
Task Allocation via Multi-Agent Coalition Formation:
Taxonomy, Algorithms and Complexity

Hoong Chuin LAU Lei ZHANG
School of Computing, National University of Singapore

3 Science Drive 2, Singapore 117543 Tel: +65-68744589
lauhc@comp.nus.edu.sg tlizl@nus.edu.sg

Abstract

Coalition formation has become a key topic in multi-
agent research. In this paper, we propose a preliminary
classification for the coalition formation problem based on
three driving factors (demands, resources and profit
objectives). We divide our analysis into 5 cases. For each
case, we will present algorithms and complexity results.
We anticipate that with future research, this classification
can be extended in similar fashion to the comprehensive
classification for the Job Scheduling Problem.

1. Introduction
With the Internet, it is now possible for operations to be
optimized dynamically across company boundaries. In
virtual marketplaces where buyers and sellers could come
together to conduct business transactions for instance,
service providers along the supply chain can form
dynamic alliances so as to pool their resource capacities
to serve complex customer requests, to exploit economies
of scale and to achieve better utilization of spare
capacities. In this paper, we are concerned with the
problem of task allocation via dynamic coalition
formation of multiple agents. We consider the situation
where each task comprises several sub-tasks that may not
be satisfied by a single agent alone but by a group of
agents offering different resource capabilities. Given a set
of agents and a set of tasks, the problem is in deciding
how best to form coalitions so as to maximize the total
profit. We term this the Task Allocation Coalition
Formation (TACF) problem.

In this paper, we provide a classification for TACF (see
diagram on last page). This classification is designed to
emulate the classification for the classical Job Scheduling
Problem (see, for example [5]), where the three key
parameters are job characteristics, resource constraints
and objective function.

The first factor for TACF is the task demand. A real-
world example of a task is a product or a service. In this
paper, we deal with two types of tasks: tasks with high
demand and unit demand. When the demand for a task is
high, it means that the agents can perform the task
repeatedly as much as they like with the available
resources. An example of this situation is seen in the
demand for certain popular toys before the Christmas
season, which is high such that it is profitable to produce
as much as possible with the available resources. On the

contrary, for the unit demand case, agents will only have
the choice of either performing the task exactly once or
not at all.

The second factor is the resource constraints, i.e.
whether the total resources available are limited or
unlimited. For the former, we mean the total resources
available over all agents are below the total resource
requirements for all the tasks while for the latter, we mean
the total resources available over all agents exceed the total
resource requirements for all tasks. When resources are
limited, we cannot fulfill all the tasks and thus encounter
the problem of choosing the best subset of tasks to
maximize the objective value. When resources are
unlimited, we can fulfill all the tasks and the problem lies
with how coalitions should be formed, since agents have
different asking prices for performing the task.

The last factor is the objective function. In this problem,
we are concerned with the profit derived from serving a
task. We term the profit of a task variable if the profit
derived from this task depends on which set of agents
perform the task (profit is equal to revenue minus the total
asking price of the agents in the coalition). On the
contrary, we call the profit fixed if agents have no asking
prices and hence profit is task-dependent. The fixed profit
case is a special case of the variable profit by setting all
agent asking prices to be equal.

Based on our proposed classification, we identify five
distinct cases to be studied in this paper.

The first case is with unit demand and unlimited
resources, and the profit can be either fixed or variable.
This case is easy, and we propose an optimal algorithm
with a worst-case time complexity of O(n log n + mn),
where n is the number of agents and m is the number of
tasks in the system. The second case is with unit demand,
limited resources, and fixed profit, which is NP-hard. For
this case, we prove that the greedy algorithm based on
profit alone as the criteria to form coalition cannot
establish any approximation bound on the quality of the
solution. We propose a modified greedy algorithm that
considers the resource usage and the effects of look-ahead.
Experimental results to illustrate the strength of this
algorithm are provided. The third case is with unit demand,
limited resources, and variable profit. For this case, we
propose a modified greedy algorithm and again verify with
experimental results. The fourth case is with high demand,
limited resources, and fixed profit. For this problem, we

propose a polynomial-time approximation scheme, which
establishes a constant bound on the quality of the solution.
The last case is with high demand, limited resources, and
variable profit. For this problem, we use a similar approach
as the fourth case except that we use the average asking
price of the agents to approximate the task profit. Note that
the case of high demand and unlimited resources is
meaningless, since the profit becomes infinite.

