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Abstract 
In e-marketplaces, customers specify job requests in real-
time and agents form coalitions to service them. This 
paper proposes a protocol for self-interested agents to 
negotiate prices in forming successful coalitions. We 
propose and experiment with two negotiation schemes: 
one allows information sharing while the other does not. 
 
1. Introduction 
Agent-mediated negotiation has received considerable 
attention in the field of electronic commerce and supply-
chain management ([1],[5],[6]). Negotiations among 
agents help automate the trading procedure in e-markets. 

In this paper, we study automated negotiation for 
coalition formation In our model, each job has a fixed 
price that the customer is willing to pay and not subjected 
to negotiation. We assume that each job is complex in 
that it has to be satisfied by more than one agent. 
Participating  agents will form coalitions dynamically by 
specifying their capabilities and bid prices. A coalition is 
feasible iff the combined capabilities of participating 
agents match the job requirements and the total bid prices 
of agents must not exceed the job’s offer price. 

Previous works on coalition formation for task 
allocation assume that coalitions can always be formed. 
However when coalitions cannot be formed because the 
agents bid prices are not profitable, these jobs will never 
be serviced. In order to maximize the interest of both the 
customers as well as service providers, there is a need to 
efficiently negotiate price reductions among self-
interested agents via a neutral party host so that coalitions 
are still profitable and jobs will be serviced. 

In our model, customers submit their job requests 
dynamically to the host. The consolidated jobs are then 
broadcast to agents for them to submit their bids for jobs. 
The host runs a coalition-formation algorithm (such as 
[7]) to form coalitions that satisfy the jobs. For coalitions 
that are infeasible, the host initiates a negotiation process 
to efficiently allow each agent to reduce her bid price 
such that the coalitions will become feasible, as follows. 
The host computes drop prices and proposes them to 
agents. Upon receiving the drop price, each agent either 
accepts it or re-proposes a new bid price. Two negotiation 
schemes are proposed. In the first scheme, each agent 
publicizes its bidding behaviour to the host, and the 
decision to accept the drop price is based on other agents’ 

aggregate behaviours. In the second scheme, each agent 
is oblivious of others’ behaviour and thus relies on its 
own behaviour to decide if the drop price is acceptable. 
Experimental results show that the information sharing 
scheme is superior over the second, both qualitatively and 
quantitatively.  Due to space constraints, the experimental 
results will not be discussed in this version of the paper. 

In our current model, customers are not involved in 
negotiation and this will be considered for future works. 
 

2. Related Works 
In [2], the notion of a round in continuous double 
auctions was introduced. A history list of past transaction 
prices is used to compute the reference price that guides 
agents in their subsequent bidding behaviour. Each agent 
is associated with a utility function that describes its 
attitude towards risk. Our work makes use of their ideas 
of a history list and negotiation round.  

Recently, [3] raised issues concerning real-time 
coalition formation among rational agents. It was pointed 
out that classical game-theoretic notions of coalition and 
respective negotiation algorithms are generally not 
applicable in dynamic settings such as the environment 
considered in this paper. [4] analysed a number of 
problems related to resource allocation and task 
distribution among self-motivated, rational and 
autonomous agents, each having its own utility functions. 
Their approach emphasizes the importance of the passage 
of time during negotiation, and applies to problems where 
the agreement involves all agents. 

The problem we study here is very similar to the 
problem in [7], except that agents are self-motivated (i.e. 
they have individual utility functions) and can be 
persuaded to reduce prices according to their prescribed 
behaviors, and that there is no relationship between the 
utility gained and the resource amount utilized.  

 

3. Preliminaries 
In this section, we will define the notations followed by 
the intuition behind our proposed negotiation process. 
 
3.1. Notations 
The set of n agents is represented by 

{ }nAAAA ,...,, 21= . Without loss of generality, we 
assume that each agent  has exactly one capability  iA ib



that quantifies its ability to perform a specific task. 
Requests are denoted by m independent jobs 

. Each job  consists of r distinct 

sub-jobs 
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exactly one capability  and is serviced by exactly one 
agent with that capability. When a new batch of jobs 
arrives, the coalition formation algorithm computes a 
coalition to service each job. Each coalition  is 
made up of agents that have the capabilities to fulfill the 
requirements of sub-jobs in job j. For each job j, the 
system computes the offer price . When agent i bids for 
job j, it specifies an initial bid price 
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the total bid price for all agents must not exceed the offer 
price of each job. This pricing constraint is thus stated 
as . Coalitions which violate the pricing 

constraint are termed infeasible and there is a need to get 
agents in an infeasible coalition to reduce their individual 
bid prices. For simplicity, since we are dealing with only 
one job at a time, the index j is dropped and all notations 
henceforth will refer to the current job being negotiated. 
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3.2. Negotiation Process 
 
