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Abstract 
In this paper, we are concerned with scheduling 

resources in a multi-tier production/logistics system 
for multi-indenture goods. Unlike classical production 
scheduling problems, the problem we study is 
concerned with local utilities which are private. We 
present an agent model and investigate an efficient 
scheme for handling multi-linked agent negotiations. 
With this scheme we attempt to overcome the 
drawbacks of sequential negotiations and negotiation 
parameter settings. Our approach is based on 
embedding a credit-based negotiation protocol within 
a local search scheduling algorithm. We demonstrate 
the computational efficiency and effectiveness of the 
approach in solving a real-life dynamic production 
scheduling problem which balances between global 
production cost and local utilities within the facilities.  
 
1. Introduction 
 In a multi-agent system, agents negotiate to find a 
mutually acceptable solution to a problem. Most often 
than not, agent negotiations are performed 
independently of one another.  In this paper, we apply 
the concept of multi-linked negotiations [9] (where 
negotiations exert influences on one another) in a 
dynamic system that needs to generate solutions 
quickly to satisfy demand across a multi-echelon 
production scheduling network. Multi-linked 
negotiations occur in situations where a task requires 
further sub-tasks to be completed, and also when the 
existence of many such tasks results in competition 
for a common resource. An example of this is in a 
manufacturing supply chain network that consists of 
entity nodes and linkages defining contractor-
contractee relationships. Very often such relationships 
do not extend beyond a direct relationship. Suppliers 
upstream usually have no information about their 
customer’s customer, and the converse is true. Agent 
implementations usually simulate a single tier 
commodity market without such multi-tier 
relationships. Applying single-tier agent negotiation 
strategies to multi-tier systems brings up the issues of 
negotiation ordering and the parameters of the 
negotiations. 
 In this paper, we consider a dynamic multi-echelon 
production scheduling network involving the 
production, assembly and transportation of multi-
indenture goods to satisfy dynamic requests. Such 

problems arise in an operational supply chain system, 
both commercial and military. A finished good 
undergoes component production and different levels 
of assembly at different facilities. Different facilities 
have different capabilities and capacities in providing 
the various operations required. A request is 
composed of a number of goods required at a number 
of locations by a certain time. It is handled by a 
management (contractor) agent who generates a 
schedule that optimizes the total production cost. The 
facilities and transportation services are represented 
by contractee agents who negotiate on the available 
jobs according to their local utilities. In Figure 1 for 
example, a request requires the following services to 
be provided: (1) production (or simply retrieval in our 
case) of items A and B, (2) transportation of items A 
and B to their next location, (3) assembly of items A 
and B to form item C, and (4) transportation of item C 
to its final destination.  
 

  
Figure 1: Sub-jobs required to fulfill a job 
  
 Contractor and contractee agents generally have no 
visibility over each other’s interest. The challenge is 
to generate a schedule in a decentralized fashion that 
minimizes the (global) total production cost from the 
contractor’s perspective while maximizing the 
contractee agents’ local utilities.  Hence our problem 
exhibits a hybrid flavor between a classical 
centralized scheduling problem (which minimizes 
metrics such as production cost) and a pure market-
based resource allocation problem (which maximizes 
agent utilities) via approaches such as contract nets, 
auctions and negotiations.  In this paper, we model the 
global production cost function and the local utility 
functions as economic functions. In both cases, the 
concept of diminishing marginal returns is applied to 
model the supply of production and transportation 
resources.  
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 Due to the directly and indirectly linked 
relationships brought about by a multi-echelon 
network and multi-indenture goods, approaches based 
on single independent negotiations will not work well 
in general. To overcome this shortcoming, the concept 
of negotiation ordering and feature assignment was 
proposed in [9]. Our work differs from [9] in the 
problem solved: while [9] outputs a negotiation 
ordering and corresponding feature assignments for a 
subsequent negotiation phase, we assume that the 
actual duration of negotiations is negligible, hence 
enabling us to embed (integrate) the negotiations 
within our scheduling algorithm. As we will see later, 
this assumption is reasonable since agent negotiation 
is applied in our context as a computational and 
decision coordination step, which can be computed 
instantaneously. No latency is involved in decision 
making, assuming that the underlying agent 
communication network is reliable and fast.  Our 
integrated approach allows us to do away with the 
uncertainties of negotiation outcomes and generate a 
final production schedule efficiently from the 
computational standpoint.  
 In section 2, we discuss related literature. In 
section 3, the problem is defined and an agent model 
presented. This is followed by our solution approach 
in Section 4. Experimental results on a real-world 
multi-echelon production scheduling network are 
presented in Section 5, followed by conclusions in 
section 6. 
 
