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Abstract 
The Open Constraint Optimization Problem (OCOP) 
refers to the COP where constraints and variable 
domains can change over time and agents’ opinions have 
to be sought over a distributed network to form a solution. 
The openness of the problem has caused conventional 
approaches to COP such as branch-and-bound to fail to 
find optimal solutions. OCOP is a new problem and the 
approach to find an optimal solution (minimum total cost) 
introduced in [1] is based on an unrealistic assumption 
that agents are willing to report their options in non-
decreasing order of cost. In this paper, we study a 
generalized OCOP where agents are self-interested and 
not obliged to reveal their private information such as the 
order of their options with respect to cost. The objective 
of the generalized OCOP is to find a solution with low 
total cost and high overall satisfaction level of agents. A 
Two-Level Structured Multi-Agent Framework has been 
proposed: in the upper level, a neutral central solver 
allows agents report their preferred options in tiers and 
find a feasible initial solution from top tiers of options by 
constraint propagation and guided tiers expansion; in the 
lower level, agents form coalitions and negotiate among 
themselves on the initial solution by an argument of 
Persuasive Points. Experimental results have shown that 
this two-level structure yields very promising results that 
seek a good balance between the total cost of solution 
and the agents’ overall satisfaction level in the long run. 
 
1. Introduction 

 
The advent of online business practices such as 

auctions and real-time resource allocation have given rise 
to Constraint Optimization Problems (COP) in an open 
environment, where agents’ opinions are collected from a 
distributed network, and variable domains and constraints 
can change dynamically. In [1,2], the Open Constraint 
Optimization Problem (OCOP) was defined. The 
openness of OCOP has surfaced several new concerns 
that render the classical approaches for COP ineffective: 
1. Variable domains and constraints can change 

dynamically. Most conventional approaches to solve 
COP reply on the closed-world assumption that the 

domains of the variable and constraints are known 
apriori. In OCOP, the central solver only has partial 
knowledge of agents’ domains and constraints. Thus, 
branch-and-bound will no longer work and an optimal 
solution will in general be impossible to achieve as the 
best options may not have been revealed yet at the 
time of a variable is to be fixed. 

2. Agents are self-interested and autonomous. Agents 
will make decision based on the current situation and 
their own strategies. This makes optimization much 
harder if not impossible. How to incentivize self-
interested agents to cooperate remains a big challenge. 
In addition, as agents are self-interested, a further 
challenge is how to discourage agents from cheating 
and increase their overall satisfaction level.  

3. Agents have privacy concerns. To prevent information 
leakage, agents are reluctant to reveal information 
such as the order of their options and costs to anyone, 
including the central solver. To address privacy 
concerns, agents should be required to provide 
information only when necessary. This also serves to 
reduce the communication cost, which in general is 
much higher than the computation cost in a distributed 
setting. The challenge is to use the least amount of 
information from agents to produce quality result.  
In this paper, we propose a two-level multi-agent 

framework to solve OCOP for autonomous agents. In our 
framework, agents’ privacies are protected as they do not 
need to report their options in any particular order. 
Agents are discouraged from cheating (see 6.4), but 
unfortunately we cannot ensure agents to be always 
truthful. We also seek to minimize communication cost as 
we only require agents to report their options when 
necessary. We also seek a balance between the total cost 
and the overall satisfaction level of all agents.  
 
2. Literature review 

 
To our knowledge, very few works on OCOP are 

available to date. [1] is the main paper we review here, 
where a refined version of branch-and-bound was 
proposed to find an optimal solution that minimizes the 
total cost. Since the variable domains are not completely 



known to the central solver, the authors make an 
important (but unrealistic) assumption that the agents will 
report their options in decreasing order of preference to 
ensure the optimality of the solution. A Vickrey-Clark-
Groves (VCG) tax mechanism is used to make it optimal 
for all agents to tell the truth about their options if they 
are self-interested. There are some limitations with this 
approach. First, this approach is basically a branch-and-
bound method, which is computationally expensive and 
unscalable. In fact, the authors have claimed that this 
approach can only handle the test cases with up to 25 
variables. Secondly, the agents are totally cooperative and 
play a passive role throughout. This is somewhat 
unrealistic in a real application. Agents tend to be self-
interested and be cooperative only when there is incentive 
to do so. Lastly, there are concerns with the assumption 
that agents report their options in decreasing order of 
preference. We will discuss this more in Section 3.3. 

