
Dynamic Multi-Linked Negotiations in
Multi-Echelon Production Scheduling Networks

Hoong Chuin LAU Guan Li SOH, Wee Chong WAN
School of Information Systems

Singapore Management University
The Logistics Institute – Asia Pacific

National University of Singapore
hclau@smu.edu.sg <tlisgl, tliwwc>@nus.edu.sg

Abstract
In this paper, we are concerned with scheduling

resources in a multi-tier production/logistics system
for multi-indenture goods. Unlike classical production
scheduling problems, the problem we study is
concerned with local utilities which are private. We
present an agent model and investigate an efficient
scheme for handling multi-linked agent negotiations.
With this scheme we attempt to overcome the
drawbacks of sequential negotiations and negotiation
parameter settings. Our approach is based on
embedding a credit-based negotiation protocol within
a local search scheduling algorithm. We demonstrate
the computational efficiency and effectiveness of the
approach in solving a real-life dynamic production
scheduling problem which balances between global
production cost and local utilities within the facilities.

1. Introduction
 In a multi-agent system, agents negotiate to find a
mutually acceptable solution to a problem. Most often
than not, agent negotiations are performed
independently of one another. In this paper, we apply
the concept of multi-linked negotiations [9] (where
negotiations exert influences on one another) in a
dynamic system that needs to generate solutions
quickly to satisfy demand across a multi-echelon
production scheduling network. Multi-linked
negotiations occur in situations where a task requires
further sub-tasks to be completed, and also when the
existence of many such tasks results in competition
for a common resource. An example of this is in a
manufacturing supply chain network that consists of
entity nodes and linkages defining contractor-
contractee relationships. Very often such relationships
do not extend beyond a direct relationship. Suppliers
upstream usually have no information about their
customer’s customer, and the converse is true. Agent
implementations usually simulate a single tier
commodity market without such multi-tier
relationships. Applying single-tier agent negotiation
strategies to multi-tier systems brings up the issues of
negotiation ordering and the parameters of the
negotiations.
 In this paper, we consider a dynamic multi-echelon
production scheduling network involving the
production, assembly and transportation of multi-
indenture goods to satisfy dynamic requests. Such

problems arise in an operational supply chain system,
both commercial and military. A finished good
undergoes component production and different levels
of assembly at different facilities. Different facilities
have different capabilities and capacities in providing
the various operations required. A request is
composed of a number of goods required at a number
of locations by a certain time. It is handled by a
management (contractor) agent who generates a
schedule that optimizes the total production cost. The
facilities and transportation services are represented
by contractee agents who negotiate on the available
jobs according to their local utilities. In Figure 1 for
example, a request requires the following services to
be provided: (1) production (or simply retrieval in our
case) of items A and B, (2) transportation of items A
and B to their next location, (3) assembly of items A
and B to form item C, and (4) transportation of item C
to its final destination.

Figure 1: Sub-jobs required to fulfill a job

 Contractor and contractee agents generally have no
visibility over each other’s interest. The challenge is
to generate a schedule in a decentralized fashion that
minimizes the (global) total production cost from the
contractor’s perspective while maximizing the
contractee agents’ local utilities. Hence our problem
exhibits a hybrid flavor between a classical
centralized scheduling problem (which minimizes
metrics such as production cost) and a pure market-
based resource allocation problem (which maximizes
agent utilities) via approaches such as contract nets,
auctions and negotiations. In this paper, we model the
global production cost function and the local utility
functions as economic functions. In both cases, the
concept of diminishing marginal returns is applied to
model the supply of production and transportation
resources.