2. Related Works  

[9] proposed a method for efficiently managing 
multi-linked negotiations, which occurs when one 
agent needs to negotiate with multiple agents about 
different issues which affect one another.  Contrary to 
[9] where negotiation is time-consuming and the 
actual tasks execution is subject to the uncertainty of 
subsequent negotiation outcomes, in our context, 
negotiation can be efficiently carried out and hence 
embedded within the scheduling algorithm.  

[6] provided an incentive based approach for 
agent-based production scheduling in a single-echelon 
system. A request is composed of a sequence of tasks 
to be completed, and each machine agent’s capability 
may have different costs and speed for the same task. 
A market mechanism coupled with an incentive 
scheme drives the system towards a preferred state in 
which system wide scheduling constraints are met. 
The negotiation is based on a contract-net protocol, 
where the weakness is that earlier tasks are allocated 
first, thereby constraining resources for successive 
tasks. 

[1] employed a 2 stage approach called MACOA 
(Multi-Agent Monte Carlo Configuration and 
Optimization Approach) to solve a dynamic 
production schedule problem. In the first stage, agents 
bid for jobs pulled from a job sequence in a way 

similar to [6], but includes the use of a common 
Transporter agent. In this first stage, jobs are also 
bidded upon sequentially starting from the earliest 
predecessor task in a task sequence. The paper, 
however, does not provide for considerations in 
assignment to parameters for the multi-linked 
negotiations e.g. allowed start time, deadline, reward 
of a job, etc. Similarly, the constraints imposed by 
earlier successful negotiations on subsequent ones 
were also not addressed. 

[10] proposed tackling negotiations on 2 different 
levels. The upper level deals with the formation of 
high level goals and objectives for the agent, and 
decides whether or not certain agents should be 
involved in negotiations to reach certain objectives. 
The lower level deals with the feasibility and 
implementation operations, and involves the 
refinement of rough commitments formed at the upper 
level.  

 [2] described a holonic agent system framework 
implemented in JADE to cope with distributed 
manufacturing planning. In the same fashion, an 
earlier work in [5] proposed a mechanism to 
overcome infeasibility in negotiations due to directly-
linked relationships. A task manager was to generate 
task holons for the bidding of resource agents in 
charge of many types of resources. A job is a list of 
operations that are negotiated on by the agents. The 
“indecision problem” is considered where a common 
resource is required for 2 or more jobs that require 
them within the same time. To prevent this conflict of 
time and resource, the task manager does not release 
tasks based on their arrival, but on their assigned 
priority, at the same time checking for overlap of both 
resource and time. The task holons can decide if a 
particular resource is no longer important should it be 
blocking the successful negotiation of the task. 
Control is then exercised over the tasks and resources 
by the task manager to release the go-ahead for the 
negotiation based primarily on the decision of holons.  

The control criteria that define an agent’s decision 
making were classified into 2 categories in [7]; 
structural information affects the scope of the agent 
control process, while value information affects the 
actual interaction and reasoning in complex agent 
relationships. Structural information can be the 
strategies that an agent may take in a given situation, 
or the decision of which other agents it may interact 
with. Value information pertains to quantifying the 
interactions or strategies using, say, a utility function, 
such that an evaluation can be made. To compare 
between disparate local utility functions, additional 
functions that acts very much like a currency 
exchange were defined. In this paper, we normalized 
these values into a single currency that can be used 
globally without conversion functions. 