Other related literatures include works on Constraint 
Satisfaction Problem (CSP), Dynamic CSP and 
Distributed CSP. CSP, Max-CSP and other variants are 
well-studied problems which often take exponential time 
to solve via exact search algorithms. Meta-heuristics such 
as tabu search has also been applied to solve Max CSP 
([8]). Most algorithms are set in an environment where 
information is centralized and closed. In an open context, 
standard approaches will no longer work and cannot be 
readily applied for OCOP. For Dynamic CSP, constraints 
can change over time. [3] developed methods for adapting 
consistency computations to such changes, and [12] 
solved this problem by finding minimal change on the 
solution. These methods require that the solution domains 
be completely known apriori, which is not so in an open 
environment. The Distributed CSP has some similarities 
to our problem, where agents are not required to report 
complete variable domains beforehand. [5] has extended 
this problem to Distributed Constraint Optimization 
Problem, and proposed the ADOPT algorithm which 
guaranteed a user-defined optimality. It allows agents to 
execute asynchronously and in parallel with message 
passing. Agents can make local decisions without 
necessarily having global certainty. However, this 
algorithm relies on backtracking, which is not unscalable 
in an open setting. In [9], an optimal asynchronous 
algorithm based on cooperative mediation was presented. 
In [6], an interesting twist is presented for Distributed 
CSP where constraints are secrets and the idea of 
incentive auctions were proposed to tackle the problem.  

 
3. Problem formulation 
 
3.1. Problem formulation of COP  
A Constraint Optimization Problem (COP) in a closed 
setting is defined by a tuple <X, D, C, R > where:   
• X  = {x1, x2, .., xn} is the set of n variables  

• D = {d1, d2, .., dn} is the set of corresponding domains  
• C = {C1, C2, .., Cm} is the set of m constraints, where 

a constraint Ci is associated with an ordered set of 
variables {xi1,..,xik} and has a list of allowed tuples for 
the variables.   

• R = {r1, r2, ..,rm} is the set of relations, where ri maps 
an allowed tuple in Ci to a positive cost.  

The goal is to find an optimal solution, i.e. a consistent 
assignment of all variables to domain values such that all 
constraints are satisfied and the total cost is minimized. 
 
3.2. Hidden variable encoding 

In the classical COP formulation, the variable domains 
and relations are treated separately. This makes the 
problem harder in the open settings, since we have to 
cope with both variable domains and relations which are 
revealed incrementally. To unify the two concepts, one 
approach proposed in [5] is to transform cost-measured 
constraints as variable tuples, so that the hard constraints 
need only enforce equality of values.   

Definition 1.  The reformulated COP is as follows: 
•  X is a set of n+m variables, where the first n 

variables corresponds to the original variables and the 
(n+i)th variable represents an ordered variable tuple 
that includes all original variables associated with the 
original constraint Ci. 

• Di with the possible values (or value tuples) for each 
variable Xi. 

• Constraints C={(Xi, Xj) | Xi∈Xj}, where Xi is a single 
variable, Xj is a variable tuple, and each Ci enforces 
the equality between the value of variable Xi and the 
value of Xi that appears in the variable tuple Xj  

• A set of m relations that maps a value assignment for 
all variables in one variable tuple to a positive value. 

Fig 1 below shows an example of the reformulation. 
In this paper, each variable tuple is represented as an 

agent i.e. the (n+1)st to (n+m)th variables are represented 
by agents a1 to am respectively.  

3.3.  OCOP formulation and some concerns 
OCOP is defined according to Definition 1 by a tuple 

<X, Di, C, Ri> where the variable domains Di and 
relations Ri are not completely known ([1]). Instead, they 
are collected from agents incrementally in the form of 
options.  

Definition 2. An agent’s options is the set of allowed 
value tuples for the variables associated with the agent. 
Within each agent, these options are assumed to be 
ranked according to the costs defined by its 
corresponding relation.  