Assembly of
a & b to
become c

Transportation
of Item a, b

Item b Item a

Transportation
of
c to demand
node

 Due to the directly and indirectly linked
relationships brought about by a multi-echelon
network and multi-indenture goods, approaches based
on single independent negotiations will not work well
in general. To overcome this shortcoming, the concept
of negotiation ordering and feature assignment was
proposed in [9]. Our work differs from [9] in the
problem solved: while [9] outputs a negotiation
ordering and corresponding feature assignments for a
subsequent negotiation phase, we assume that the
actual duration of negotiations is negligible, hence
enabling us to embed (integrate) the negotiations
within our scheduling algorithm. As we will see later,
this assumption is reasonable since agent negotiation
is applied in our context as a computational and
decision coordination step, which can be computed
instantaneously. No latency is involved in decision
making, assuming that the underlying agent
communication network is reliable and fast. Our
integrated approach allows us to do away with the
uncertainties of negotiation outcomes and generate a
final production schedule efficiently from the
computational standpoint.
 In section 2, we discuss related literature. In
section 3, the problem is defined and an agent model
presented. This is followed by our solution approach
in Section 4. Experimental results on a real-world
multi-echelon production scheduling network are
presented in Section 5, followed by conclusions in
section 6.

2. Related Works

[9] proposed a method for efficiently managing
multi-linked negotiations, which occurs when one
agent needs to negotiate with multiple agents about
different issues which affect one another. Contrary to
[9] where negotiation is time-consuming and the
actual tasks execution is subject to the uncertainty of
subsequent negotiation outcomes, in our context,
negotiation can be efficiently carried out and hence
embedded within the scheduling algorithm.

[6] provided an incentive based approach for
agent-based production scheduling in a single-echelon
system. A request is composed of a sequence of tasks
to be completed, and each machine agent’s capability
may have different costs and speed for the same task.
A market mechanism coupled with an incentive
scheme drives the system towards a preferred state in
which system wide scheduling constraints are met.
The negotiation is based on a contract-net protocol,
where the weakness is that earlier tasks are allocated
first, thereby constraining resources for successive
tasks.

[1] employed a 2 stage approach called MACOA
(Multi-Agent Monte Carlo Configuration and
Optimization Approach) to solve a dynamic
production schedule problem. In the first stage, agents
bid for jobs pulled from a job sequence in a way

similar to [6], but includes the use of a common
Transporter agent. In this first stage, jobs are also
bidded upon sequentially starting from the earliest
predecessor task in a task sequence. The paper,
however, does not provide for considerations in
assignment to parameters for the multi-linked
negotiations e.g. allowed start time, deadline, reward
of a job, etc. Similarly, the constraints imposed by
earlier successful negotiations on subsequent ones
were also not addressed.

[10] proposed tackling negotiations on 2 different
levels. The upper level deals with the formation of
high level goals and objectives for the agent, and
decides whether or not certain agents should be
involved in negotiations to reach certain objectives.
The lower level deals with the feasibility and
implementation operations, and involves the
refinement of rough commitments formed at the upper
level.

 [2] described a holonic agent system framework
implemented in JADE to cope with distributed
manufacturing planning. In the same fashion, an
earlier work in [5] proposed a mechanism to
overcome infeasibility in negotiations due to directly-
linked relationships. A task manager was to generate
task holons for the bidding of resource agents in
charge of many types of resources. A job is a list of
operations that are negotiated on by the agents. The
“indecision problem” is considered where a common
resource is required for 2 or more jobs that require
them within the same time. To prevent this conflict of
time and resource, the task manager does not release
tasks based on their arrival, but on their assigned
priority, at the same time checking for overlap of both
resource and time. The task holons can decide if a
particular resource is no longer important should it be
blocking the successful negotiation of the task.
Control is then exercised over the tasks and resources
by the task manager to release the go-ahead for the
negotiation based primarily on the decision of holons.

The control criteria that define an agent’s decision
making were classified into 2 categories in [7];
structural information affects the scope of the agent
control process, while value information affects the
actual interaction and reasoning in complex agent
relationships. Structural information can be the
strategies that an agent may take in a given situation,
or the decision of which other agents it may interact
with. Value information pertains to quantifying the
interactions or strategies using, say, a utility function,
such that an evaluation can be made. To compare
between disparate local utility functions, additional
functions that acts very much like a currency
exchange were defined. In this paper, we normalized
these values into a single currency that can be used
globally without conversion functions.

Earlier works on agent negotiations were mostly
on single product market economy systems [3, 4, 8].

