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Abstract 

Coalition formation has become a key topic in multi-
agent research. In this paper, we propose a preliminary 
classification for the coalition formation problem based on 
three driving factors (demands, resources and profit 
objectives). We divide our analysis into 5 cases. For each 
case, we will present algorithms and complexity results. 
We anticipate that with future research, this classification 
can be extended in similar fashion to the comprehensive 
classification for the Job Scheduling Problem.  
 
1. Introduction 
With the Internet, it is now possible for operations to be 
optimized dynamically across company boundaries. In 
virtual marketplaces where buyers and sellers could come 
together to conduct business transactions for instance, 
service providers along the supply chain can form 
dynamic alliances so as to pool their resource capacities 
to serve complex customer requests, to exploit economies 
of scale and to achieve better utilization of spare 
capacities. In this paper, we are concerned with the 
problem of task allocation via dynamic coalition 
formation of multiple agents. We consider the situation 
where each task comprises several sub-tasks that may not 
be satisfied by a single agent alone but by a group of 
agents offering different resource capabilities. Given a set 
of agents and a set of tasks, the problem is in deciding 
how best to form coalitions so as to maximize the total 
profit. We term this the Task Allocation Coalition 
Formation (TACF) problem.  

In this paper, we provide a classification for TACF (see 
diagram on last page). This classification is designed to 
emulate the classification for the classical Job Scheduling 
Problem (see, for example [5]), where the three key 
parameters are job characteristics, resource constraints 
and objective function.  

The first factor for TACF is the task demand. A real-
world example of a task is a product or a service. In this 
paper, we deal with two types of tasks: tasks with high 
demand and unit demand. When the demand for a task is 
high, it means that the agents can perform the task 
repeatedly as much as they like with the available 
resources. An example of this situation is seen in the 
demand for certain popular toys before the Christmas 
season, which is high such that it is profitable to produce 
as much as possible with the available resources. On the 

contrary, for the unit demand case, agents will only have 
the choice of either performing the task exactly once or 
not at all.  

The second factor is the resource constraints, i.e. 
whether the total resources available are limited or 
unlimited.  For the former, we mean the total resources 
available over all agents are below the total resource 
requirements for all the tasks while for the latter, we mean 
the total resources available over all agents exceed the total 
resource requirements for all tasks. When resources are 
limited, we cannot fulfill all the tasks and thus encounter 
the problem of choosing the best subset of tasks to 
maximize the objective value. When resources are 
unlimited, we can fulfill all the tasks and the problem lies 
with how coalitions should be formed, since agents have 
different asking prices for performing the task. 

The last factor is the objective function. In this problem, 
we are concerned with the profit derived from serving a 
task. We term the profit of a task variable if the profit 
derived from this task depends on which set of agents 
perform the task (profit is equal to revenue minus the total 
asking price of the agents in the coalition). On the 
contrary, we call the profit fixed if agents have no asking 
prices and hence profit is task-dependent. The fixed profit 
case is a special case of the variable profit by setting all 
agent asking prices to be equal.  

Based on our proposed classification, we identify five 
distinct cases to be studied in this paper.  

The first case is with unit demand and unlimited 
resources, and the profit can be either fixed or variable. 
This case is easy, and we propose an optimal algorithm 
with a worst-case time complexity of O(n log n + mn), 
where n is the number of agents and m is the number of 
tasks in the system. The second case is with unit demand, 
limited resources, and fixed profit, which is NP-hard. For 
this case, we prove that the greedy algorithm based on 
profit alone as the criteria to form coalition cannot 
establish any approximation bound on the quality of the 
solution. We propose a modified greedy algorithm that 
considers the resource usage and the effects of look-ahead. 
Experimental results to illustrate the strength of this 
algorithm are provided. The third case is with unit demand, 
limited resources, and variable profit. For this case, we 
propose a modified greedy algorithm and again verify with 
experimental results. The fourth case is with high demand, 
limited resources, and fixed profit. For this problem, we 



propose a polynomial-time approximation scheme, which 
establishes a constant bound on the quality of the solution. 
The last case is with high demand, limited resources, and 
variable profit. For this problem, we use a similar approach 
as the fourth case except that we use the average asking 
price of the agents to approximate the task profit. Note that 
the case of high demand and unlimited resources is 
meaningless, since the profit becomes infinite.  

Our algorithms are centralized, i.e. we assume there is a 
central authority that distributes the tasks among the 
agents. Although all the computations are done through 
the central authority, it is not a big problem with real-time 
computation since our proposed algorithms are of low 
time complexities. This differs from the work of [8] where 
there is a need to distribute computations among agents 
due to high computational complexity.  