Earlier works on agent negotiations were mostly 
on single product market economy systems [3, 4, 8]. 



Market forces are used to allocate resources based on 
the prices set by supply and demand. For example, [4] 
is concerned with bidding for the right to provide 
electricity in the power market. Since these 
negotiations are single-tier, there were no issues of 
dependencies such as indirectly or directly-linked 
relationships.  

 
3. Problem Formulation and Modeling  

In this section we define the problem formally and 
present a multi-agent model for this problem.  
 
3.1. Problem Definition  

We define a request as a list of finished goods 
required at specified locations by a stipulated 
deadline. This list of finished goods requires a 
hierarchical level of assembly from components at 
different locations, and transportation between these 
locations. A request is hence a hierarchy of m jobs 
and sub-jobs which are either production (i.e. 
assembly) or transportation operations.   

Consider the case in Figure 2 with a request that 
requires jobs 1 and 2 to be completed by a certain 
deadline at a given demand point. Both jobs 1 and 2 
form disjoint trees representing the decomposition 
hierarchy of sub-jobs. A typical job hierarchy is 
shown in Figure 1.  For simplicity, where there is no 
ambiguity, we shall collectively refer to jobs and sub-
jobs as jobs for the rest for the paper. 

 

Figure 2: Multiple jobs in a single request 
 

 
Figure 3: Network topology 
 

Executing a job entails consuming a certain 
amount of renewable resources (such as manpower 
and equipment) at a single facility for a given 
duration. Different types of facilities may support 
different types of jobs. Transportation jobs require the 

use of transporters and incur traveling time between 
facilities.   

Figure 3 shows a typical multi-echelon supply 
chain network topology where nodes represent 
facilities and directed edges represent the 
transportation links between the facilities. D and P 
(Distribution center and Production facility) are 2 
types of facilities that store/supply goods and 
components and perform assembly jobs. Each facility 
has a maximum capacity for labor and inventory 
storage. C (Customer) represents the demand nodes.  

Hence, there are 3 types of constraints in this 
problem: (a) deadlines of requests, (b) finite resource 
capacity at each facility, and (c) finite number of 
transporters. 
 The problem is to generate/revise a schedule as 
each request enters the system, which consists of:  
1. the facility where each job is executed (also known 

as a facility assignment) 
2. starting and ending times of the jobs at each 

facility  
3. transport assignment to deliveries, ETD and ETA 

at pickup and drop locations. 
 The objective function is two-fold, in addition to 
the classical objective of production cost (which can 
be instantiated as makespan, resource cost, and the 
likes). Agents also possess local utilities that model 
foreknowledge, preferences, self-interest. Note that in 
our problem, the local utilities are dynamic in the 
sense that they are dependent on the agent’s resource 
utilization profile at the time a job is to be assigned to 
it.  
 If we were to solve the above problem in a 
centralized fashion, it might be mapped into a 
classical bi-criteria job-shop scheduling problem 
which is well-documented in the literature. 
Unfortunately, in our context, local utilities may not 
be communicable to a central server due to privacy, 
security or operational limitations (such as network 
failures). Modeling the aspect of decentralized 
foreknowledge becomes necessary in a real-time 
operational context where requests arrive dynamically 
and are fulfilled one after another. Where no 
decommitment is allowed once a job is scheduled, it is 
necessary to rely on the collective wisdom 
(foreknowledge) of all agents within the supply chain 
to ensure that requests continue to be satisfied over 
time. Other than foreknowledge, the objective is 
hence to seek a balance between global cost 
minimization and local utility maximization through 
the process of negotiation.  
 