Market forces are used to allocate resources based on
the prices set by supply and demand. For example, [4]
is concerned with bidding for the right to provide
electricity in the power market. Since these
negotiations are single-tier, there were no issues of
dependencies such as indirectly or directly-linked
relationships.

3. Problem Formulation and Modeling

In this section we define the problem formally and
present a multi-agent model for this problem.

3.1. Problem Definition

We define a request as a list of finished goods
required at specified locations by a stipulated
deadline. This list of finished goods requires a
hierarchical level of assembly from components at
different locations, and transportation between these
locations. A request is hence a hierarchy of m jobs
and sub-jobs which are either production (i.e.
assembly) or transportation operations.

Consider the case in Figure 2 with a request that
requires jobs 1 and 2 to be completed by a certain
deadline at a given demand point. Both jobs 1 and 2
form disjoint trees representing the decomposition
hierarchy of sub-jobs. A typical job hierarchy is
shown in Figure 1. For simplicity, where there is no
ambiguity, we shall collectively refer to jobs and sub-
jobs as jobs for the rest for the paper.

Figure 2: Multiple jobs in a single request

Figure 3: Network topology

Executing a job entails consuming a certain
amount of renewable resources (such as manpower
and equipment) at a single facility for a given
duration. Different types of facilities may support
different types of jobs. Transportation jobs require the

use of transporters and incur traveling time between
facilities.

Figure 3 shows a typical multi-echelon supply
chain network topology where nodes represent
facilities and directed edges represent the
transportation links between the facilities. D and P
(Distribution center and Production facility) are 2
types of facilities that store/supply goods and
components and perform assembly jobs. Each facility
has a maximum capacity for labor and inventory
storage. C (Customer) represents the demand nodes.

Hence, there are 3 types of constraints in this
problem: (a) deadlines of requests, (b) finite resource
capacity at each facility, and (c) finite number of
transporters.
 The problem is to generate/revise a schedule as
each request enters the system, which consists of:
1. the facility where each job is executed (also known

as a facility assignment)
2. starting and ending times of the jobs at each

facility
3. transport assignment to deliveries, ETD and ETA

at pickup and drop locations.
 The objective function is two-fold, in addition to
the classical objective of production cost (which can
be instantiated as makespan, resource cost, and the
likes). Agents also possess local utilities that model
foreknowledge, preferences, self-interest. Note that in
our problem, the local utilities are dynamic in the
sense that they are dependent on the agent’s resource
utilization profile at the time a job is to be assigned to
it.
 If we were to solve the above problem in a
centralized fashion, it might be mapped into a
classical bi-criteria job-shop scheduling problem
which is well-documented in the literature.
Unfortunately, in our context, local utilities may not
be communicable to a central server due to privacy,
security or operational limitations (such as network
failures). Modeling the aspect of decentralized
foreknowledge becomes necessary in a real-time
operational context where requests arrive dynamically
and are fulfilled one after another. Where no
decommitment is allowed once a job is scheduled, it is
necessary to rely on the collective wisdom
(foreknowledge) of all agents within the supply chain
to ensure that requests continue to be satisfied over
time. Other than foreknowledge, the objective is
hence to seek a balance between global cost
minimization and local utility maximization through
the process of negotiation.

3.2. Agent Model

Our model comprises 2 different types of agents:
the management agent (ma) and n facility agents (fa).
The ma receives the request and seeks a schedule that
minimizes the sum of production costs Pj for all jobs.
Each fa maintains its own local schedule of jobs

P P

D

C C C

Request
Job 1

Sub-Job 1b Sub-Job 1a

Sub-Job 1c

Job 2

Sub-Job 2b

Sub-Job 2a

assigned so far and wishes to maximize its local utility
function Ui. Hence, our goal is to find a schedule χ

that minimizes ∑∑
==

−=
n

i
i

m

j
j UPZ

11
)()()(χχχ .

These two functions may be defined depending on
the context of the problem, and may conflict with
each other. In our case, to describe the economic
effects of decreasing marginal returns, we model the
unit production cost function pj and unit utility
function ui as non-linear functions with decreasing
rates of increase. Details of these functions will be
discussed in the next section.