The paper is organized as follows: section 2 gives a 
brief literature review. In section 3, we define notations 
and assumptions made. In section 4, we present results, 
both theoretical and experimental, to solve the different 
problem cases.  Due to space constraints, all proofs and 
experimental results are omitted in this version of the 
paper. Section 5 concludes with future works.  

 

2. Related Works 
In this section, we review key recent works by the 

Distributed Artificial Intelligence community under the 
topic of agent coalition formation. [8] presents an iterative 
distributed greedy algorithm for coalition formation under 
Case 3 of our taxonomy. In each iteration, all possible 
coalition values of coalitions of a certain size need to be 
re-computed. The nice thing about their approach is that 
the overall computation process can be distributed among 
all the agents such that each agent will only compute some 
coalition values. There is no central authority that 
distributes the tasks among the agents: agents reach an 
efficient task allocation by themselves. The greedy 
algorithm proposed for forming coalitions considers profit 
alone and the time complexity of the algorithm is quite 
high since it grows exponential with the size of the 
coalitions. .  

[9] presents two coalition formation approaches for self-
interested agents in a non-super-additive environment. The 
computation-oriented approach searches an exponential 
solution space that guarantees an optimality bound. The 
stability of the coalition formation is also ensured in this 
approach, but individual agent’s selfish behavior is not 
reflected. On the other hand, the negotiation-oriented 
approach is stable and efficient, but the quality of the 
solution cannot be guaranteed. In our paper, we adopt the 
computation-oriented approach. However, instead of 
searching an exponential solution space, we are concerned 
with polynomial-time algorithms.  

[10] presents a stable and efficient buyer coalition 
formation scheme called GroupBuyAuction for E-

marketplaces. In this scheme, buyers form a group based 
on a category of items and benefit form coalitions in E-
marketplaces by taking advantage of volume discounts. 
It provides buyers with means to declare and match their 
preferences and compute the division of the surplus in a 
stable fashion. 

[7] shows that none of the coalition structure 
generation algorithms previously studied can establish 
any bound because they search fewer nodes than a 
threshold that is necessary for establishing a bound. They 
present an algorithm that establishes a tight bound within 
this minimal amount of search, and show that any other 
algorithm would have to search strictly more.  

In this paper, we draw a close relationship with the 
multi-dimensional knapsack problem. In [1] and [2], the 
authors propose approximation algorithms for the integer 
multi-dimensional knapsack problem. In the former, the 
authors present the algorithm that for every 0>ε  one can 
construct a polynomial-time algorithm such that the ratio 
of the value of the objective function by this algorithm 
and the optimal value is bounded below by ε−1 . Case 4 
of our taxonomy can actually be transformed to the 
integer multi-dimensional knapsack problem and the 
approximation algorithm introduced can be used to 
construct a polynomial-time algorithm for Case 4. 

 

3. Preliminaries 
In this section, we present definitions, notations and 
assumptions used throughout this paper.  
 
3.1 Tasks   
There are m tasks in the system. Each task i consists of a 
fixed k number of sub-tasks. Each sub-task j requires a 
unique resource of its type. Let aij denote the quantity of 
resources required for performing task i sub-task j. For 
the case when the profit is fixed, each task i is associated 
with a profit value pi. Otherwise, it is associated with a 
revenue value ri and its profit is simply ri minus the sum 
of the asking prices of the agents in the coalition serving 
that task.  
 
3.2 Agents 
There are n agents in the system denoted as A1, A2, …, An. 
Each agent Ai is associated with a vector of non-negative 
resource capacities Ci = [ci1, ci2,…, cik], where cij is agent 
Ai’s quantity of resource capable of performing sub-task j.  
(Obviously, if the agent cannot perform a certain sub-
task, the corresponding value is set to 0.)  A sub-task may 
be performed by one or more agents. For the case when 
the profit is a variable, each agent has an additional price 
vector Ui = [ui1, ui2, ui3,…, uik], where uij is the unit asking 
price for agent Ai to perform sub-task j.  
 
3.3 Coalition  



for each sub-task j of task i, pick agents in order from 
the agent list of sub-task j until the resource 
requirement for sub-task j is met. 

A coalition is defined as a group of agents to achieve a 
common task. Each coalition is associated with a 
coalition value, which is intuitively defined as the joint 
utility that the members of a coalition derive by 
cooperating to satisfy a specific task. The specific 
definition of this value will be discussed in Section 4. In 
this paper, we allow overlapping coalitions, i.e. each 
agent can belong to more than one coalitions. 

 
Theorem 1: G is optimal. 
 