3.2. Agent Model  

Our model comprises 2 different types of agents: 
the management agent (ma) and n facility agents (fa). 
The ma receives the request and seeks a schedule that 
minimizes the sum of production costs Pj for all jobs. 
Each fa maintains its own local schedule of jobs 
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assigned so far and wishes to maximize its local utility 
function Ui. Hence, our goal is to find a schedule χ 
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These two functions may be defined depending on 
the context of the problem, and may conflict with 
each other. In our case, to describe the economic 
effects of decreasing marginal returns, we model the 
unit production cost function pj and unit utility 
function ui as non-linear functions with decreasing 
rates of increase. Details of these functions will be 
discussed in the next section. 

We view our problem as a multi-linked negotiation 
problem [9], where the ma negotiates with multiple 
fas about different issues which exert influence over 
one another. For example, in Figure 2, the negotiation 
for the completion time of job 2a affects job 2 in what 
is termed a directly-linked relationship as defined in 
[9]. Suppose negotiation of job 2a results in a 
completion time of 40, the negotiation of job 2 is 
constrained to having a start time of at least 40. 
Negotiations also influence each other in an 
indirectly-linked relationship. In Figure 2, suppose job 
1 and job 2 are performed at the same facility, then it 
may be possible that they utilize the same resources 
should their timings overlap. Indirectly-linked 
relationship exists when negotiations compete for a 
common resource at the same facility.  

One may perform multi-linked negotiations based 
on concurrent or sequential negotiations. Concurrent 
negotiations, where all possible negotiations are 
considered at the same time, often lead to an 
infeasible production schedule as the negotiations are 
done independently with no considerations on the 
mutual impact. More negotiation rounds may be 
required before the solution obtained is feasible, 
although the solution may also subsequently be more 
globally optimal. On the other hand, a sequential 
negotiation approach constrains later negotiations 
based on earlier successful negotiations. The greater 
flexibility enjoyed by earlier negotiations may be 
selfishly utilized by the agents involved such that 
resources or time become unavailable for later 
negotiations, hence resulting in overall failed 
negotiations. Without considering the order of 
negotiations, earlier negotiations experience a higher 
probability of success while later ones experience 
increasingly lower success probability.  

In [9], the negotiations are considered in real time, 
and at the time of solving, there is no certainty to the 
outcomes (success or failure) of the negotiations. 
Hence, given n negotiations, it was required to 
enumerate and evaluate all the possible 2n outcomes 
for a subsequent negotiation phase. In our work, we 
assume that the actual duration of negotiations is 
negligible with respect to the time horizon over which 
a solution is required. This allows us to embed the 
negotiations within the scheduling algorithm. In 

effect, our integrated approach enables us to do away 
with the uncertainties of negotiation outcomes and 
generate a final production schedule efficiently. 

We propose a negotiation scheme where a series of 
negotiations will proceed sequentially in a given 
order (to be explained below), each involving the ma 
with a particular fa on a particular job, and the 
outcome of an early negotiation will become a 
constraint for later negotiations. The challenge is 
hence to find a negotiation ordering and a facility 
assignment such that negotiations proceeding along 
that ordering will produce a schedule that minimizes 
Z. All fas are assumed to be truth-telling and non-
collusive.  

 
4. Three-Phase Solution Approach 

Our algorithm is an iterative local search 
comprising of 3 sub-phases as shown in Figure 4: (a) 
find a facility assignment, (b) find a negotiation 
ordering, and (c) generate the best schedule that 
minimizes Z.  
 

 
Figure 4: Solution approach 

 
The notations in our algorithm are given as 

follows.  
ϕ  Assignment of facility i to job j 
φ  Negotiation ordering 
χP ma-generated schedule based on 

minimizing production cost 
χC fa-counter proposal schedule based on 

maximizing its own utility 
vj Negotiation between ma and fa over the 

assigned job j, attributes defined below 
Mi Resource capacity of facility i 
vj.st, 
vj.dl 

(input) Allowed time window (start time 
and deadline respectively) between which 
job j must be completed 

vj.h (input) Resource requirement of job j 
vj.d (input) Duration of job j 
vj.start, 
vj.finish 

(Output) Actual start / finish time of job j.  
vj.finish- vj.start= vj.d 
vj.start is negotiated between the ma and fa. 