Our algorithms are centralized, i.e. we assume there is a
central authority that distributes the tasks among the
agents. Although all the computations are done through
the central authority, it is not a big problem with real-time
computation since our proposed algorithms are of low
time complexities. This differs from the work of [8] where
there is a need to distribute computations among agents
due to high computational complexity.

The paper is organized as follows: section 2 gives a
brief literature review. In section 3, we define notations
and assumptions made. In section 4, we present results,
both theoretical and experimental, to solve the different
problem cases. Due to space constraints, all proofs and
experimental results are omitted in this version of the
paper. Section 5 concludes with future works.

2. Related Works
In this section, we review key recent works by the

Distributed Artificial Intelligence community under the
topic of agent coalition formation. [8] presents an iterative
distributed greedy algorithm for coalition formation under
Case 3 of our taxonomy. In each iteration, all possible
coalition values of coalitions of a certain size need to be
re-computed. The nice thing about their approach is that
the overall computation process can be distributed among
all the agents such that each agent will only compute some
coalition values. There is no central authority that
distributes the tasks among the agents: agents reach an
efficient task allocation by themselves. The greedy
algorithm proposed for forming coalitions considers profit
alone and the time complexity of the algorithm is quite
high since it grows exponential with the size of the
coalitions. .

[9] presents two coalition formation approaches for self-
interested agents in a non-super-additive environment. The
computation-oriented approach searches an exponential
solution space that guarantees an optimality bound. The
stability of the coalition formation is also ensured in this
approach, but individual agent’s selfish behavior is not
reflected. On the other hand, the negotiation-oriented
approach is stable and efficient, but the quality of the
solution cannot be guaranteed. In our paper, we adopt the
computation-oriented approach. However, instead of
searching an exponential solution space, we are concerned
with polynomial-time algorithms.

[10] presents a stable and efficient buyer coalition
formation scheme called GroupBuyAuction for E-

marketplaces. In this scheme, buyers form a group based
on a category of items and benefit form coalitions in E-
marketplaces by taking advantage of volume discounts.
It provides buyers with means to declare and match their
preferences and compute the division of the surplus in a
stable fashion.

[7] shows that none of the coalition structure
generation algorithms previously studied can establish
any bound because they search fewer nodes than a
threshold that is necessary for establishing a bound. They
present an algorithm that establishes a tight bound within
this minimal amount of search, and show that any other
algorithm would have to search strictly more.

In this paper, we draw a close relationship with the
multi-dimensional knapsack problem. In [1] and [2], the
authors propose approximation algorithms for the integer
multi-dimensional knapsack problem. In the former, the
authors present the algorithm that for every 0>ε one can
construct a polynomial-time algorithm such that the ratio
of the value of the objective function by this algorithm
and the optimal value is bounded below by ε−1 . Case 4
of our taxonomy can actually be transformed to the
integer multi-dimensional knapsack problem and the
approximation algorithm introduced can be used to
construct a polynomial-time algorithm for Case 4.

3. Preliminaries
In this section, we present definitions, notations and
assumptions used throughout this paper.

3.1 Tasks
There are m tasks in the system. Each task i consists of a
fixed k number of sub-tasks. Each sub-task j requires a
unique resource of its type. Let aij denote the quantity of
resources required for performing task i sub-task j. For
the case when the profit is fixed, each task i is associated
with a profit value pi. Otherwise, it is associated with a
revenue value ri and its profit is simply ri minus the sum
of the asking prices of the agents in the coalition serving
that task.

3.2 Agents
There are n agents in the system denoted as A1, A2, …, An.
Each agent Ai is associated with a vector of non-negative
resource capacities Ci = [ci1, ci2,…, cik], where cij is agent
Ai’s quantity of resource capable of performing sub-task j.
(Obviously, if the agent cannot perform a certain sub-
task, the corresponding value is set to 0.) A sub-task may
be performed by one or more agents. For the case when
the profit is a variable, each agent has an additional price
vector Ui = [ui1, ui2, ui3,…, uik], where uij is the unit asking
price for agent Ai to perform sub-task j.

