
Solving Generalized Open Constraint Optimization Problem Using
Two-level Multi-agent Framework

Hoong Chuin LAU1

School of Information Systems
Singapore Management University

hclau@smu.edu.sg

Lei ZHANG
The Logistics Institute Asia Pacific
National University of Singapore

tlizl@nus.edu.sg

Chang LIU
School of Computing

National University of Singapore
liuchang@comp.nus.edu.sg

1 Supported by The Logistics Institute Asia Pacific, under a grant from the Singapore Ministry of Defense

Abstract
The Open Constraint Optimization Problem (OCOP)
refers to the COP where constraints and variable
domains can change over time and agents’ opinions have
to be sought over a distributed network to form a solution.
The openness of the problem has caused conventional
approaches to COP such as branch-and-bound to fail to
find optimal solutions. OCOP is a new problem and the
approach to find an optimal solution (minimum total cost)
introduced in [1] is based on an unrealistic assumption
that agents are willing to report their options in non-
decreasing order of cost. In this paper, we study a
generalized OCOP where agents are self-interested and
not obliged to reveal their private information such as the
order of their options with respect to cost. The objective
of the generalized OCOP is to find a solution with low
total cost and high overall satisfaction level of agents. A
Two-Level Structured Multi-Agent Framework has been
proposed: in the upper level, a neutral central solver
allows agents report their preferred options in tiers and
find a feasible initial solution from top tiers of options by
constraint propagation and guided tiers expansion; in the
lower level, agents form coalitions and negotiate among
themselves on the initial solution by an argument of
Persuasive Points. Experimental results have shown that
this two-level structure yields very promising results that
seek a good balance between the total cost of solution
and the agents’ overall satisfaction level in the long run.

1. Introduction

The advent of online business practices such as

auctions and real-time resource allocation have given rise
to Constraint Optimization Problems (COP) in an open
environment, where agents’ opinions are collected from a
distributed network, and variable domains and constraints
can change dynamically. In [1,2], the Open Constraint
Optimization Problem (OCOP) was defined. The
openness of OCOP has surfaced several new concerns
that render the classical approaches for COP ineffective:
1. Variable domains and constraints can change

dynamically. Most conventional approaches to solve
COP reply on the closed-world assumption that the

domains of the variable and constraints are known
apriori. In OCOP, the central solver only has partial
knowledge of agents’ domains and constraints. Thus,
branch-and-bound will no longer work and an optimal
solution will in general be impossible to achieve as the
best options may not have been revealed yet at the
time of a variable is to be fixed.

2. Agents are self-interested and autonomous. Agents
will make decision based on the current situation and
their own strategies. This makes optimization much
harder if not impossible. How to incentivize self-
interested agents to cooperate remains a big challenge.
In addition, as agents are self-interested, a further
challenge is how to discourage agents from cheating
and increase their overall satisfaction level.

3. Agents have privacy concerns. To prevent information
leakage, agents are reluctant to reveal information
such as the order of their options and costs to anyone,
including the central solver. To address privacy
concerns, agents should be required to provide
information only when necessary. This also serves to
reduce the communication cost, which in general is
much higher than the computation cost in a distributed
setting. The challenge is to use the least amount of
information from agents to produce quality result.
In this paper, we propose a two-level multi-agent

framework to solve OCOP for autonomous agents. In our
framework, agents’ privacies are protected as they do not
need to report their options in any particular order.
Agents are discouraged from cheating (see 6.4), but
unfortunately we cannot ensure agents to be always
truthful. We also seek to minimize communication cost as
we only require agents to report their options when
necessary. We also seek a balance between the total cost
and the overall satisfaction level of all agents.

2. Literature review

To our knowledge, very few works on OCOP are

available to date. [1] is the main paper we review here,
where a refined version of branch-and-bound was
proposed to find an optimal solution that minimizes the
total cost. Since the variable domains are not completely

known to the central solver, the authors make an
important (but unrealistic) assumption that the agents will
report their options in decreasing order of preference to
ensure the optimality of the solution. A Vickrey-Clark-
Groves (VCG) tax mechanism is used to make it optimal
for all agents to tell the truth about their options if they
are self-interested. There are some limitations with this
approach. First, this approach is basically a branch-and-
bound method, which is computationally expensive and
unscalable. In fact, the authors have claimed that this
approach can only handle the test cases with up to 25
variables. Secondly, the agents are totally cooperative and
play a passive role throughout. This is somewhat
unrealistic in a real application. Agents tend to be self-
interested and be cooperative only when there is incentive
to do so. Lastly, there are concerns with the assumption
that agents report their options in decreasing order of
preference. We will discuss this more in Section 3.3.