Corollary: TACF under unit demand and unlimited 
resources can be solved optimally with time complexity 
O(n log n + mn).  

3.4 Model    
In this paper, we assume that agents are group-rational, 
i.e. agents are co-operative and interested in maximizing 
the overall profits gained by the system. Hence, the 
objective function in this paper is the sum of profits of all 
agents which is equivalent to the sum of profits of all the 
tasks fulfilled.  This differs from the game-theoretic 
school of thought where agents are assumed to be self-
interested and hence the considerations of objective 
function are based on incentives and payoff distribution.  
Hence, the TACF problem can be modeled as follows: 

4.2 Case 2: Unit Demand, Limited Resources, Fixed 
Profit 
Contrary to Case 1 where a greedy algorithm based on 
profits alone produces the optimal solution, TACF 
becomes NP-hard when resources are limited even for a 
single agent, since this problem is a generalization of the 
standard knapsack problem which is NP-hard. In this 
section, we first show that any greedy algorithm based on 
profits alone will fail miserably.   We then propose a 
modified greedy algorithm that produces good results 
experimentally. Maximize   ∑
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Theorem 2: It is impossible to establish a constant 
approximation bound with the above greedy approach if 
the greedy criterion is the profit value alone. 

subject to ∑
=
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where xi is a non-negative integer for the high demand (or 
boolean for unit demand) case, and Cj is the total 
resources available for sub-task j, which is the jth column 
sum of the capacity matrix C defined above. 

 
This negative result can be proved by construction of 

a counter example.  
Our proposed approach to solve this problem is to 

iteratively construct coalitions by maximizing the utility 
(or coalition value). In this way, we expect the overall 
profit of the system to be maximized as well. There are 
two stages in the algorithm: 

 

4. Algorithms and Complexity 
In this section we present theoretical and experimental 
results for the 5 cases of our taxonomy.  
 

 4.1 Case 1: Unit Demand and Unlimited Resources 
Stage 1: Coalition  value  computation.  For each 
remaining task i in the task list, compute its coalition 
value according to following formula: 

When the resources available are unlimited, all the tasks 
will be fulfilled eventually. Hence, if the profit for each 
task is fixed, the task allocation problem becomes trivial 
since the total profit gained remains a constant equal to 
the sum of profits for all tasks, no matter how we form 
the coalitions. On the other hand, if the profit is variable, 
then maximizing profits is equivalent to minimizing the 
total price asked by the agents in the coalition for 
fulfilling the task, given that resources are unlimited and 
hence all the tasks can be fulfilled regardless of the task 
allocation.  
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remaining tasks in the task list, Rt is the total remaining 
capacities (of all agents) for resource t before allocating 
task i.  

Consider the greedy algorithm G that behaves as 
follows.  

We explain the rationale for computing the coalition 
value this way. The value represents the utility for 
choosing task i to be fulfilled. Obviously, the higher pi is, 
the higher the utility. Since aij measures the resource 
usage, the smaller aij is, the higher the utility. However, 
this must be normalized against fik. which is a fraction 
between 0 to 1 that measures how scarce the resource k 
will become for the remaining tasks after allocating task i. 
Hence, the higher the fik value, the more scarce the 

 
Step 1. For each sub-task j, sort all the agents with 
non-zero capacity of performing this sub-task in the 
non-decreasing order of their unit asking prices. We 
call the sorted list the agent list for sub-task j.  
 
Step 2. For each task i do the following:  



resource becomes for the rest of tasks and the lower the 
utility.  
 
Stage 2: Coalition formation. Form the coalition for the 
task with highest coalition value among all tasks. 

1. Choose the highest among all coalition values 
computed in Stage 1. That coalition will be formed 
and the corresponding task for it would be 
assigned to the coalition. 

2. For each agent that becomes a member of the 
coalition formed, the resource capabilities are 
updated. 

3. The task assigned to the coalition at this iteration is 
removed from the task list. 

4. Goto Stage 1. Stop when no more task is left or no 
more coalition can be formed. 

 
Complexity Analysis: 
In Stage 1, the coalition value for each task can be 
computed in O(mn) time. Thus Stage 1will take O(m2n) 
time to compute the coalition values for all the  tasks in the 
task list in each iteration. Stage 2 takes O(max(m,n)) to 
form coalition in each iteration.. These two stages will 
repeat for at most m times since the maximum number of 
coalitions that can be formed is m. Hence, the algorithm 
takes O(m3n) time. 