We view our problem as a multi-linked negotiation
problem [9], where the ma negotiates with multiple
fas about different issues which exert influence over
one another. For example, in Figure 2, the negotiation
for the completion time of job 2a affects job 2 in what
is termed a directly-linked relationship as defined in
[9]. Suppose negotiation of job 2a results in a
completion time of 40, the negotiation of job 2 is
constrained to having a start time of at least 40.
Negotiations also influence each other in an
indirectly-linked relationship. In Figure 2, suppose job
1 and job 2 are performed at the same facility, then it
may be possible that they utilize the same resources
should their timings overlap. Indirectly-linked
relationship exists when negotiations compete for a
common resource at the same facility.

One may perform multi-linked negotiations based
on concurrent or sequential negotiations. Concurrent
negotiations, where all possible negotiations are
considered at the same time, often lead to an
infeasible production schedule as the negotiations are
done independently with no considerations on the
mutual impact. More negotiation rounds may be
required before the solution obtained is feasible,
although the solution may also subsequently be more
globally optimal. On the other hand, a sequential
negotiation approach constrains later negotiations
based on earlier successful negotiations. The greater
flexibility enjoyed by earlier negotiations may be
selfishly utilized by the agents involved such that
resources or time become unavailable for later
negotiations, hence resulting in overall failed
negotiations. Without considering the order of
negotiations, earlier negotiations experience a higher
probability of success while later ones experience
increasingly lower success probability.

In [9], the negotiations are considered in real time,
and at the time of solving, there is no certainty to the
outcomes (success or failure) of the negotiations.
Hence, given n negotiations, it was required to
enumerate and evaluate all the possible 2n outcomes
for a subsequent negotiation phase. In our work, we
assume that the actual duration of negotiations is
negligible with respect to the time horizon over which
a solution is required. This allows us to embed the
negotiations within the scheduling algorithm. In

effect, our integrated approach enables us to do away
with the uncertainties of negotiation outcomes and
generate a final production schedule efficiently.

We propose a negotiation scheme where a series of
negotiations will proceed sequentially in a given
order (to be explained below), each involving the ma
with a particular fa on a particular job, and the
outcome of an early negotiation will become a
constraint for later negotiations. The challenge is
hence to find a negotiation ordering and a facility
assignment such that negotiations proceeding along
that ordering will produce a schedule that minimizes
Z. All fas are assumed to be truth-telling and non-
collusive.

4. Three-Phase Solution Approach

Our algorithm is an iterative local search
comprising of 3 sub-phases as shown in Figure 4: (a)
find a facility assignment, (b) find a negotiation
ordering, and (c) generate the best schedule that
minimizes Z.

Figure 4: Solution approach

The notations in our algorithm are given as

follows.
ϕ Assignment of facility i to job j
φ Negotiation ordering
χP ma-generated schedule based on

minimizing production cost
χC fa-counter proposal schedule based on

maximizing its own utility
vj Negotiation between ma and fa over the

assigned job j, attributes defined below
Mi Resource capacity of facility i
vj.st,
vj.dl

(input) Allowed time window (start time
and deadline respectively) between which
job j must be completed

vj.h (input) Resource requirement of job j
vj.d (input) Duration of job j
vj.start,
vj.finish

(Output) Actual start / finish time of job j.
vj.finish- vj.start= vj.d
vj.start is negotiated between the ma and fa.

Figure 5 shows a facility’s local schedule represented
by a resource utilization profile over time, which
gives an illustration of the above notations:

Generate facility assignment

Generate negotiation
ordering

Negotiation to
minimize Z

Incoming
request

Schedule

Figure 5: Facility local schedule

Next, we discuss the functions describing the
production cost and local utility functions. For this
purpose, consider a job j that is to be assigned to a
particular facility at the time point vj.start. Two
parameters u and x are defined as follows.

u Worst-case utilization (i.e. fraction of utilized

capacity between 0 and 1) at the assigned
facility resulting from this assignment. For
example in Figure 5 for job j, utilization is
computed as

ij Mhv . . If more than one jobs are

executed at any time t, then the numerator will
be the total resources utilized by these jobs at
time t. u is the maximum utilization across all
time points.

x Earliness of job j, between 0 and 1, defined as

stvdlv
finishvdlvdv

jj

jjj

..
...