Other related literatures include works on Constraint
Satisfaction Problem (CSP), Dynamic CSP and
Distributed CSP. CSP, Max-CSP and other variants are
well-studied problems which often take exponential time
to solve via exact search algorithms. Meta-heuristics such
as tabu search has also been applied to solve Max CSP
([8]). Most algorithms are set in an environment where
information is centralized and closed. In an open context,
standard approaches will no longer work and cannot be
readily applied for OCOP. For Dynamic CSP, constraints
can change over time. [3] developed methods for adapting
consistency computations to such changes, and [12]
solved this problem by finding minimal change on the
solution. These methods require that the solution domains
be completely known apriori, which is not so in an open
environment. The Distributed CSP has some similarities
to our problem, where agents are not required to report
complete variable domains beforehand. [5] has extended
this problem to Distributed Constraint Optimization
Problem, and proposed the ADOPT algorithm which
guaranteed a user-defined optimality. It allows agents to
execute asynchronously and in parallel with message
passing. Agents can make local decisions without
necessarily having global certainty. However, this
algorithm relies on backtracking, which is not unscalable
in an open setting. In [9], an optimal asynchronous
algorithm based on cooperative mediation was presented.
In [6], an interesting twist is presented for Distributed
CSP where constraints are secrets and the idea of
incentive auctions were proposed to tackle the problem.

3. Problem formulation

3.1. Problem formulation of COP
A Constraint Optimization Problem (COP) in a closed
setting is defined by a tuple <X, D, C, R > where:
• X = {x1, x2, .., xn} is the set of n variables

• D = {d1, d2, .., dn} is the set of corresponding domains
• C = {C1, C2, .., Cm} is the set of m constraints, where

a constraint Ci is associated with an ordered set of
variables {xi1,..,xik} and has a list of allowed tuples for
the variables.

• R = {r1, r2, ..,rm} is the set of relations, where ri maps
an allowed tuple in Ci to a positive cost.

The goal is to find an optimal solution, i.e. a consistent
assignment of all variables to domain values such that all
constraints are satisfied and the total cost is minimized.

3.2. Hidden variable encoding

In the classical COP formulation, the variable domains
and relations are treated separately. This makes the
problem harder in the open settings, since we have to
cope with both variable domains and relations which are
revealed incrementally. To unify the two concepts, one
approach proposed in [5] is to transform cost-measured
constraints as variable tuples, so that the hard constraints
need only enforce equality of values.

Definition 1. The reformulated COP is as follows:
• X is a set of n+m variables, where the first n

variables corresponds to the original variables and the
(n+i)th variable represents an ordered variable tuple
that includes all original variables associated with the
original constraint Ci.

• Di with the possible values (or value tuples) for each
variable Xi.

• Constraints C={(Xi, Xj) | Xi∈Xj}, where Xi is a single
variable, Xj is a variable tuple, and each Ci enforces
the equality between the value of variable Xi and the
value of Xi that appears in the variable tuple Xj

• A set of m relations that maps a value assignment for
all variables in one variable tuple to a positive value.

Fig 1 below shows an example of the reformulation.
In this paper, each variable tuple is represented as an

agent i.e. the (n+1)st to (n+m)th variables are represented
by agents a1 to am respectively.

3.3. OCOP formulation and some concerns
OCOP is defined according to Definition 1 by a tuple

<X, Di, C, Ri> where the variable domains Di and
relations Ri are not completely known ([1]). Instead, they
are collected from agents incrementally in the form of
options.

Definition 2. An agent’s options is the set of allowed
value tuples for the variables associated with the agent.
Within each agent, these options are assumed to be
ranked according to the costs defined by its
corresponding relation.

Given that agents reveal their options incrementally
but not in the order of preference, it is conceivably
impossible to find the optimal solution as a new value
which is revealed in the later stage may lead to a better
solution than the one found so far. [1] succeeded in

finding an optimal solution by making an assumption that
all the agents will report their options in the strictly non-
decreasing order of cost. As discussed above, this
assumption is unrealistic. First, the order of the options
can be a sensitive piece of information that should not be
revealed even to the central solver. Secondly, in open
settings, there might be values that even the agent is not
aware of at a certain time point that become part of the
agent’s domain later. Thus, the agent has no way to report
their options in the non-decreasing order of cost apriori.

