. Another 
interesting property is: if a column j′ is in the set 
Conflict(j) , then there is also a column j in the set 
Conflict(j′). For this situation, columns j and j′ are said to 
be in “conflict”. 
 

Conflict(j)  = { j′ | aij = 1 and aij′ = 1 for some j′ ∈ N } 
 

AJobs(j)  returns the set of rows  that are covered only 
by column j. This set of rows i returned can be considered 
the opportunity cost if column j is not part of the solution 
as they will not be covered by the rest of the columns. 
 

AJobs(j)  = { i | aij = 1 and aij′ = 0 for all j′ ∈ N } 
 

Unfilled(j)  returns the set of rows that cannot be 
covered if column j is in the solution. 
 
Unfilled(j)  = { i | i ∈ AJobs(j′) for some j′ ∈ Conflict(j) } 

 
 



5.2. Overall Method 
 

Given a problem instance, the algorithm extracts an 
initial core from the set of columns given in the input. The 
algorithm consists of the iterated application of the 
following three steps: 

 
1. An approximate solution to the actual SPP core 

constructed by a greedy construction heuristic. 
2. A local search optimization algorithm is applied to the 

resulting solution. 
3. Some columns that occur in the best solution found in 

all iterations up to now are selected for forming the 
initial partial solution for the next iteration. 

 
The algorithm SPP is illustrated below, where Sbest 

represents the best cover found so far and S denotes the 
actual partial cover.  

 
FUNCTION SPP() 

S ← {}; 
SBest ← ComputeCover(); 
SConfirm ← AssignNonConflict(); 
FOR 1 … number_of_iterations DO 

S ← GREEDY(S); 
  S ← LOCAL_SEARCH(S); 
  IF (value(S) = value (SBest)) THEN 
   SBest ← S; 
  ENDIF 
   S ← PARTIAL_COVER(S, SBest); 

ENDFOR 
RETURN SBest + SConfirm; 

 
5.3. Greedy Heuristic 
 

Our greedy heuristic GREEDY is given below. The 
algorithm constructs a solution (a cover), starting from a 
(possibly empty) partial cover S. Columns are added to 
(resp. removed from) S until no columns can be added 
without conflicting with the rest of the columns in S. 

 
FUNCTION GREEDY(set S) 

WHILE (NOT Conflict(S, Candidates)) DO 
  S ← S + SelectAdd(Candidates); 
  IF (Remove()) THEN  

S ← S – SelectRemove(S); 
  ENDIF 
 ENDWHILE 
 RETURN S; 
 

Conflict(S, Candidates) returns true when there is a 
column j in Candidates that does not conflict with any 
columns in S, otherwise it returns false. Following that,  

Select_Add(Candidates) selects a column j with the 
largest associated weight that does not conflict with any 
columns in S. 

Divergent measure is implemented in GREEDY to 
escape the trap of local optimality through the use of 
Remove() and SelectRemove(S). Remove() determines 
whether columns should be removed from S. With a 
probability of 0.3, it returns true, otherwise false.  

Finally, Select_Remove(S) selects a “bad” column in S 
for removal. There are basically two different approaches 
to accomplish this task. They are: 
 
1. Determinis tic − Returns a column j in S with maximum 

UnfilledJobs(j)  
2. Probabilistic − Selection of a column j′ from S is based 

on the following probability that is associated with 
each column: 

P(selecting j′)  = 
∑
∈

′

Sj

jbsUnfilledJo
jbsUnfilledJo

)(
)(  

For the second approach, the columns in S are 
evaluated in descending order of the column’s probability, 
and its returns the first column that is evaluated to be true 
based on its probability. 
 
5.4. Local Search 
 

The local optimization procedure LOCAL_SEARCH 
improves a solution by introducing a better column into 
the solution not found in set S. The algorithm 
LOCAL_SEARCH is illustrated below. TempSBest 
represents the temporary best cover found so far, while 
TempS  represents the temporary working partial cover. 
 

FUNCTION LOCAL_SEARCH(set S) 
TempSBest ← S; 

 FOR EACH COLUMN j in Candidates DO 
  TempS  ← RemoveConflict(S, j); 
  TempS  ← TempS  + {j}; 
  TempS  ← GREEDY(TempS); 
 IF (Value(TempS) ≥ Value(TempSBest)) THEN 
   TempSBest ← TempS ; 
 ENDIF 
 ENDFOR 
 RETURN TempSBest; 
 

The RemoveConflict(S, j) method remove the set of 
columns in Conflict(j)  from set S. Essentially, each time a 
column  j in Candidates is introduced into solution S, the 
new value of Value(S) is checked against the highest 
obtained Value(S) so far. If the Value(S) obtained is 
higher, as a result of the introduction of column j, then j 
will be adopted into solution S. 