−

−+ .

The unit production cost of a job j associated with

this assignment is a function of u, denoted pj(u)
(whose actual definition is an input to the problem,
one instance of such is presented in our experiments
in Section 5). The production cost of job j is hence
given by hvdvupuP jjjj ..)()(××= .

An agent i’s utility function associated with job j’s
assignment is a function of u and x, denoted Ui(u x)1.

Note that the functions pj and Ui are measures of
motivational quantities and are context-dependent.
Although we used u and x as arguments for these
functions, other arguments may also be used instead.

4.1. Phase 1: Find Facility Assignment ϕ

This phase is concerned with allocating a fa to each
job. Here we apply a simple hill-climbing local search
algorithm to generate different facility assignments
from one iteration to the next. The initial facility

1 In [9], the parameter flexibility was defined to measure the
ratio of a job duration to its given time window. This
parameter was used to determine an agent’s probability of
success in a negotiation, thereby making flexibility an
indirect argument for an agent’s utility. In this paper, we
extend our agent’s preference to have a job finished as early
as its utility function decides (hence earliness x), and as
balanced by its utilization u.

assignment is generated greedily based on capacity,
utilization, and transportation distance. Note that at
this point, the actual schedule of the assigned jobs has
not yet been determined, until Phase 3 (Section 4.3).
For each assignment, a classical project scheduling
algorithm that considers only the total production cost
is then applied to determine an optimized schedule χP
which consists of the start time vj.st and deadline vj.dl
for each job j in the request.

4.2. Phase 2: Find Negotiation Ordering φ

Given a fixed facility assignment ϕ , this phase
finds the best negotiation ordering. The initial
negotiation ordering is generated in a bottom-up
lexicographical manner of the job hierarchy (which
follows a conventional way of how a multi-linked
negotiation can be carried out sequentially). Using
simulated annealing, successive negotiation orderings,
consisting of sequenced facility-job pairings from
Phase 1, are generated. Each (ϕ ,φ , χP) triplet is the
input for the next phase.

4.3. Phase 3: Agent Negotiation

For each triplet (ϕ , φ , χP), the negotiations
between ma and the respective fas inϕ proceeds in
the order defined in φ .

Consider an arbitrary job j. The ma first computes
the optimal cost schedule χP for this job with respect
to the unit production cost function pj(u) (using any
classical algorithm in job shop scheduling). The
corresponding starting time of job j vj.start is then
proposed to the assigned fa based on a minimizing the
value of pj(u). The fa then evaluates this based on the
utility function ui(u, x). The fa may then counter-
propose an alternative schedule χC that maximizes its
ui(u, x). To determine if the fa takes this decision, we
propose a reward scheme where units of credits flow
among fas through the ma. Initially, the ma possesses
all credits. The local schedule χC and current credit
standing will be used to negotiate with the ma as
follows:
i. fa accepts χP unconditionally, if Ui(χP) ≥ Ui(χC)

ii. fa counter-proposes χC and gives up Ui(χC)-Ui(χP)
credit units, if Ui(χP) < Ui(χC) and fa has
sufficient credits

iii. fa accepts χP with an increase of Ui(χC)-Ui(χP)
units credited, if Ui(χP) < Ui(χC) and fa has
insufficient credits

In case of ii, the ma will accede if through
accommodating χC, it is able to generate a feasible
schedule whose total production cost is increased by
an amount no more than Ui(χC)-Ui(χP); or in case of
iii, if it has enough credits. Otherwise, the negotiation
is unsuccessful. The result of a successful negotiation
will in turn become a constraint for the subsequent
negotiations in the ordering. A new schedule is

time

resource

vj.st vj.dl
vj.d

vj.h
vj.start vj.finish

formed when all negotiations are successful. The
fitness of this schedule χ is measured with the
objective function Z. Our algorithm seeks to find the
triplet (ϕ ,φ , χ) that minimizes Z.