Furthermore, in the open settings, one is not only
interested in minimizing the cost defined above, but also
the communication cost among agents. Yet another
concern is that, as agents are self-interested, a min-cost
solution may not give a true picture of the level of
satisfaction among all agents, as some agents might have
sacrificed their own benefits for the sake of other agents.

3.4. Generalized OCOP and our objective

With the above considerations, we present the
objective of our work. In our model, agents are not
obliged to report their options in non-decreasing order of
cost due to privacy reasons. Furthermore, agents are self-
interested and autonomous for their actions while the
central solver will act more like a broker to pass
information among them. In addition, as agents become
self-interested, they are not only concerned about costs
but also satisfaction level. In this paper, we measure the
overall agents’ satisfaction level by the fairness of the
solution, i.e. the rankings of the values in the solution
should not differ too much with respect to the agents’
own rankings. More precisely, if we assign indexes to the
options (the option with lowest cost has index 1, the
second lowest cost option has index 2, etc.), then over
multiple rounds of negotiation, one can measure the
standard deviation of the agent’s option index against
those in the solutions, and this quantity should be
minimized. The essence behind this is that no self-

interested agent is willing to sacrifice its own benefit to
help others in the long term and thus a fair framework
should ensure all agents perform equally good or bad in
order to attract agents to stay in the system. Details of
this will be elaborated in section 7.2.

We have thus extended the definition of OCOP given
in [1], where we not only need to reduce the total cost of
the solution, but also increase the agents’ overall
satisfaction level. We call this new problem the
Generalized OCOP. There are several ways for
accommodating these two objectives:
a: Given a satisfaction level expressed by the standard

deviation σ, find a solution with minimum cost that
has the standard deviation less than σ

b: Given a maximum overall cost C, find a solution with
minimum standard deviation and has cost less than C

c: Find a mechanism that returns solutions with low cost
C and small standard deviation σ in the long run (i.e.
over multiple rounds of negotiation).
Note that c differs from a and b in that it seeks a

balance between two objectives and emphasizes the
performance of the system in the long run. In this paper,
we adopt c. Thus, the objective is to find feasible
solutions with (1) promising quality in terms of cost, and
(2) improved overall satisfaction level of agents in the
long run.

4. Two-level multi-agent framework

4.1. Overview of the framework

In [4], a two-level framework for task allocation
problem involving agent coalition formation and
negotiation has been proposed. Coalition formation has
been proposed as an effective strategy for self-interested
agents to perform a common task (see for instance [10]).
Negotiation is a fundamental technique in conflict
resolution among self-interested agents [7]. The strength
of a two-level framework lies in the ability of the two
levels to concentrate on different aspects of the problem
goal, and ultimately achieve a good balance between
them. More explicitly, the upper level of the framework
concentrates on the quality of the solution and uses a
centralized approach to find an initial solution with low
cost; in the lower level, agents will negotiate among
themselves to further improve the initial solution
according to their own strategies which will in turn
increase agents’ interests to stay in the system.

Motivated by the two-level framework proposed in
[4], we propose here a two-level framework to solve the
generalized OCOP. The key idea is that instead of asking
agents to report their options in non-decreasing order of
cost, we relax the requirement to ask agents to report their
preferred options in tiers. For example, the agent may be
asked to report its top 10% of most preferred options to
the central solver without telling the actual order among

X1

X3 X2

C3
C1

C2

X1

X3
X2

X5

X4

X6

C1

C1 X4
C2 X5
C3 X6

C1

C2 C2 C3

C2 C3

(Fig 1-b) (Fig 1-a)

Fig 1: In Fig 1-a, there are 3 variables {X1,X2,X3} and 3
constraints {X1,X2}, {X2,X3}, {X1,X2,X3}. When
transformed into Fig1-b, the variables becomes {X1, …, X6}
where X4, X5 and X6 are variable tuples that represent the
3 constraints. Ci now enforces the value consistency of
variable Xi. Hence, the new constraint Ci now enforces
equality of values between the single variable Xi, and a
variable tuples that contains Xi,.

these options and the costs associated. This tier
information is much less sensitive than the exact ranking
of the options, since the central solver or other agents
may never guess the actual costs of the options reported
nor the relevant importance accrued to them by the agent.
Hence, the agent is more assured of privacy. Furthermore,
since tiers are themselves reported in sequence (as we
shall see later), if the central solver can find a feasible
solution from the topmost tier of options reported, this
initial solution will serve as a very good starting point for
the lower-level negotiation process.