 
Experimental Results: 
This case of the problem is in fact the 0/1 multi-
dimensional knapsack problem. Thus we can use the 
benchmark test instances for this problem obtained from 
the OR-Library (available on line at 
http://mscmga.ms.ic.ac.uk/info.html). 
Among these instances, the dimensions of the knapsack 
range from 2 to 30 and the number of items range from 
20 to 105. For each test problem, we obtain the result 
using our greedy algorithm, as well as the algorithm with 
a local improvement phase (more specifically, tabu 
search [3]), and the optimal result provided with the test 
problem. We measure the gap between our results and the 
optimal result. For the greedy algorithm, 2 out of 54 
tested instances produce results with the gap range within 
10%; 6 test problems with the gap range of 4% to 6%; 4 
test problems with gap range of 1% to 2%; the other 42 
test problems obtain results with difference of less than 
1%. After applying tabu search on the solution found by 
greedy, 50 test problems produce results with gap of less 
than 2%; 3 test problems obtain results with gap range of 
2% to 4% and only 1 test problem with gap range of 4% 
to 6%.  
 
 
4.3 Case 3: Unit Demand, Limited Resources, 
Variable Profit   

For this case, the challenge is in handling the agent-
dependent unit asking prices for each sub-task. In this 
section, we propose an algorithm that extends the 
algorithm for Case 2. This algorithm has three stages: 
 
Stage 1: Preprocessing. For each sub-task, we sort all 
agents that have capabilities for the sub-task in the 
increasing order of their unit asking prices.  
 
Stage 2: Coalition value computation. This is a greedy 
procedure: in each iteration, we compute the coalition 
value of the coalition that can best fulfill each task. For 
each sub-task j of task i, pick in order from agent list as 
many agents as necessary to fulfill j. The selected agents 
will form the coalition which best fulfills task i. Compute 
the coalition value of this coalition by using the same 
formula as defined in Case 2 Stage 1. 
 
Stage 3: Coalition formation. Same as Case 2 Stage 2. 
 
Complexity Analysis: 
In Stage 1, we can sort agents for each sub-task within 
O(n log n) and we have constant number of sub-tasks, 
thus Stage 1will take O(n log n) time. In Stage 2, the 
coalition value for each task can be calculated within 
O(mn), thus it will take O(m2n) to calculate all the 
coalition values in each ieration. Stage 3 takes 
O(max(m,n)) to form coalition in each iteration. Stage 2 
and 3 will repeat for at most m times since the maximum 
number of coalitions that can be formed is m. It can be 
concluded that the algorithm for Case 3 will take O(m3n) 
+ O(n log n). 
 
Experimental Results: 
Since there is no benchmark available for this problem, 
we compare our approach with the same algorithm with 
the exception that it uses the profit p alone to compute the 
coalition value in Stage 2. We again use the OR-Library 
instances as described in Case 2 and randomly generate 
the agent unit asking prices in the real number range 
[1,2].  Our modified algorithm outperforms the standard 
greedy algorithm in 49 test instances out of the 54 test 
instances.  
 
4.4 Case 4: High Demand, Limited Resources, Fixed 
Profit 
In this and the next sections, we consider the TACF 
problem under high demand. For the case where 
resources are limited and profit is fixed, we model the 
problem as a multi-dimensional knapsack problem. We 
present a complexity result and a polynomial-time 
approximation scheme that follows from the work of [1].   

The multi-dimensional knapsack problem is defined as: 

http://mscmga.ms.ic.ac.uk/info.html


where APj is the average unit price for sub-task j and it is 
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Now the profit for each task becomes a “constant” and we 
can then apply the result presented for Case 4 to this 
problem. Obtaining computational results for this 
approach is an ongoing work. 

where pi is the value of item i; xi is a non-negative 
variable; wij is the item i’s weight in the jth dimension of 
the knapsack, and Wj is the maximum weight of the jth 
dimension. Given an integer P, the decision problem asks 
whether there exists an allocation with a value of at least 
P. 

5 Conclusion 
In this paper, we proposed a taxonomy that categorizes the 
TACF problem according to 3 driving factors we believe 
to be important in E-market places.  As this is the first 
such taxonomy, we anticipate much future research work 
to refine the results presented here. For example, we can 
potentially extend this taxonomy to consider other factors 
such as agent self-interest, profit distribution and other 
constraints relevant in a multi-agent environment setting. 

It is known that even though the decision version of 
multi-dimensional knapsack problem is NP-complete in 
the weak sense, [4] shows that no fully polynomial time 
approximation scheme exists, unless P =NP.  Hence, the 
following negative result holds: 
 
Theorem 3: The limited resource fixed-profit TACF does 
not have a fully polynomial time approximation scheme, 
unless P=NP, even for a single agent.  
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