This proposed credit system acts as a control that
prevents the fas from making runaway changes to the
ma’s schedule. Without this system in place, it is
likely that the final schedule foregoes too much on
cost minimization for the sake of maximizing utility.
Having this credit system therefore enforces a balance
between the global and local agent objectives.

4.4. Feedback to Phase 2 and Phase 1
 The negotiation activities in phase 3 will serve as a
feedback to generate next moves in phases 1 and 2,
described as follows.

To generate a new negotiation ordering in phase 2,
a k-OPT heuristic is applied, as follows:
1. Sort the jobs associated with the successful

counter-proposals in ascending order of the
increase in utility Ui(χC)-Ui(χP) and select the top k
of them. Let this list be denoted x1,…,xk.

2. Sort the jobs associated with the unsuccessful
counter-proposals in descending order of the
increase in utility and select the top k of them. Let
this list be denoted y1,…,yk.

3. The new ordering is obtained by swapping the job
xi with yi in the current ordering, for i=1 to k.

In essence, this heuristic allows the poorer but
successful counter-proposals to make way for the
better but unsuccessful counter-proposals. By
swapping their positions in the ordering, we allow the
unsuccessful but potentially higher utility counter-
proposals a better chance of acceptance, since it is
placed in a position for which a poorer counter-
proposal was previously successful.

For the feedback to phase 1, we apply the
following heuristic:
1. For facilities of the same type, sort in descending

order of the value τi, which is defined as the sum
of all the jobs’ contribution for facility i to Z
divided by the total resource-hours consumed by
these jobs. Intuitively, a lower τi value indicates a
facility that is more resource-efficient.

2. Select the facility with the highest τi and select the
job with the highest production cost from this
facility.

3. Fit this job into the facility with the lowest τi if the
increase in τi in this target facility is less than the
decrease in the source facility. Otherwise, generate
a random move.

This heuristic attempts to generate a move that
minimizes Z.

5. Experimental Results

In our experiments, we like to investigate the
effectiveness of our negotiation protocol in
incorporating agent utilities. More precisely, we study

the behavior of the Z value and what-we-term the δ
value, which is the marginal relative gain in utility
value per unit relative increase in production cost due
to negotiation. We compare the values of Z and δ
under the cases with and without negotiation.

In both cases, we model the unit production cost
function pj(u) as follows (as shown in Fig 6):

)(tanh)(1 uBAup j α−+= , where the values of

A, B and α are constant and are set to 4, 1 and 1
respectively for all test sets. We choose this function
to model the behavior of convex production cost that
tends to ∞ as utilization approaches 1.

For the former case, phase 3 involves the ma
computing the optimal solution that minimizes the
production cost without entering into negotiation with
the fas. The Z value of this optimal solution is
recorded.

For the latter case, the full-fledged phase 3 and
feedback algorithm discussed in Sections 4.3 and 4.4
is executed to derive the Z value. For this purpose, we
represent the facility’s unit utility function Ui(u, x) as
follows (as shown in Fig 7):

)ln(),(εβ
+−=

x
uDxCxuUi .

We choose this function to model the economics of
diminishing marginal utilities. To simulate different
behaviors in the facilities with respect to the utility
function, 3 sets of parameter with varying values of C,
D, β and ε are used, as shown in Table 1.

 fa Behavior Parameters
Set 1 All fas prefer earliness

Little importance on
reducing utilization

Set 2 All fas prefer earliness,
High importance on
reducing utilization

Set 3 Equal mix of Set 1 and
Set 2 behaviors

Table 1: fa behaviors parameter sets

For the feedback heuristics, we experimented with
k=1 (i.e. we implemented a basic swap
neighborhood).

Due to the probabilistic nature of phases 1 and 2,
we used the same random seed for both cases to force
the local search to behave identically. In doing so, the
different solutions derived are a result of negotiation
and feedback rather than the underlying local search.

The request sets for the experiments were
generated with loose and tight planning horizons as
shown in Table 2.