Here is the overview of the framework:
In the upper-level initial solution construction phase,

the central solver (henceforth called CS) will ask agents
to report their top-tier options and attempt to find a
feasible solution. Note that this reduces the problem to a
standard CSP which can be solved using any
conventional CSP algorithm. If a feasible solution is
found, it will be passed to the lower-level negotiation
phase as an initial solution; otherwise, CS will first
identify the failed variable which is the deepest node
reached in the search with inconsistency detected (see [2]),
and collect the next tier of options from only agents that
have the failed variable in their options. The reason for
identifying the failed variable is to reduce the amount of
information collected from agents and focus on those
agents that caused the failure first. A second CSP is
solved with the enlarged domains. If this also fails, then
the next iteration is invoked where all agents are asked to
report the next tier of options. The process is repeated
until a feasible solution is found.

The lower-level negotiation phase can be seen as an
improvement phase where agents will form coalitions and
those who are not satisfied with the initial solution will
propose new options to CS. The new proposals will be
negotiated among all affected agents and a consensus is
achieved through an exchange of persuasive points. As
agents are autonomous in the negotiation, their
satisfaction level will be clearly higher than the upper-
level phase where the agents merely take orders from CS.

4.2. Persuasive points

Persuasive Points (PP for short) represents the agent’s
persuasive power during negotiation and serves as the
“goodies” which can be exchanged with other agents in
order to achieve some consensus. A similar idea of
persuasion was recently proposed in [11]. Initially, each
agent will obtain equal amount of PP which will be
accumulated and carried over throughout the whole
negotiation process. During a negotiation phase, each
agent can persuade other agents to accept its proposal by
attaching some PP which can later be distributed among
agents who buy into this proposal. Agents will be
compensated with some PP if they make some
compromise. For example, when CS sends two options

<Op1, Op2> to agent A who prefers Op2, A will return
<Op2, p> back to CS where p is the amount of PP it is
willing to give out if Op2 is chosen eventually.

5. Upper level: initial solution construction

The objective of upper-level initial solution
construction phase is to find a feasible solution from the
top tiers of options reported by the agents which will be
later passed to the lower-level negotiation phase. The
quality of the initial solution is important because it
serves as the basis for optimization in the lower level
negotiation phase. A high quality initial solution will help
to produce a better final solution.

Definition 3. The choice set is the set of domains
composed by the union of all tiers of options reported by
the agents.

Clearly, the choice set provides fixed domains for all
variables resulting in a standard CSP. Note that the choice
set will grow as agents are asked to report lower tiers of
options and eventually become the entire set of agents’
options. For simplicity, we assume a feasible solution
always exists when that happens.

Definition 4. A variable is called tight if its domain
becomes empty when a CSP is being solved.

Definition 5. The degree of the variable is the number
of constraints associated with this variable in the
constraint system.

The function g-search describes how to construct
an initial solution from the tiers of options reported by the
agents in the upper-level. There are many CSP solvers
available and here we use CSP-Solver to denote any
efficient CSP solver that solves the reformulated CSP in
Definition 1 induced by X, A, and the domains given by
the current choice set.

function g-search

{ }nxxxX K21,← ; { }maaaA K21,←

Sort X in non-increasing order of degree
loop

U
Kmi

ianextTierChoiceSet
2,1

)(
=

←

s ←CSP-Solver()
if s is empty

 vt← first tigh variable detected t

 { }i
t

i
t avAaA ∈∈←

 U
t

i Aa
ianextTierChoiceSetChoiceSet

∈

∪←)(

 s←CSP-Solver()
if s is not empty return s

end loop

6. Lower level: agent negotiation

6.1. Agent coalition
Intuitively, the change of one variable’s domain may

affect the value assignment of some other variable if both
appear in a constraint. Thus, we want to find a way to
gather agents into coalitions such that the change of a
variable’s domain will only affect the variables within the
same coalition.