Given that agents reveal their options incrementally 
but not in the order of preference, it is conceivably 
impossible to find the optimal solution as a new value 
which is revealed in the later stage may lead to a better 
solution than the one found so far. [1] succeeded in 



finding an optimal solution by making an assumption that 
all the agents will report their options in the strictly non-
decreasing order of cost. As discussed above, this 
assumption is unrealistic. First, the order of the options 
can be a sensitive piece of information that should not be 
revealed even to the central solver. Secondly, in open 
settings, there might be values that even the agent is not 
aware of at a certain time point that become part of the 
agent’s domain later. Thus, the agent has no way to report 
their options in the non-decreasing order of cost apriori. 

Furthermore, in the open settings, one is not only 
interested in minimizing the cost defined above, but also 
the communication cost among agents. Yet another 
concern is that, as agents are self-interested, a min-cost 
solution may not give a true picture of the level of 
satisfaction among all agents, as some agents might have 
sacrificed their own benefits for the sake of other agents.  

 

 
 
3.4. Generalized OCOP and our objective 

With the above considerations, we present the 
objective of our work. In our model, agents are not 
obliged to report their options in non-decreasing order of 
cost due to privacy reasons. Furthermore, agents are self-
interested and autonomous for their actions while the 
central solver will act more like a broker to pass 
information among them. In addition, as agents become 
self-interested, they are not only concerned about costs 
but also satisfaction level. In this paper, we measure the 
overall agents’ satisfaction level by the fairness of the 
solution, i.e. the rankings of the values in the solution 
should not differ too much with respect to the agents’ 
own rankings. More precisely, if we assign indexes to the 
options (the option with lowest cost has index 1, the 
second lowest cost option has index 2, etc.), then over 
multiple rounds of negotiation, one can measure the 
standard deviation of the agent’s option index against 
those in the solutions, and this quantity should be 
minimized. The essence behind this is that no self-

interested agent is willing to sacrifice its own benefit to 
help others in the long term and thus a fair framework 
should ensure all agents perform equally good or bad in 
order to attract agents to stay in the system.  Details of 
this will be elaborated in section 7.2. 

We have thus extended the definition of OCOP given 
in [1], where we not only need to reduce the total cost of 
the solution, but also increase the agents’ overall 
satisfaction level. We call this new problem the 
Generalized OCOP. There are several ways for 
accommodating these two objectives:  
a: Given a satisfaction level expressed by the standard 

deviation σ, find a solution with minimum cost that 
has the standard deviation less than σ 

b: Given a maximum overall cost C, find a solution with 
minimum standard deviation and has cost less than C 

c: Find a mechanism that returns solutions with low cost 
C and small standard deviation σ in the long run (i.e. 
over multiple rounds of negotiation).   
Note that c differs from a and b in that it seeks a 

balance between two objectives and emphasizes the 
performance of the system in the long run. In this paper, 
we adopt c. Thus, the objective is to find feasible 
solutions with (1) promising quality in terms of cost, and 
(2) improved overall satisfaction level of agents in the 
long run.   
 
4. Two-level multi-agent framework 
 
4.1. Overview of the framework 

In [4], a two-level framework for task allocation 
problem involving agent coalition formation and 
negotiation has been proposed. Coalition formation has 
been proposed as an effective strategy for self-interested 
agents to perform a common task (see for instance [10]). 
Negotiation is a fundamental technique in conflict 
resolution among self-interested agents [7]. The strength 
of a two-level framework lies in the ability of the two 
levels to concentrate on different aspects of the problem 
goal, and ultimately achieve a good balance between 
them. More explicitly, the upper level of the framework 
concentrates on the quality of the solution and uses a 
centralized approach to find an initial solution with low 
cost; in the lower level, agents will negotiate among 
themselves to further improve the initial solution 
according to their own strategies which will in turn 
increase agents’ interests to stay in the system. 