3.3 Coalition

for each sub-task j of task i, pick agents in order from
the agent list of sub-task j until the resource
requirement for sub-task j is met.

A coalition is defined as a group of agents to achieve a
common task. Each coalition is associated with a
coalition value, which is intuitively defined as the joint
utility that the members of a coalition derive by
cooperating to satisfy a specific task. The specific
definition of this value will be discussed in Section 4. In
this paper, we allow overlapping coalitions, i.e. each
agent can belong to more than one coalitions.

Theorem 1: G is optimal.

Corollary: TACF under unit demand and unlimited
resources can be solved optimally with time complexity
O(n log n + mn).

3.4 Model
In this paper, we assume that agents are group-rational,
i.e. agents are co-operative and interested in maximizing
the overall profits gained by the system. Hence, the
objective function in this paper is the sum of profits of all
agents which is equivalent to the sum of profits of all the
tasks fulfilled. This differs from the game-theoretic
school of thought where agents are assumed to be self-
interested and hence the considerations of objective
function are based on incentives and payoff distribution.
Hence, the TACF problem can be modeled as follows:

4.2 Case 2: Unit Demand, Limited Resources, Fixed
Profit
Contrary to Case 1 where a greedy algorithm based on
profits alone produces the optimal solution, TACF
becomes NP-hard when resources are limited even for a
single agent, since this problem is a generalization of the
standard knapsack problem which is NP-hard. In this
section, we first show that any greedy algorithm based on
profits alone will fail miserably. We then propose a
modified greedy algorithm that produces good results
experimentally. Maximize ∑

=

m

i
ii xp

1

Theorem 2: It is impossible to establish a constant
approximation bound with the above greedy approach if
the greedy criterion is the profit value alone.

subject to ∑
=

≤
m

i

j
iij Cxa

1
, j=1, 2…k

where xi is a non-negative integer for the high demand (or
boolean for unit demand) case, and Cj is the total
resources available for sub-task j, which is the jth column
sum of the capacity matrix C defined above.

This negative result can be proved by construction of

a counter example.
Our proposed approach to solve this problem is to

iteratively construct coalitions by maximizing the utility
(or coalition value). In this way, we expect the overall
profit of the system to be maximized as well. There are
two stages in the algorithm:

4. Algorithms and Complexity
In this section we present theoretical and experimental
results for the 5 cases of our taxonomy.

 4.1 Case 1: Unit Demand and Unlimited Resources
Stage 1: Coalition value computation. For each
remaining task i in the task list, compute its coalition
value according to following formula:

When the resources available are unlimited, all the tasks
will be fulfilled eventually. Hence, if the profit for each
task is fixed, the task allocation problem becomes trivial
since the total profit gained remains a constant equal to
the sum of profits for all tasks, no matter how we form
the coalitions. On the other hand, if the profit is variable,
then maximizing profits is equivalent to minimizing the
total price asked by the agents in the coalition for
fulfilling the task, given that resources are unlimited and
hence all the tasks can be fulfilled regardless of the task
allocation.

ikikiiii

i

fafafa

p

*...** 2211 +++

where ∑
≠ −

=
ij itt

jt
it aR

a
f , where the sum is over all j of

remaining tasks in the task list, Rt is the total remaining
capacities (of all agents) for resource t before allocating
task i.

Consider the greedy algorithm G that behaves as
follows.

We explain the rationale for computing the coalition
value this way. The value represents the utility for
choosing task i to be fulfilled. Obviously, the higher pi is,
the higher the utility. Since aij measures the resource
usage, the smaller aij is, the higher the utility. However,
this must be normalized against fik. which is a fraction
between 0 to 1 that measures how scarce the resource k
will become for the remaining tasks after allocating task i.
Hence, the higher the fik value, the more scarce the

Step 1. For each sub-task j, sort all the agents with
non-zero capacity of performing this sub-task in the
non-decreasing order of their unit asking prices. We
call the sorted list the agent list for sub-task j.

Step 2. For each task i do the following:

resource becomes for the rest of tasks and the lower the
utility.

Stage 2: Coalition formation. Form the coalition for the
task with highest coalition value among all tasks.

1. Choose the highest among all coalition values
computed in Stage 1. That coalition will be formed
and the corresponding task for it would be
assigned to the coalition.