We ask agents to form coalitions when they have
common variables in their option domain. The variables
then become the variables of this coalition, and formed
the coalition variables set. For example, if agent A1 has
(X, Y) as its constraint and agent A2 has (Y, Z) as its
constraint, then A1A2 will form a coalition with coalition
variable set (X, Y, Z). If an agent A3 has (W, Y) as its
constraint, A3 will be added to the coalition of A1A2 and
the coalition variables set will now become (W, X, Y, Z).
In other words, agents can be added to a coalition if they
have variables that are elements of the existing coalition
variable set. If the newly added agent have variables that
are not yet in the coalition variable set, the variables will
be added to the coalition variable set.

Since changing the value of any variable will have a
knock-on effect only on the remaining variables in the
coalition variable set, we can divide agents into disjoint
coalition. CS will only communicate with agents who are
concerned with the change and thus reduce the amount of
information needed to be transferred. In the following
parts of paper, we will only elaborate the negotiation
process within the same coalition.

6.2. Agent negotiation

Definition 6: One negotiation round is defined as the

process that each agent in the coalition re-proposes a new
option to CS if the agent is not satisfied with the value
assignment of its original option in the current solution.

Definition 7: The current solution is the latest
solution that is agreed by all the agents within the
coalition. The initial solution constructed in the upper-
level is the first current solution used in the lower-level.
The current solution will change after each negotiation
round if a better solution is agreed by all the agents.

When the initial solution is passed to the lower-level
negotiation system, only CS knows the whole solution
while agents will only be notified about their options
selected. By this way we protected agent’s personal
information and could set a more fair ground for the
following operations.

The negotiation process works as follows: in each
negotiation round, agents who are not satisfied with their
options in the current solution can re-propose a new
option to CS in the form of <Opnew, p> where Opnew is the
new option and p is the amount of PP the agent is willing
to give out if Opnew is adopted. CS will then pass the new
option as well as the old option in the current solution to

the rest of the agents without telling the agents the cost
difference between these two in the form of <Oporiginal,
Opnew>. Agents have to make a choice between the two
options and feed back to CS in the form of <Op’,p> where
Op’ is the preferred option and p is the amount of PP to
be given out if Op’ is adopted. CS will calculate the PP
attached to both options and the new option will be
chosen as one candidate option if it has more PP attached.
At the end of one negotiation round, CS will examine all
the candidate options, get the option costs for the
candidate options and the one with the most significant
decrease in the overall cost will be chosen to replace the
current solution. CS will return twice of PP to those
agents who oppose the new option adopted as the
compensation and keep the rest of PP to itself.

Here, CS only acts as a broker to pass information
among agents and adjust agents’ PP after a new
assignment of variable is agreed within the coalition. CS
will also facilitate the communication among different
coalitions so that a better and yet consistent assignment
will be found.

6.3. Agents’ strategies

As mentioned above, after receiving a new proposal
from CS, the agent need to feedback to CS which option
it prefers and the amount of PP that it is willing to give
out if its preferred option is adopted. The amount of PP
that it can give out is determined by the agent’s own
strategy and could differ from each other in real
application. In this paper, to make the problem easy to
model, we assume all agents will use the same strategy to
calculate the amount of PP to give out. We assume the
cost of the agent’s option in the original solution is Coriginal.
If the new proposal from CS is adopted, the agent will
need to change its option to a new one in order
accordingly if they have some common variables. We
assume the cost of the new option to be Cnew. The amount
of PP the agent is willing to give out for the more
preferred option is | Coriginal - Cnew |.

6.4. Redistribution of PP

Upon receiving feedbacks from agents for the new
proposal, CS will compare the PP associated with both
the original and new option. We define the sum of PP for
the original option as PPoriginal and the PP for the new
proposal as PPnew. If PPnew > PPoriginal, the new option will
be chosen as one candidate change to the original solution
in the current negotiation round and discarded otherwise.
Agents who failed to get their options adopted will get
back their PP and be compensated with the same amount
of PP as they have associated with their preferred options
before. Agents who succeed to get their options adopted
will give out the PP they have associated with their
preferred option as a compensation for those agents who
lose in the negotiation. The absolute difference between

the PPoriginal and PPnew will be kept by CS and distribute
evenly to all the agents after certain pre-defined
negotiation rounds.