001.0
10.005.0

0.15.0
0.40.2

=
≤≤
≤≤
≤≤

ε
β

D
C

01.0
5.275.1

0.15.0
0.50.3

=
≤≤
≤≤
≤≤

ε
β

D
C

Request Set Total No.of Jobs Planning Horizon
R1a 70 500
R1b 70 2000
R2a 350 500
R2b 350 2000
R3a 750 500
R3b 750 2000

Table 2: Request data sets
The results of our experiments are shown in Tables 3,

4 and 5. For each test set, the value δ is computed by
taking the ratio of relative utility gain to relative
production cost loss, e.g. in Table 3 R1A, 28.82 =
(61759-57194)/57194÷(37290-37187)/37187.

Set 1 Neg Total
Utility

Total
Production

Cost
Z δ

R1A No 57194 37187 -20007

 Yes 61759 37290 -24469
28.82

R1B No 55297 37098 -18199

 Yes 62975 37131 -25844
156.09

R2A No 379137 270654 -108483

 Yes 385624 272670 -112954
2.30

R2B No 398674 264142 -134532

 Yes 409733 264780 -144953
11.48

R3A No 611669 461661 -150008

 Yes 624588 470360 -154288
1.12

R3B No 653171 442485 -210686

 Yes 670635 444207 -226428
6.87

Table 3: Results for Set 1

Set 2 Neg Total
Utility

Total
Production

Cost
Z δ

R1A No 55136 37187 -17949

 Yes 55655 37237 -18418
7.00

R1B No 58367 37098 -21269

 Yes 59699 37123 -22576
33.86

R2A No 319365 270654 -48711

 Yes 323258 272005 -51253
2.44

R2B No 368432 264142 -104290

 Yes 371246 264491 -106755
5.78

R3A No 490252 461661 -28591

 Yes 503158 466469 -36689
2.53

R3B No 575549 442485 -133064

 Yes 585966 443440 -142526
8.39

Table 4: Results for Set 2

Set 3 Neg Total
Utility

Total
Production

Cost
Z δ

R1A No 57009 37187 -19822

 Yes 57742 37239 -20503
9.19

R1B No 59885 37098 -22787

 Yes 60030 37128 -22902
2.99

R2A No 359856 270654 -89202 2.18

 Yes 364884 272385 -92499

R2B No 390158 264142 -126016

 Yes 396863 264691 -132172
8.27

R3A No 572144 461661 -110483

 Yes 580301 467209 -113092
1.19

R3B No 630463 442485 -187978

 Yes 639912 443711 -196201
5.41

Table 5: Results for Set 3

 It can be seen that, as the ma in the first 2 phases
does not account for each fa’s preference for
earliness, all the runs with the negotiation phase
(phase 3) consistently gives a better objective value Z
than without negotiation. This improvement ranged
from 1% to 42% depending on the quality of the
initial facility assignment. Furthermore, the marginal
values gained from negotiation are quite large,
suggesting that our proposed approach is effective in
deriving a schedule that gains agent utility at a small
expense of loss in total production cost.

In modeling the local preference of fas as defined,
we have taken into account a local aspect of
information that is not visible to the ma’s perspective
of achieving a schedule with minimum production
cost. It is worth noting that with our local utility
functions, the algorithm returns consistently lower
production cost on the negotiated schedule in Set 2
than in Set 1. The parameters with which we used to
tune the behavior of the facility agents performed as
expected, with the Set 2 fa being more cost aware
(and with less preference for earliness) relative to Set
1 fas. A study of the utility functions ui(u,x) would
reveal that as the parameters β and ε increase, the
desirability of earliness over minimizing utilization
becomes increasingly less. Similarly, Set 3 fas, which
are a mixture of behaviors in Sets 1 and 2, generated
production costs that lie mostly between those of Sets
1 and 2.

The experiments were conducted on a Pentium-IV
workstation running at 2.4GHz clock speed with
512Mb of memory. Agent communications were
simulated by a sequential tread so that communication
overheads become negligible. Phase 1 was reiterated
50 times, while Phase 2 was reiterated 20 times. The
smallest test cases (R1a, R1b) took less than 5
seconds of runtime, while the largest (R3a, R3b)
incurred about 5 minutes. These demonstrate the
computational efficiency of our approach.