 
Figure 5 shows a facility’s local schedule represented 
by a resource utilization profile over time, which 
gives an illustration of the above notations: 

Generate facility assignment 

Generate negotiation 
ordering 

Negotiation to 
minimize Z 

Incoming 
request 

Schedule 



 

 
Figure 5: Facility local schedule 
 

Next, we discuss the functions describing the 
production cost and local utility functions. For this 
purpose, consider a job j that is to be assigned to a 
particular facility at the time point vj.start. Two 
parameters u and x are defined as follows. 
 
u Worst-case utilization (i.e. fraction of utilized 

capacity between 0 and 1) at the assigned 
facility resulting from this assignment. For 
example in Figure 5 for job j, utilization is 
computed as 

ij Mhv . . If more than one jobs are 

executed at any time t, then the numerator will 
be the total resources utilized by these jobs at 
time t. u is the maximum utilization across all 
time points. 

x Earliness of job j, between 0 and 1, defined as 

stvdlv
finishvdlvdv

jj

jjj

..
...

−

−+ . 

 
The unit production cost of a job j associated with 

this assignment is a function of u, denoted pj(u) 
(whose actual definition is an input to the problem, 
one instance of such is presented in our experiments 
in Section 5).  The production cost of job j is hence 
given by hvdvupuP jjjj ..)()( ××= .  

An agent i’s utility function associated with job j’s 
assignment is a function of u and x, denoted Ui(u x)1.  

Note that the functions pj and Ui are measures of 
motivational quantities and are context-dependent. 
Although we used u and x as arguments for these 
functions, other arguments may also be used instead. 
  
4.1. Phase 1: Find Facility Assignment ϕ  

This phase is concerned with allocating a fa to each 
job. Here we apply a simple hill-climbing local search 
algorithm to generate different facility assignments 
from one iteration to the next.  The initial facility 

                                                 
1 In [9], the parameter flexibility was defined to measure the 
ratio of a job duration to its given time window. This 
parameter was used to determine an agent’s probability of 
success in a negotiation, thereby making flexibility an 
indirect argument for an agent’s utility. In this paper, we 
extend our agent’s preference to have a job finished as early 
as its utility function decides (hence earliness x), and as 
balanced by its utilization u. 

assignment is generated greedily based on capacity, 
utilization, and transportation distance. Note that at 
this point, the actual schedule of the assigned jobs has 
not yet been determined, until Phase 3 (Section 4.3). 
For each assignment, a classical project scheduling 
algorithm that considers only the total production cost 
is then applied to determine an optimized schedule χP 
which consists of the start time vj.st and deadline vj.dl 
for each job j in the request. 

 
4.2. Phase 2: Find Negotiation Ordering φ  

Given a fixed facility assignment ϕ , this phase 
finds the best negotiation ordering. The initial 
negotiation ordering is generated in a bottom-up 
lexicographical manner of the job hierarchy (which 
follows a conventional way of how a multi-linked 
negotiation can be carried out sequentially). Using 
simulated annealing, successive negotiation orderings, 
consisting of sequenced facility-job pairings from 
Phase 1, are generated. Each (ϕ ,φ , χP) triplet is the 
input for the next phase.  

 
4.3. Phase 3: Agent Negotiation  

For each triplet ( ϕ , φ , χP), the negotiations 
between ma and the respective fas inϕ  proceeds in 
the order defined in φ .  