Motivated by the two-level framework proposed in 
[4], we propose here a two-level framework to solve the 
generalized OCOP. The key idea is that instead of asking 
agents to report their options in non-decreasing order of 
cost, we relax the requirement to ask agents to report their 
preferred options in tiers. For example, the agent may be 
asked to report its top 10% of most preferred options to 
the central solver without telling the actual order among 
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Fig 1: In Fig 1-a, there are 3 variables {X1,X2,X3} and 3 
constraints {X1,X2}, {X2,X3}, {X1,X2,X3}. When 
transformed into Fig1-b, the variables becomes {X1, …, X6} 
where X4, X5  and X6 are variable tuples that represent the 
3 constraints. Ci now enforces the value consistency of 
variable Xi. Hence, the new constraint Ci now enforces
equality of values between the single variable Xi, and a 
variable tuples that contains Xi,.  



these options and the costs associated. This tier 
information is much less sensitive than the exact ranking 
of the options, since the central solver or other agents 
may never guess the actual costs of the options reported 
nor the relevant importance accrued to them by the agent. 
Hence, the agent is more assured of privacy. Furthermore, 
since tiers are themselves reported in sequence (as we 
shall see later), if the central solver can find a feasible 
solution from the topmost tier of options reported, this 
initial solution will serve as a very good starting point for 
the lower-level negotiation process.     

Here is the overview of the framework: 
In the upper-level initial solution construction phase, 

the central solver (henceforth called CS) will ask agents 
to report their top-tier options and attempt to find a 
feasible solution. Note that this reduces the problem to a 
standard CSP which can be solved using any 
conventional CSP algorithm. If a feasible solution is 
found, it will be passed to the lower-level negotiation 
phase as an initial solution; otherwise, CS will first 
identify the failed variable which is the deepest node 
reached in the search with inconsistency detected (see [2]), 
and collect the next tier of options from only agents that 
have the failed variable in their options. The reason for 
identifying the failed variable is to reduce the amount of 
information collected from agents and focus on those 
agents that caused the failure first. A second CSP is 
solved with the enlarged domains. If this also fails, then 
the next iteration is invoked where all agents are asked to 
report the next tier of options. The process is repeated 
until a feasible solution is found.  

The lower-level negotiation phase can be seen as an 
improvement phase where agents will form coalitions and 
those who are not satisfied with the initial solution will 
propose new options to CS. The new proposals will be 
negotiated among all affected agents and a consensus is 
achieved through an exchange of persuasive points. As 
agents are autonomous in the negotiation, their 
satisfaction level will be clearly higher than the upper-
level phase where the agents merely take orders from CS.  
 
4.2. Persuasive points 

Persuasive Points (PP for short) represents the agent’s 
persuasive power during negotiation and serves as the 
“goodies” which can be exchanged with other agents in 
order to achieve some consensus. A similar idea of 
persuasion was recently proposed in [11]. Initially, each 
agent will obtain equal amount of PP which will be 
accumulated and carried over throughout the whole 
negotiation process. During a negotiation phase, each 
agent can persuade other agents to accept its proposal by 
attaching some PP which can later be distributed among 
agents who buy into this proposal. Agents will be 
compensated with some PP if they make some 
compromise. For example, when CS sends two options 

<Op1, Op2> to agent A who prefers Op2, A will return 
<Op2, p> back to CS where p is the amount of PP it is 
willing to give out if Op2 is chosen eventually.  
 
5. Upper level: initial solution construction 
 

The objective of upper-level initial solution 
construction phase is to find a feasible solution from the 
top tiers of options reported by the agents which will be 
later passed to the lower-level negotiation phase.   The 
quality of the initial solution is important because it 
serves as the basis for optimization in the lower level 
negotiation phase. A high quality initial solution will help 
to produce a better final solution. 

Definition 3. The choice set is the set of domains 
composed by the union of all tiers of options reported by 
the agents.  

Clearly, the choice set provides fixed domains for all 
variables resulting in a standard CSP. Note that the choice 
set will grow as agents are asked to report lower tiers of 
options and eventually become the entire set of agents’ 
options. For simplicity, we assume a feasible solution 
always exists when that happens.  

Definition 4. A variable is called tight if its domain 
becomes empty when a CSP is being solved.     

Definition 5. The degree of the variable is the number 
of constraints associated with this variable in the 
constraint system.  