2. For each agent that becomes a member of the
coalition formed, the resource capabilities are
updated.

3. The task assigned to the coalition at this iteration is
removed from the task list.

4. Goto Stage 1. Stop when no more task is left or no
more coalition can be formed.

Complexity Analysis:
In Stage 1, the coalition value for each task can be
computed in O(mn) time. Thus Stage 1will take O(m2n)
time to compute the coalition values for all the tasks in the
task list in each iteration. Stage 2 takes O(max(m,n)) to
form coalition in each iteration.. These two stages will
repeat for at most m times since the maximum number of
coalitions that can be formed is m. Hence, the algorithm
takes O(m3n) time.

Experimental Results:
This case of the problem is in fact the 0/1 multi-
dimensional knapsack problem. Thus we can use the
benchmark test instances for this problem obtained from
the OR-Library (available on line at
http://mscmga.ms.ic.ac.uk/info.html).
Among these instances, the dimensions of the knapsack
range from 2 to 30 and the number of items range from
20 to 105. For each test problem, we obtain the result
using our greedy algorithm, as well as the algorithm with
a local improvement phase (more specifically, tabu
search [3]), and the optimal result provided with the test
problem. We measure the gap between our results and the
optimal result. For the greedy algorithm, 2 out of 54
tested instances produce results with the gap range within
10%; 6 test problems with the gap range of 4% to 6%; 4
test problems with gap range of 1% to 2%; the other 42
test problems obtain results with difference of less than
1%. After applying tabu search on the solution found by
greedy, 50 test problems produce results with gap of less
than 2%; 3 test problems obtain results with gap range of
2% to 4% and only 1 test problem with gap range of 4%
to 6%.

4.3 Case 3: Unit Demand, Limited Resources,
Variable Profit

For this case, the challenge is in handling the agent-
dependent unit asking prices for each sub-task. In this
section, we propose an algorithm that extends the
algorithm for Case 2. This algorithm has three stages:

Stage 1: Preprocessing. For each sub-task, we sort all
agents that have capabilities for the sub-task in the
increasing order of their unit asking prices.

Stage 2: Coalition value computation. This is a greedy
procedure: in each iteration, we compute the coalition
value of the coalition that can best fulfill each task. For
each sub-task j of task i, pick in order from agent list as
many agents as necessary to fulfill j. The selected agents
will form the coalition which best fulfills task i. Compute
the coalition value of this coalition by using the same
formula as defined in Case 2 Stage 1.

Stage 3: Coalition formation. Same as Case 2 Stage 2.

Complexity Analysis:
In Stage 1, we can sort agents for each sub-task within
O(n log n) and we have constant number of sub-tasks,
thus Stage 1will take O(n log n) time. In Stage 2, the
coalition value for each task can be calculated within
O(mn), thus it will take O(m2n) to calculate all the
coalition values in each ieration. Stage 3 takes
O(max(m,n)) to form coalition in each iteration. Stage 2
and 3 will repeat for at most m times since the maximum
number of coalitions that can be formed is m. It can be
concluded that the algorithm for Case 3 will take O(m3n)
+ O(n log n).

Experimental Results:
Since there is no benchmark available for this problem,
we compare our approach with the same algorithm with
the exception that it uses the profit p alone to compute the
coalition value in Stage 2. We again use the OR-Library
instances as described in Case 2 and randomly generate
the agent unit asking prices in the real number range
[1,2]. Our modified algorithm outperforms the standard
greedy algorithm in 49 test instances out of the 54 test
instances.

4.4 Case 4: High Demand, Limited Resources, Fixed
Profit
In this and the next sections, we consider the TACF
problem under high demand. For the case where
resources are limited and profit is fixed, we model the
problem as a multi-dimensional knapsack problem. We
present a complexity result and a polynomial-time
approximation scheme that follows from the work of [1].

The multi-dimensional knapsack problem is defined as:

http://mscmga.ms.ic.ac.uk/info.html

where APj is the average unit price for sub-task j and it is

defined as ∑∑
==

=
n

i
ij

n

i
ijijj ccuAP

11
)*(.