Consider an arbitrary job j. The ma first computes 
the optimal cost schedule χP for this job with respect 
to the unit production cost function pj(u) (using any 
classical algorithm in job shop scheduling). The 
corresponding starting time of job j vj.start is then 
proposed to the assigned fa based on a minimizing the 
value of pj(u). The fa then evaluates this based on the 
utility function ui(u, x). The fa may then counter-
propose an alternative schedule χC that maximizes its 
ui(u, x). To determine if the fa takes this decision, we 
propose a reward scheme where units of credits flow 
among fas through the ma. Initially, the ma possesses 
all credits. The local schedule χC and current credit 
standing will be used to negotiate with the ma as 
follows: 
i. fa accepts χP unconditionally, if Ui(χP) ≥ Ui(χC)   

ii. fa counter-proposes χC and gives up Ui(χC)-Ui(χP) 
credit units, if Ui(χP) < Ui(χC) and fa has 
sufficient credits 

iii. fa accepts χP with an increase of Ui(χC)-Ui(χP)  
units credited, if Ui(χP) < Ui(χC) and fa has 
insufficient credits  

In case of ii, the ma will accede if through 
accommodating χC, it is able to generate a feasible 
schedule whose total production cost is increased by 
an amount no more than Ui(χC)-Ui(χP); or in case of 
iii, if it has enough credits. Otherwise, the negotiation 
is unsuccessful. The result of a successful negotiation 
will in turn become a constraint for the subsequent 
negotiations in the ordering. A new schedule is 
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formed when all negotiations are successful. The 
fitness of this schedule χ is measured with the 
objective function Z. Our algorithm seeks to find the 
triplet (ϕ ,φ , χ) that minimizes Z. 

This proposed credit system acts as a control that 
prevents the fas from making runaway changes to the 
ma’s schedule. Without this system in place, it is 
likely that the final schedule foregoes too much on 
cost minimization for the sake of maximizing utility. 
Having this credit system therefore enforces a balance 
between the global and local agent objectives.  
 
4.4. Feedback to Phase 2 and Phase 1  
 The negotiation activities in phase 3 will serve as a 
feedback to generate next moves in phases 1 and 2, 
described as follows.  

To generate a new negotiation ordering in phase 2, 
a k-OPT heuristic is applied, as follows: 
1. Sort the jobs associated with the successful 

counter-proposals in ascending order of the 
increase in utility Ui(χC)-Ui(χP) and select the top k 
of them. Let this list be denoted x1,…,xk.  

2. Sort the jobs associated with the unsuccessful 
counter-proposals in descending order of the 
increase in utility and select the top k of them. Let 
this list be denoted y1,…,yk.  

3. The new ordering is obtained by swapping the job 
xi with yi in the current ordering, for i=1 to k.  

In essence, this heuristic allows the poorer but 
successful counter-proposals to make way for the 
better but unsuccessful counter-proposals. By 
swapping their positions in the ordering, we allow the 
unsuccessful but potentially higher utility counter-
proposals a better chance of acceptance, since it is 
placed in a position for which a poorer counter-
proposal was previously successful.  

For the feedback to phase 1, we apply the 
following heuristic: 
1. For facilities of the same type, sort in descending 

order  of the value τi, which is defined as the sum 
of all the jobs’ contribution for facility i to Z 
divided by the total resource-hours consumed by 
these jobs. Intuitively, a lower τi value indicates a 
facility that is more resource-efficient. 

2. Select the facility with the highest τi and select the 
job with the highest production cost from this 
facility. 

3. Fit this job into the facility with the lowest τi if the 
increase in τi in this target facility is less than the 
decrease in the source facility. Otherwise, generate 
a random move. 

This heuristic attempts to generate a move that 
minimizes Z.  
 
5. Experimental Results  

In our experiments, we like to investigate the 
effectiveness of our negotiation protocol in 
incorporating agent utilities. More precisely, we study 

the behavior of the Z value and what-we-term the δ 
value, which is the marginal relative gain in utility 
value per unit relative increase in production cost due 
to negotiation.  We compare the values of Z and δ 
under the cases with and without negotiation.  