3.2.1. Negotiation Protocol The negotiation host tries to 
get agents to drop their respective bid prices by a 
proposed drop price. Each agent performs its own 
computation and either accepts or rejects this amount. In 
the latter case, it either re-proposes another bid price or 
simply rejects the host. This decision depends on the 
scheme used. When the host receives rejections or re-
proposals, it re-computes the drop price based on the 
current state and the history of the negotiation process. 
Subsequently, the agent is informed of this new drop 
price and does its computation to decide the next step. 
This series of exchanges will iterate until the pricing 
constraint is satisfied or when a predetermined number of 
rounds has elapsed.  
 
3.2.2. Negotiation Schemes The two negotiation schemes 
proposed are Group-rational and Selfish. For the first 
scheme, we assume that every agent shares their bidding 
behaviour with the host. Upon receiving the proposed 
drop price from the host, agents compute their expected 
revenues based on the aggregate behaviour of other 
agents except itself and decide if an agreement is possible 
or a re-proposal of the bid price is required. In the second 
scheme, agents do not share information and is assumed 
that each agent will act rationally using solely its 
behaviour curve with no other information available.  
 
3.2.3. Negotiation Round A negotiation round r ( 1≥r ) 
is defined as the period from the time the host computes 

and sends the proposed drop prices to the agents, to the 
time when the agents sends their replies back to the host. 
Henceforth, the initial bid price is denoted by  and re-
proposed bid prices (for Group-rational scheme) during 
each round will be denoted by . 
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4. Negotiation Host 
We discuss how the host computes the proposed drop 
prices based on negotiation history and the current state.  
 
4.1. Negotiation History 
The negotiation history  of agent i is the probability of 
a successful negotiation. To derive , we need the 
number of participated negotiations thus far ( ); and the 
number of successful negotiations thus far ( ) of each 
agent.  is set to 0.5 if  and 
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ih lni < ii ns  otherwise, 
where l is a large number (e.g. 1000) so as to accurately 
predict each agent’s likeliness of a successful negotiation.  

Definition 1. An agent i is said to be likely if µ≥ih  
and said to be non-likely otherwise. In this paper, we 
conveniently set 5.0=µ . 

Definition 2. An agent i is said to be active if it has yet 
to drop its bid price by the proposed amount and said to 
be non-active otherwise. 
 
4.2. Current State Information 
The current state information r

C
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computed at the start of each round and  denotes agent 
i's confirmed drop price during round r. Thus 

 for active and likely agents. For each non-
active but likely agent i,  is the difference of its initial 
bid price and the final bid price (after accepting the 
proposed drop price). 
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4.3. Proposed Drop Price 
Let ∑

∈∀
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r dδ  and let  denote the 

amount in which the sum of all agents’ bid prices is in 
excess of the job offer price during round r. Let  
denote the sum of all active and likely agents’ bid prices 
at during round r. The proposed drop price of each active 

and likely agent i at round r is given by 
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Intuitively, the proposed drop price is calculated by 
distributing the excess amount, , proportionally among 
active and likely agents with respect to their previous 
rounds’ bid prices. Note that when ,  will be set 
to zero regardless of the value of . If  for all 
active and likely agents i at round r, the negotiation 
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process will terminate and deemed as failed because the 
drop price does not decrease for the next round and the 
process will never converge to an agreement. Clearly, if 

 for all active and likely agents, the negotiation is 
successful because the pricing constraint is satisfied. 

0=∆r
i

Observe that this method is “conservative” because 
unlikely agents are excluded from the distribution of the 
excess amount since they are assumed to fail. This 
approach is also “optimistic” in the sense that 
inexperienced agents ( ) are assigned a probability of 
0.5, considered to be “likely” in agreeing to a negotiation. 
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5. Agents 
This section discusses each agent’s maximum bid price 
discount, its behaviour representation and the two 
negotiation schemes in detail. 
 