The function g-search describes how to construct 
an initial solution from the tiers of options reported by the 
agents in the upper-level. There are many CSP solvers 
available and here we use CSP-Solver to denote any 
efficient CSP solver that solves the reformulated CSP in 
Definition 1 induced by X, A, and the domains given by 
the current choice set.  
 
function g-search 

{ }nxxxX K21,← ; { }maaaA K21,←  
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loop 

U
Kmi

ianextTierChoiceSet
2,1

)(
=

←  

s ←CSP-Solver() 
if s is empty 

 vt← first tigh  variable detected t

 { }i
t

i
t avAaA ∈∈←  

  U
t

i Aa
ianextTierChoiceSetChoiceSet

∈

∪← )(

 s←CSP-Solver() 
if s is not empty return s 

end loop 

 
6. Lower level: agent negotiation 
 



6.1. Agent coalition 
Intuitively, the change of one variable’s domain may 

affect the value assignment of some other variable if both 
appear in a constraint. Thus, we want to find a way to 
gather agents into coalitions such that the change of a 
variable’s domain will only affect the variables within the 
same coalition. 

We ask agents to form coalitions when they have 
common variables in their option domain. The variables 
then become the variables of this coalition, and formed 
the coalition variables set. For example, if agent A1 has 
(X, Y) as its constraint and agent A2 has (Y, Z) as its 
constraint, then A1A2 will form a coalition with coalition 
variable set (X, Y, Z). If an agent A3 has (W, Y) as its 
constraint, A3 will be added to the coalition of A1A2 and 
the coalition variables set will now become (W, X, Y, Z). 
In other words, agents can be added to a coalition if they 
have variables that are elements of the existing coalition 
variable set. If the newly added agent have variables that 
are not yet in the coalition variable set, the variables will 
be added to the coalition variable set. 

Since changing the value of any variable will have a 
knock-on effect only on the remaining variables in the 
coalition variable set, we can divide agents into disjoint 
coalition. CS will only communicate with agents who are 
concerned with the change and thus reduce the amount of 
information needed to be transferred. In the following 
parts of paper, we will only elaborate the negotiation 
process within the same coalition. 
 
6.2. Agent negotiation  

 
Definition 6: One negotiation round is defined as the 

process that each agent in the coalition re-proposes a new 
option to CS if the agent is not satisfied with the value 
assignment of its original option in the current solution. 

Definition 7: The current solution is the latest 
solution that is agreed by all the agents within the 
coalition. The initial solution constructed in the upper-
level is the first current solution used in the lower-level. 
The current solution will change after each negotiation 
round if a better solution is agreed by all the agents.    

When the initial solution is passed to the lower-level 
negotiation system, only CS knows the whole solution 
while agents will only be notified about their options 
selected. By this way we protected agent’s personal 
information and could set a more fair ground for the 
following operations.  

The negotiation process works as follows: in each 
negotiation round, agents who are not satisfied with their 
options in the current solution can re-propose a new 
option to CS in the form of <Opnew, p> where Opnew is the 
new option and p is the amount of PP the agent is willing 
to give out if Opnew is adopted. CS will then pass the new 
option as well as the old option in the current solution to 

the rest of the agents without telling the agents the cost 
difference between these two in the form of <Oporiginal, 
Opnew>. Agents have to make a choice between the two 
options and feed back to CS in the form of <Op’,p> where 
Op’ is the preferred option and p is the amount of PP to 
be given out if Op’ is adopted. CS will calculate the PP 
attached to both options and the new option will be 
chosen as one candidate option if it has more PP attached. 
At the end of one negotiation round, CS will examine all 
the candidate options, get the option costs for the 
candidate options and the one with the most significant 
decrease in the overall cost will be chosen to replace the 
current solution. CS will return twice of PP to those 
agents who oppose the new option adopted as the 
compensation and keep the rest of PP to itself. 

Here, CS only acts as a broker to pass information 
among agents and adjust agents’ PP after a new 
assignment of variable is agreed within the coalition. CS 
will also facilitate the communication among different 
coalitions so that a better and yet consistent assignment 
will be found.  
 