In both cases, we model the unit production cost 
function pj(u) as follows (as shown in Fig 6): 

)(tanh)( 1 uBAup j α−+= , where the values of 

A, B and α are constant and are set to 4, 1 and 1 
respectively for all test sets. We choose this function 
to model the behavior of convex production cost that 
tends to ∞ as utilization approaches 1. 

For the former case, phase 3 involves the ma 
computing the optimal solution that minimizes the 
production cost without entering into negotiation with 
the fas. The Z value of this optimal solution is 
recorded.  

For the latter case, the full-fledged phase 3 and 
feedback algorithm discussed in Sections 4.3 and 4.4 
is executed to derive the Z value. For this purpose, we 
represent the facility’s unit utility function Ui(u, x) as 
follows (as shown in Fig 7): 

 )ln(),( εβ
+−=

x
uDxCxuUi . 

We choose this function to model the economics of 
diminishing marginal utilities. To simulate different 
behaviors in the facilities with respect to the utility 
function, 3 sets of parameter with varying values of C, 
D, β and ε are used, as shown in Table 1.  
 
 fa Behavior Parameters 
Set 1 All fas prefer earliness 

Little importance on 
reducing utilization  

 
 
 
 
 

Set 2 All fas prefer earliness,  
High importance on 
reducing utilization 

 
 
 
 
 

Set 3 Equal mix of Set 1 and 
Set 2 behaviors 
 

 

Table 1: fa behaviors parameter sets 
 

For the feedback heuristics, we experimented with 
k=1 (i.e. we implemented a basic swap 
neighborhood).  

Due to the probabilistic nature of phases 1 and 2, 
we used the same random seed for both cases to force 
the local search to behave identically. In doing so, the 
different solutions derived are a result of negotiation 
and feedback rather than the underlying local search.    

The request sets for the experiments were 
generated with loose and tight planning horizons as 
shown in Table 2.  
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Request Set Total No.of Jobs Planning Horizon 
R1a 70 500  
R1b 70 2000 
R2a 350 500 
R2b 350 2000 
R3a 750 500 
R3b 750 2000 

Table 2: Request data sets 
The results of our experiments are shown in Tables 3, 

4 and 5. For each test set, the value δ is computed by 
taking the ratio of relative utility gain to relative 
production cost loss, e.g. in Table 3 R1A, 28.82 = 
(61759-57194)/57194÷(37290-37187)/37187.  

 