Agents are discouraged from cheating under this
protocol. For example, if agent A preferred the new
proposal and reported a PP higher than the actual amount
that should be reported, agent A is at its own risk that it
has to give out more PP if the new proposal is adopted.
Same situation happens when agent A reported a PP
lower than the actual amount. In this case, agent A is at
the risk that its preferred option may be discarded. As
agent A has no way to predict the consequence of
reporting a fake PP, it will not be encouraged to cheat
during negotiation.

6.5. Repeated negotiation rounds

As the negotiation proceeds in rounds, the result and
PP distribution in one negotiation round will affect the
result and PP distribution in the next round. In order to
prevent a variable being always the focus of the
negotiation process, we decide that when a variable value
is agreed in the current round, it will not change in the
following rounds unless the agents who want to change
its value can afford to pay the PP to persuade all the
agents and the PP that previous agents have paid on
changing the variable to its current value in the previous
round.

6.6. Negotiation termination condition

As the communication cost is expensive, CS will
terminate the negotiation when a pre-defined number of
negotiation rounds is reached. The best solution reached
will become the final solution.

7. Experimental results

7.1. Experiment setup

We set the number of variables (i.e. size of the
variable tuple) associated with each agent to be within the
range [2, 4]. We first generate a fixed number of agents
and a fixed number of variables, and then randomly
associate each agent with variables from the variable
pool. We then generate all possible options by
enumerating the value assignments of all the variables,
and assign a random cost in the range of [0, 20] to these
options. In order to make the number of options lie within
a reasonable computational range, we set the domain size
for all variables to be a small value of 5. Within each
agent, we sort its options in non-decreasing order of cost,
and indicate its order by an option index. For a fixed
solution (i.e a fixed assignment of values to variables), it
is easy to determine the option index of this solution with
respect to a given agent (simply by locating the
corresponding value tuple on the agent’s rank table).

7.2. Results

We first benchmark our results against the optimal
solutions obtained in [1] in terms of cost with a fixed tier-
size and later show the effect of different tier-size on both
the upper level result and the final result. When the tier-
size is set to 1, agents will actually report their options in
non-decreasing order of cost and thus the upper level will
work in the same way as [1] and hence find the optimal
solution. To make the comparison more meaningful, we
need to choose any tier-size greater than 1. In this case,
tier-size of 3 is chosen. As introduced in 3.4, we
introduce the notion of option index standard deviation σ
to measure the fairness of the solution which is defined as
follows:

∑
∑∑

=

==

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−=
N

i

R

r

r
R

r

r
i

RR

I

N 1

2

111
µ

σ

where N denotes the agent number, R the total number of
negotiation rounds tested, the option index for agent i
at negotiation round r, the average option index over
all agents (i.e. all variable tuples) at negotiation round r

r
iI

rµ
.

We use σ as an overall measure on the overall agents’
satisfaction level. We plot different problem instances
(with agent numbers ranging from 7 to 20 and variable
pool size ranging from 10 to 20) against the two metrics.

From Fig 2, we can see that the total cost computed by
our approach is reasonably near to optimality. The worst-
case ratio between our result and the optimal solution is
21%, and the average ratio is 13%. In terms of standard
deviation however, Fig 3 shows that that σ has a value
within the low range of [1.4, 2.1], implying that agents do
not have a large deviation from the average option index
and thus illustrates the fairness of our approach.

Total
Cost
(C)

Fig 2: Comparison with respect to total cost

Our result
Optimal Result 60

50
0

0

30

20

10

40

 10/7 10/10 10/12 10/15 10/18 15/10 15/12 15/25 20/15 20/20

Variable Number (
Agent Number (A)

V)/

Fig 3: Comparison with respect to standard deviation

Tier-
size

Total
cost in

Optimal
Solutio

n

Total
cost
in

Upper
Level
Soln

Upper
Level

Solutio
n Ratio

(%)

Total
cost in
Final

Solutio
n

Final
solutio
n Ratio

(%)

σ in
Upper
Level

Solutio
n

σ in
final

solutio
n

1 19 19 0 21 10.53 1.46 1.33
2 19 21 9.52 20 5.26 1.53 1.47
3 19 21 9.52 20 5.26 1.53 1.47
5 19 22 15.79 22 15.79 1.89 1.78
8 19 28 47.37 22 15.79 1.87 1.84
10 19 32 68.42 23 21.05 2.23 1.97
15 19 42 121.05 27 42.11 2.17 2.12
20 19 47 147.37 28 47.37 2.21 2.14