6. Concluding Remarks
 In the context of a dynamic and secure networked
system, it may be impossible to make centralized
decisions based on complete information. The use of a
decentralized algorithm in solving complex multi-
echelon scheduling problems is not only essential, but
also more efficient computationally.

Moreover, the use of decentralized decision
making through multiple agents enables uncertainty of
future demands to be tackled through collective
wisdom among agents. By distributing the different
foreknowledge to their respective owners (i.e. having
the ma only deal with global production cost while the
fas counter-balancing with their foreknowledge), our
approach allows one to obtain a production schedule
that effectively hedges against uncertainty.

We saw the complexity of multi-linked
relationships that are prevalent in today’s supply
chain networks. Inspired by the work of [9] on
negotiation ordering in a multi-linked system, we
were led to design an efficient local search algorithm
centering on multi-linked negotiation ordering. This
approach has led us to solve the multi-echelon multi-
indenture production scheduling problem effectively
in a distributed fashion that avoid the pitfalls of
sequential or concurrent negotiations.

Our current approach processes the requests on a
first-come-first-served basis, since there is no
visibility on future orders, as inherent in dynamic
systems. If the requests were to follow a prescribed
demand distribution, we think it would be interesting
to investigate the relationship between demand
patterns and agent utility functions. On another front,
we think it is interesting to investigate the effect of
different credit systems on the results. For instance,
one might consider the setting where both ma and fas
possess an initial non-zero amount of credits before
the beginning of negotiation.

References
[1] W. T. Goh and Z. Zhang, Multi-agent system for
dynamic production scheduling and optimization, In Proc.
3rd International Symposium on Multi-Agent Systems,
Large Complex Systems, and E-Businesses, 664-674,
Oct 2002
[2] D. Kotak, S. Wu, M. Fleetwood, and H. Tamoto.
Agent-based holonic design and operations
environment for distributed manufacturing,
Computers in Industry, Volume 52, 95-108, 2003
[3] V. Krishna, V.C. Ramesh; Intelligent agents for
negotiations in market games, part 1: Model; IEEE
Transactions on Power System Volume 13, No. 3,
1103-1108, Aug 1998.
[4] V. Krishna and V.C. Ramesh. Intelligent agents
for negotiations in market games, part 2: Application;
IEEE Transactions on Power System Volume 13, No.
3, 1109-1114, Aug 1998.
[5] P. Sousa and C. Ramos. A distributed architecture
and negotiation protocol for scheduling in
manufacturing systems; Computers in Industry
Volume 38, 103-113, 1999.
[6] J. Vancza and A. Marcus. An agent model for incentive-
based production scheduling. Computers in Industry,
Volume 43, 173-187, 2000

[7] T. Wagner and V. Lesser; Relating quantified
motivations for organizationally situated agents;
Intelligent Agents VI -Proceedings of the Sixth
International Workshop on Agent Theories,
Architectures, and Languages, Lecture Notes in
Artificial Intelligence, Volume 1757, 334-348, 1999.
[8] M.P. Wellman and P.R. Wurman. Market-aware
agents for a multiagent world; Robotics and
Autonomous Systems Volume 24, 115-125, 1998.
[9] X. Zhang, V. Lesser, and S. Abdallah. Efficient
Management of Multi-Linked Negotiation Based on a
Formalized Model. Autonomous Agents and Multi-
Agent Systems, Volume 10, Number 2, 165-205.
2005.
[10] X.Q. Zhang, V. Lesser, and T. Wagner. A
Layered Approach to Complex Negotiations. Web
Intelligence and Agents Systems: An Int’l Journal,
Volume 2, Number 2, 91-104, 2004

Figure 6: Example of Unit Production Function

Figure 7: Utility Functions for different values of x

3

3.5

4

4.5

5

5.5

6

6.5

7

0 0.2 0.4 0.6 0.8 1 1.2

utilization (u)

)(tanh4)(1 uupj
−+=

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2

utilization (u)

)001.05.0ln(3),(+−=
x

uxxuui