Set 1 Neg Total 
Utility 

Total 
Production 

Cost 
Z δ 

R1A No 57194 37187 -20007 

  Yes 61759 37290 -24469 
28.82 

R1B No 55297 37098 -18199 

  Yes 62975 37131 -25844 
156.09 

R2A No 379137 270654 -108483 

  Yes 385624 272670 -112954 
2.30 

R2B No 398674 264142 -134532 

  Yes 409733 264780 -144953 
11.48 

R3A No 611669 461661 -150008 

  Yes 624588 470360 -154288 
1.12 

R3B No 653171 442485 -210686 

  Yes 670635 444207 -226428 
6.87 

Table 3: Results for Set 1 
 

Set 2 Neg Total 
Utility 

Total 
Production 

Cost 
Z δ 

R1A No 55136 37187 -17949 

 Yes 55655 37237 -18418 
7.00 

R1B No 58367 37098 -21269 

 Yes 59699 37123 -22576 
33.86 

R2A No 319365 270654 -48711 

 Yes 323258 272005 -51253 
2.44 

R2B No 368432 264142 -104290 

 Yes 371246 264491 -106755 
5.78 

R3A No 490252 461661 -28591 

 Yes 503158 466469 -36689 
2.53 

R3B No 575549 442485 -133064 

 Yes 585966 443440 -142526 
8.39 

Table 4: Results for Set 2 
 

Set 3 Neg Total 
Utility 

Total 
Production 

Cost 
Z δ 

R1A No 57009 37187 -19822 

 Yes 57742 37239 -20503 
9.19 

R1B No 59885 37098 -22787 

 Yes 60030 37128 -22902 
2.99 

R2A No 359856 270654 -89202 2.18 

 Yes 364884 272385 -92499 

R2B No 390158 264142 -126016 

 Yes 396863 264691 -132172 
8.27 

R3A No 572144 461661 -110483 

 Yes 580301 467209 -113092 
1.19 

R3B No 630463 442485 -187978 

 Yes 639912 443711 -196201 
5.41 

Table 5: Results for Set 3 
 
 It can be seen that, as the ma in the first 2 phases 
does not account for each fa’s preference for 
earliness, all the runs with the negotiation phase 
(phase 3) consistently gives a better objective value Z 
than without negotiation. This improvement ranged 
from 1% to 42% depending on the quality of the 
initial facility assignment. Furthermore, the marginal 
values gained from negotiation are quite large, 
suggesting that our proposed approach is effective in 
deriving a schedule that gains agent utility at a small 
expense of loss in total production cost.  

In modeling the local preference of fas as defined, 
we have taken into account a local aspect of 
information that is not visible to the ma’s perspective 
of achieving a schedule with minimum production 
cost. It is worth noting that with our local utility 
functions, the algorithm returns consistently lower 
production cost on the negotiated schedule in Set 2 
than in Set 1. The parameters with which we used to 
tune the behavior of the facility agents performed as 
expected, with the Set 2 fa being more cost aware 
(and with less preference for earliness) relative to Set 
1 fas. A study of the utility functions ui(u,x) would 
reveal that as the parameters β and ε increase, the 
desirability of earliness over minimizing utilization 
becomes increasingly less. Similarly, Set 3 fas, which 
are a mixture of behaviors in Sets 1 and 2, generated 
production costs that lie mostly between those of Sets 
1 and 2. 

The experiments were conducted on a Pentium-IV 
workstation running at 2.4GHz clock speed with 
512Mb of memory. Agent communications were 
simulated by a sequential tread so that communication 
overheads become negligible. Phase 1 was reiterated 
50 times, while Phase 2 was reiterated 20 times. The 
smallest test cases (R1a, R1b) took less than 5 
seconds of runtime, while the largest (R3a, R3b) 
incurred about 5 minutes. These demonstrate the 
computational efficiency of our approach. 
 
6. Concluding Remarks 
 In the context of a dynamic and secure networked 
system, it may be impossible to make centralized 
decisions based on complete information. The use of a 
decentralized algorithm in solving complex multi-
echelon scheduling problems is not only essential, but 
also more efficient computationally.  



Moreover, the use of decentralized decision 
making through multiple agents enables uncertainty of 
future demands to be tackled through collective 
wisdom among agents. By distributing the different 
foreknowledge to their respective owners (i.e. having 
the ma only deal with global production cost while the 
fas counter-balancing with their foreknowledge), our 
approach allows one to obtain a production schedule 
that effectively hedges against uncertainty.  

We saw the complexity of multi-linked 
relationships that are prevalent in today’s supply 
chain networks. Inspired by the work of [9] on 
negotiation ordering in a multi-linked system, we 
were led to design an efficient local search algorithm 
centering on multi-linked negotiation ordering. This 
approach has led us to solve the multi-echelon multi-
indenture production scheduling problem effectively 
in a distributed fashion that avoid the pitfalls of 
sequential or concurrent negotiations.  

Our current approach processes the requests on a 
first-come-first-served basis, since there is no 
visibility on future orders, as inherent in dynamic 
systems. If the requests were to follow a prescribed 
demand distribution, we think it would be interesting 
to investigate the relationship between demand 
patterns and agent utility functions. On another front, 
we think it is interesting to investigate the effect of 
different credit systems on the results. For instance, 
one might consider the setting where both ma and fas 
possess an initial non-zero amount of credits before 
the beginning of negotiation. 
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Figure 6: Example of Unit Production Function  

Figure 7: Utility Functions for different values of x 
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