5.5. Selecting SPP Partial Cover 
 
In the first iteration of SPP, the heuristic GREEDY 
constructs a cover starting from the empty set; in the 
following iterations, GREEDY builds a cover starting from 
a subset of the best cover found so far. For a column j, we 
keep track of the number chosen(j)  of times that j has been 
part of a best solution. PARTIAL_COVER is as follows: 
 
 FUNCTION PARTIAL_COVER(set S, set SBest) 

E ← {}; 
 FOR EACH COLUMN j in SBest DO 
  IF (AJobs(j)  ≥ UnfilledJobs(j)) THEN 
   E ← E + {j}; 
  END IF 
 ENDFOR 
 SELECT_PARTIAL_COVER(S, E); 
 RETURN S; 
 
SELECT_PARTIAL_COVER considers the set E of so-
called elite columns, consisting of those columns j of the 
best solution SBest such that AJobs(j)   ≥ UnfilledJobs(j) . 
Then, SELECT_PARTIAL_COVER selects from E the set 
of columns having low chosen(j)  based on one of the 
following methods:  
 
1. Deterministic − Set of columns j′  from E is selected if: 

chosen(j′) < 
csizeE

jchosen
Ej

×

∑
∈

().

)(
 

where E.size() is the number of elements in E and c is a 
constant which is arbitrarily set to 10 in our 
implementation. 

2. Probabilistic − Selection of a column j′ from E is based 
on the probability: 

P(selecting j′ )  = 
∑

∈

′
−

Ej

jchosen
jchosen
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1  

 
6. Experimental Results 
 

We have shown that the divergent measure and 
selection of partial cover for our algorithm can be 
implemented by either a probabilistic or deterministic 
approach. By enumerating these different combinations of 
approaches, we can have up to four variant algorithms as 
follows: 

 
1. Probabilistic Divergent Search & Probabilistic Partial 

Cover (PP) 
2. Deterministic Divergent Search & Deterministic Partial 

Cover (DD) 

3. Probabilistic Divergent Search & Deterministic Partial 
Cover (PD) 

4. Deterministic Divergent Search & Probabilistic Partial 
Cover (DP) 

 
We compare experimentally the above set of algorithms 
with Chvatal’s greedy algorithm [2] with respect to the 
solution quality. In our implementation of Chvatal’s 
algorithm, we select each column based on the highest 
weight per row covered by the inspected column.  

We generated test cases as follows. For simplicity, we 
assume that all jobs do not have any stated preferred 
agent and the Fairness factor is set to “Not Important” 
(i.e. 0). Hence, the value of Gain g is totally determined by 
the Pricing factor. The Pricing factor is calculated based 
on randomly generated bid prices that range from PMin to 
PMaxi., and Wti(Pricing) is assigned a random value from 
0 to 1. The results of each set of experiments are based on 
runs made on 50 different data sets, with total iterations 
fixed at 100 for the iterative greedy approach.   

In the table shown in Figure 3, the first column 
contains the abbreviation of the algorithms used. The 
second column displays the average total weight of the 
solutions based on the 50 runs and the last column 
denotes the number of best solutions obtained among the 
five algorithms. In Figures 2 and 3, the experiments are 
conducted with each test case containing 100 columns 
(bids) and 200 rows (jobs). The number of rows each 
column can cover is randomly generated from 1 to 10.  

 
 

Experiments Ave Total Wt. Best Sol Out of 50 

Chvatal 65.14 2 

PP 69.57 7 

DD 69.07 10 

PD 70.37 22 

DP 69.24 10 

 
Figure 2. Experimental Evaluation 

 
In addition, we explore experimentally how the solution 

quality changes with respect to the number of iterations 
for our greedy heuristics. In the following graph, the x-axis 
represents the number of iterations (up to 1000) and the y-
axis, the average total weight obtained for 50 runs.   

The results of the experiments indicate that our 
iterative greedy approach produces much superior results 
compared to the Chvatal’s classical greedy approach. All 
our four variants of the iterative approach are closely 
matched in terms of solution quality, although we observe 



that PD outperforms the rest of the algorithms in terms of 
number of best solutions produced.   

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Iterations Results 
 
  

7. System Execution  
 
In this section, we briefly describe our system in 
execution.   
 
Firstly, the e-Market Place Server can be initialized via the 
user interface as shown in Figure 4 (which is self-
explanatory): 
 

 
 

Figure 4. e-Market Place Server User Interface 
 
Customers will submit their job requests to the e-
Procurement Server through a web browser (see Figure 5). 
In our implementation, the customer can input preferred 
pricing and agent for their job requests; the degree of  

importance of these factors are specified through the radio 
boxes: “Not Important”, “Somewhat Important” and “Very 
Important”. Internally, we assign a value of 0 for “Not 
Important”, 0.5 for “Somewhat Important” and 1 for “Very 
Important”. These values are used in the computation of 
gain g, which was discussed in Section 4. 
 