5.1. Maximum Bid Price Discount 
To negotiate price reductions among agents, we assume 
each agent has a range of prices to offer as a bid price for 
each sub-job. The initial bid price  is the maximum 
value in this range of bid prices. To determine the 
minimum bid price, each agent is associated with a 
maximum bid price discount fraction, 

0
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iα ( )10 <≤ iα .  
This value specifies the maximum discount off the initial 
bid price that the agent is willing to offer and is based the 
prevailing market rate and its individual policy. The 
minimum bid price, , is thus given by ∞

iρ ( ) 0.1 ii ρα− . 
Hence the range of bid prices that an agent can quote for 
each sub-job ranges from  to . ∞
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5.2. Agent Behaviour 
Each agent i is associated with a probability function  
that captures its bidding behaviour, where , 

iPr
)(Pr zi

iz α≤≤0 , gives the probability (willingness) that agent i 
will offer z percent discount off its initial bid price. The 
expected value of  is denoted by EPriPr i. In this paper, 

 is represented as a monotonically decreasing step 
function with  number of intervals.  We will investigate 
experimentally the effectiveness of our protocol under 
different step functions. 
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5.3. Group-rational Scheme 
After an active agent receives the proposed drop price 
from the host, it computes the expected revenue to decide 
if this drop price is acceptable. 

Intuitively, the expected revenue of each agent relies 
on the current state and other agents’ aggregate 
behaviour. To compute the expected revenue, we first 
compute the current round’s active job price which is 
given by deducting the sum of confirmed drop prices 
(current state) and the sum of initial bid prices of non-

active or non-likely agents from the job offer price. Next, 
we find the set of all combinations of each active and 
likely agent’s bid price (except the current agent) whose 
sum is less than or equal to the active job price minus the 
current agent’s minimum bid price. Since each of these 
combinations do not consider the current agent, it is 
possible to determine all possible bid prices of this agent 
for the current round by deducting the sum of bid prices 
in each combination from the active job price. The 
probabilities of the current agent offering these bid prices 
are equivalent to the probabilities of all other agents 
offering their respective bid prices in each combination. 
Finally the expected revenue of this agent is computed by 
summing over all possible bid prices and the normalized 
probabilities of them offering these bid prices. 

Definition 3 will be used to generate all possible bid 
prices (restricted by each agent’s range of bid prices) that 
agents are willing to transact (see the paragraph following 
it for more details on each variable). 

Definition 3. Suppose  and  are two k-tuples 
of positive integers and m, 
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Let  be the random variable that denotes the 
revenue of agent i during r;  be the ordered set of 
active and likely agents except agent i during round r; 
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minimum and current round bid prices of all agents in 
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denote the active job price during round r; ; 
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expected revenue of agent i at round r is: 
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where  If  because no partitions can 
be formed ( ), the agent will reject the proposed 
drop price and set . For each agent to compute 

, there must be at least 1 other active and likely 
agent during that round. Otherwise, the negotiation fails. 
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Lemma 1. is monotonically decreasing over r if 
. 
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Proof: Omitted due to space constraints. 

The negotiation process will converge, since the host 
proposed bid price (derived from the proposed drop price) 
will increase monotonically over rounds, while the agent 
expected revenue (or re-proposed bid price) as indicated 
by Lemma 1 will decrease monotonically over rounds.  

It should be noted that enumerating integer partitions 
is a well-studied problem in combinatorics (see, for 
example [8]). Although it takes O(nk) time to enumerate 
all k-integer partition of n, we can drastically overcome 
the time complexity by generating a good enough subset 
of partitions for our purpose through scaling and dynamic 
pruning during enumeration. 
 
5.4. Selfish Scheme 
In this scheme, agents do not share information with one 
another and they have to rely on their respective expected 
behaviour (EPri) to decide whether to accept the proposed 
drop price . To do this, each active and likely agent i 
computes  which is the discount 
value assuming it accepts the proposed bid price. If 

, the proposed drop price is accepted. 
Otherwise the agent rejects the negotiation host and no 
new bid price is proposed. 
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6. The Negotiation Protocol 
The detailed negotiation protocol for each scheme is 
explained below for an arbitrary round r. The following 
will be iterated until an agreement is reached or when a 
predetermined number of rounds has elapsed. 
 
6.1. Protocol for Group-rational Scheme 
Host: 
 i. Compute  for each active and likely agent i. r

i∆

 ii. If  the negotiation is successful. Increase 
   and  by 1 for all agents. 
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is in
 iii. If  for all active and likely agents or 
 there are less than 2 active and likely agents, the 
 negotiation fails. Increase  by 1 for all agents. 
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6.2. Protocol for Selfish Scheme 
Host: 

 Same as above.  
For each active and likely agent i: 
 i. Compute . r

iw
 ii. If , accept . Otherwise reject . i
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7. Conclusions  
From this study, we conclude with two important (albeit 
intuitive) lessons on agent negotiation: (a) the importance 
of information sharing: agents who share information will 
be more profitable than those who do not since in the 
latter case, most fail to negotiate successfully to form 
coalitions, (b) the importance of co-operation in 
negotiating price reductions: as the number of agents who 
are willing to cooperate (likely agents) increases, the 
quality of the results also increases. 
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