Maximize ∑
=

m

i
ii xp

1

subject to ∑
=

≤
m

i
jiij Wxw

1
, j=1, 2…k

Now the profit for each task becomes a “constant” and we
can then apply the result presented for Case 4 to this
problem. Obtaining computational results for this
approach is an ongoing work.

where pi is the value of item i; xi is a non-negative
variable; wij is the item i’s weight in the jth dimension of
the knapsack, and Wj is the maximum weight of the jth
dimension. Given an integer P, the decision problem asks
whether there exists an allocation with a value of at least
P.

5 Conclusion
In this paper, we proposed a taxonomy that categorizes the
TACF problem according to 3 driving factors we believe
to be important in E-market places. As this is the first
such taxonomy, we anticipate much future research work
to refine the results presented here. For example, we can
potentially extend this taxonomy to consider other factors
such as agent self-interest, profit distribution and other
constraints relevant in a multi-agent environment setting.

It is known that even though the decision version of
multi-dimensional knapsack problem is NP-complete in
the weak sense, [4] shows that no fully polynomial time
approximation scheme exists, unless P =NP. Hence, the
following negative result holds:

Theorem 3: The limited resource fixed-profit TACF does
not have a fully polynomial time approximation scheme,
unless P=NP, even for a single agent.

References
[1] M. Ashok, K. Chandea, D. S. Hirschberg, and C. K.
Wong. Approximation Algorithm for Some Generalized
Knapsack Problems. Theo Comp. Sci. 3, 293-304, 1976.

However, we can obtain the following approximation
result:

[2] A. M. Frieze and M. R. B. Clarke. Approximation
algorithms for the m-dimensional 0-1 knapsack problem:
worst-case and probabilistic analyses. European J.
Operational Research, 15(1), 100-109, 1984.

Theorem 4: For every constant ε>0, there exists an
algorithm TACF ε that takes time O(m) (for
some constant k) such that the approximation bound is
at least 1-ε.

 ε/k

[3] F. Glover and M. Laguna. Tabu Search. Readings.
Kluwer Academic Publishers, 1997.

4.5 Case 5: High Demand, Limited Resources,
Variable Profit [4] B. Korte and R. Schnader. On the Existence of Fast

Approximation Schemes. In Mangasarian et al. (eds),
Nonlinear Programming 4, 415-437, Academic Press,
1981.

For this problem, we first study how the profit factor
affects the complexity of the problem compared to Case
4. Then, we propose a heuristic method to convert this
problem to the Case 4 problem. [5] E. Lawler et al., Sequencing and Scheduling:

Algorithms and Complexity. In Handbooks in Operations
Research / Management Science, v. 4, North Holland,
445-522, 1993.

Recall that the Case 4 problem can be modeled as
follows:

Maximize ∑
=

m

i
ii xp

1
m

[6] C. L. Liu. Introduction to Combinational
Mathematics, Readings, McGraw-Hill, N.Y., 1968.
[7] T. Sandholm, K. Larson, M. Andersson, O. Shehory,
and F. Tohmé. Coalition Structure Generation with Worst
Case Guarantees. Artificial Intelligence, 111(1-2), 209-
238, 1999.

subject to ∑
=

≤
i

j
iij Cxa

1
, j=1, 2…k

where pi = ri – si, ri is the revenue gained for doing this
task, and si is the total amount paid to agents participating
in this task [8] O. Shehory and S. Kraus. Methods for task allocation

via agent coalition formation. Artificial Intelligence, 101,
165-200, 1998.

Note that the value of si will depend on which set of
agents serve the task, and is thus a variable. Hence, pi
also becomes a variable. Consequently, this problem is no
longer a linear programming problem since both pi and xi
are variables. Thus we cannot apply the well-known
result in linear programming as we did for Case 4.
Instead, we propose the following heuristic method that
makes the profit “constant”. For task i denoted as [ai1,
ai2,…, aik] with revenue ri, we estimate its profit as:

[9] O. Shehory and S. Kraus. Feasible formation of
coalitions among autonomous agents in non-super-
additive environment. Computational Intelligence, 15(3),
218-251, 1999.
[10] J. Yamamoto and K. Sycara. A Stable and Efficient
Buyer Coalition Formation Scheme for E-Marketplaces.
In Proc. 5th Int’l Conf. On Multi-Agent Systems
(ICMAS), Montreal, 2001. pi = ri – (AP1*ai1 + AP2*ai2…+APk*aik)