 
 

Figure 5. Job Submission User Interface 
 
The job requests are stored in the database at the e-
Procurement Server. Once the e-Market Place Server 
establishes connection with the e-Procurement Server to 
commence the bidding process, these jobs will be 
uploaded to the e-Market Place Server and in turn the e-
Market Place will broadcast the jobs to the registered 3PL 
agents. After the bids allocation process had completed, 
jobs allocation results will be downloaded from the e-
Market Place to the e-Procurement Server. An example of 
bid allocation is shown in Figure 6. Here, the rows 
represent customer jobs while the columns represent 
agent bids. A (bid, job) pair is colored by either a dark or a 
grey-colored cell, where an orange cell means that the job 
has been successfully allocated to the bid, while a grey 
cell means it has not1. The value within each cell stores the 
gain value gij, for the corresponding bidj and jobi.  One 
may obtain details by clicking on the value in the cell, 
which will pop-up a window displaying information such 
as the weight wt for each of the factor.  

                                                 
1 In case the black & white printed page cannot distinguish the 
two shades, Bids 100, 102, 103, 105, 111, 113, 118 and 119 are 
successfully allocated while the rest are not.  
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Figure 6. Bid Allocation User Interface 
 
8. Conclusion 
 
In this paper, we designed and implemented a J2EE™ 
based system for an intelligent 4th-party logistics operator 
coordinating the activities of many 3rd-party logistics 
providers against online job demands.  We introduced a 
novel heuristic method for solving the underlying logistics 
optimization problem. The results of the experiments had 
indicated that our iterative greedy approach generally 
produce better solution quality than the classical 
Chvatal’s greedy approach. We also concluded that the 
PD approach is generally more effective among the 
algorithms evaluated.  Future works are given as follows.  

In our system architecture, the 3PL agents are served 
by a 4PL provider (e-Market Place) in the procurement of 
customers' jobs and a combinatorial auction takes place 
where by the agents bid any combination of jobs 
intelligently with respect to its available resources. 
Currently in our implementation, we do not model game-
theoretic aspects of agent behavior. A possible future 
improvement is to incorporate that into the model.  

Another improvement is to improve the bids allocation 
algorithm. Current implementation only takes into 
consideration on pricing, fairness and preference factors. 
Other factors could be considered. New heuristic methods 
such as genetic algorithm and probabilistic search to solve 
SPP can be explored and benchmarked against the current 
implementation. 
 
References 
 
[1] D. Bauknight and J. Miller, “Fourth Party Logistics: The 
Evolution of Supply Chain Outsourcing”, CALM Supply Chain 
& Logistics Journal, (1999) 
 
[2] V. Chvatal. “A greedy heuristic for the set-covering 
problem”, Mathematics of Operations Research, 4(3):233--235, 
(1979) 
 
[3] E. Freuder and RWallace, “Suggestion Strategies for 
Constraint-Based Matchmaker Agents”, In Principles and 
Practice of Constraint Programming, CP'98, (1998) 
 
[4] J2EE Documentation, http://java.sun.com/j2ee/ 
 
[5] J.  Jung and G. Jo, “Brokerage between buyer and seller 
agents using Constraint Satisfaction Problem models”, Decision 
Support Systems, Volume 28, Issue 4, (2000) 
 
[6] P. Keskinocak, R. Goodwin, F. Wu, R. Akkiraju, S. Murthy, 
“Decision Support for Managing an Electronic Supply Chain”, 
Electronic Commerce Research, Volume 1 (2001) 
 
[7] H. C. Lau and Y. T. Lo, “A Multi-Agent Framework for 
Supporting Web-based Intelligent Fourth-Party Logistics”, Proc. 
Int'l Conf. on Integrated Logistics, Singapore (2001)  
 
[8] E. Marchiori and A. Steenbeek, “An Evolutionary Algorithm 
for Large Scale Set Covering Problems with Application to 
Airline Crew Scheduling”, EvoWorkshops, (2000) 
 
[9] T. Sandholm. Algorithm for optimal winner determination in 
combinatorial auctions. Artificial Intelligence, 135:1-54, 2002. 
 
[10] S. de Vries and R. Vohra, “Combinatorial Auctions: A 
Survey”, Technical Report, Northwestern University, (2000) 
 
[11] G. Weiss (ed.), Multiagent Systems: A Modern Approach to 
Distributed Artificial Intelligence, Reading, MIT Press, 
Massachusetts, (1999) 
 