Table 1: Effects of different tier sizes

We next investigate the effects of tier-size on our

approach for a 10-agent 15-variable problem. Table 1
presents the results. We can see that the general trend is
the ratio between the total cost of the initial solution and
the optimal solution increases as tier-size increases. This
is not surprising as when the tier-size increases,
information is lost and hence widening the gap to the
optimal solution. In the lower level, standard deviation σ
will decrease as compared with σ achieved in the upper
level. This shows that the lower level negotiation is
effective and improves the agents’ overall satisfaction
level. As for the total cost, the general trend is that the
lower level will yield better reduced cost for larger tier-
sizes (for which the upper-level solution has high total
cost). Unfortunately, there is no guarantee for all tier-
sizes, as agents are more interested to improve their
overall satisfaction level rather than the total cost in the
negotiation. For example, when tier-size is set to 1, the
upper level will find the optimal solution, while the lower
level will take place to improve the overall satisfaction
level (improved from 1.46 to 1.33 as shown in the table)
at the cost of increase of total cost (from 19 to 21).

 8. Conclusions and Future Work

In this paper, we studied a generalized version of
OCOP where the agents are self-interested and the
objective is not only to reduce the total cost but also
improve the agents’ overall satisfaction level in the long
run. We proposed a two-level framework that searches

for the solution based on the tiers of options reported by
agents in order to better protect the agents’ privacy.
Experimental results show that the two-level framework
has achieved a good balance between the total cost of the
solution and the agents’ overall satisfaction level in the
long run. We regret that we cannot achieve a smaller ratio
when benchmarked against [1] in terms of total cost.

Option
Index
Standard
Deviati
n (σ)

Possible future work includes the study of the
generalized OCOP with respect to other objectives such
as those discussed in section 3.4. It is also interesting to
investigate other metrics for agent’s satisfaction level
other than the one proposed in this paper. In addition,
more experiments should be performed to measure the
communication cost under this framework and how it
scales with the size of input data. Finally, we await more
effective approaches from the community to solve the
generalized OCOP proposed in this paper.

References

[1] B. Faltings and S. Macho-Gonzalez, “Open Constraint

Optimization”, Proc. CP-2003, pp.303-317
[2] B. Faltings and S. Macho-Gonzalez, “Open Constraint

Programming”, Artificial Intelligence, 161(2005), pp.181-
208, 2005

[3] C. Bessiere, “Arc-Consistency in Dynamic Constraint
Satisfaction Problems.”, Proc. AAAI, pp.221-226, 1991

[4] H. C. Lau and L. Zhang, “A Two-level Framework for
Coalition Formation via Optimization and Agent
Negotiation”, Proc. IEEE/WIC/ACM Int'l Conf. Intelligent
Agent Technology, 441-445, Beijing, China, 2004

[5] M. Yokoo, “Algorithms for Distributed Constraint
Satisfaction: A Review”, Autonomous Agents and Multi-
Agent Systems, September, 2003

[6] M. Silaghi, “Incentive Auctions and Stable Marriages
Problems Solved with [n/2]-Privacy of Human
Preferences”, Technical Report, Florida Inst Tech, CS-
2004-11

[7] N. Jennings, et al., “Automated Negotiation: Prospects,
Methods and Challenge”, J. Group Decision and
Negotiation, 2000

[8] P. Galinier and J. Hao, “Tabu Search for Maximal
Constraint Satisfaction Problems”, Proc. CP-1997, pp.196-
208.

[9] R. Mailler and V. Lesser, “Solving Distributed Constraint
Optimization Problems Using Cooperative Mediation”,
Proc. AAMAS-04, New York, USA

[10] T. Sandholm et al, “Coalition Structure Generation with
Worst Case Guarantees.” Artificial Intelligence, 111(1-2),
pp. 209-238, 1999

[11] S. Ramchurn, “Multi-Agent Negotiation Using Trust and
Persuasion”, Ph.D Thesis, University of Southampton,
December, 2004

[12] Y. Ran, N. Roos, J. van den Herik, “Approaches to find a
near-minimal change solution for Dynamic CSPs”, Proc.
CPAIOR, pp.373-387, 2002

o

1

1.75

1.5

1.25

2.5

2.25
0
2.0

 10/7 10/10 10/12 10/15 10/18 15/10 15/12 15/15 20/15 20/20

Our Result
Optimal Result

Variable Number (
Agent Number (A)

V)/

2.75