6.3. Agents’ strategies 

As mentioned above, after receiving a new proposal 
from CS, the agent need to feedback to CS which option 
it prefers and the amount of PP that it is willing to give 
out if its preferred option is adopted. The amount of PP 
that it can give out is determined by the agent’s own 
strategy and could differ from each other in real 
application. In this paper, to make the problem easy to 
model, we assume all agents will use the same strategy to 
calculate the amount of PP to give out. We assume the 
cost of the agent’s option in the original solution is Coriginal. 
If the new proposal from CS is adopted, the agent will 
need to change its option to a new one in order 
accordingly if they have some common variables. We 
assume the cost of the new option to be Cnew. The amount 
of PP the agent is willing to give out for the more 
preferred option is | Coriginal - Cnew |.                 
 
6.4. Redistribution of PP  

Upon receiving feedbacks from agents for the new 
proposal, CS will compare the PP associated with both 
the original and new option. We define the sum of PP for 
the original option as PPoriginal and the PP for the new 
proposal as PPnew. If PPnew > PPoriginal, the new option will 
be chosen as one candidate change to the original solution 
in the current negotiation round and discarded otherwise. 
Agents who failed to get their options adopted will get 
back their PP and be compensated with the same amount 
of PP as they have associated with their preferred options 
before. Agents who succeed to get their options adopted 
will give out the PP they have associated with their 
preferred option as a compensation for those agents who 
lose in the negotiation. The absolute difference between 



the PPoriginal and PPnew will be kept by CS and distribute 
evenly to all the agents after certain pre-defined 
negotiation rounds. 

Agents are discouraged from cheating under this 
protocol. For example, if agent A preferred the new 
proposal and reported a PP higher than the actual amount 
that should be reported, agent A is at its own risk that it 
has to give out more PP if the new proposal is adopted. 
Same situation happens when agent A reported a PP 
lower than the actual amount. In this case, agent A is at 
the risk that its preferred option may be discarded. As 
agent A has no way to predict the consequence of 
reporting a fake PP, it will not be encouraged to cheat 
during negotiation. 
 
6.5. Repeated negotiation rounds  

As the negotiation proceeds in rounds, the result and 
PP distribution in one negotiation round will affect the 
result and PP distribution in the next round. In order to 
prevent a variable being always the focus of the 
negotiation process, we decide that when a variable value 
is agreed in the current round, it will not change in the 
following rounds unless the agents who want to change 
its value can afford to pay the PP to persuade all the 
agents and the PP that previous agents have paid on 
changing the variable to its current value in the previous 
round.  

 
6.6. Negotiation termination condition 

As the communication cost is expensive, CS will 
terminate the negotiation when a pre-defined number of 
negotiation rounds is reached. The best solution reached 
will become the final solution. 
 
7. Experimental results 
 
7.1. Experiment setup 

We set the number of variables (i.e. size of the 
variable tuple) associated with each agent to be within the 
range [2, 4]. We first generate a fixed number of agents 
and a fixed number of variables, and then randomly 
associate each agent with variables from the variable 
pool. We then generate all possible options by 
enumerating the value assignments of all the variables, 
and assign a random cost in the range of [0, 20] to these 
options. In order to make the number of options lie within 
a reasonable computational range, we set the domain size 
for all variables to be a small value of 5. Within each 
agent, we sort its options in non-decreasing order of cost, 
and indicate its order by an option index.  For a fixed 
solution (i.e a fixed assignment of values to variables), it 
is easy to determine the option index of this solution with 
respect to a given agent (simply by locating the 
corresponding value tuple on the agent’s rank table).  

 
7.2. Results   

We first benchmark our results against the optimal 
solutions obtained in [1] in terms of cost with a fixed tier-
size and later show the effect of different tier-size on both 
the upper level result and the final result. When the tier-
size is set to 1, agents will actually report their options in 
non-decreasing order of cost and thus the upper level will 
work in the same way as [1] and hence find the optimal 
solution. To make the comparison more meaningful, we 
need to choose any tier-size greater than 1. In this case, 
tier-size of 3 is chosen. As introduced in 3.4, we 
introduce the notion of option index standard deviation σ 
to measure the fairness of the solution which is defined as 
follows:  
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where N denotes the agent number, R the total number of 
negotiation rounds tested, the option index for agent i 
at negotiation round r, the average option index over 
all agents (i.e. all variable tuples) at negotiation round r

r
iI

rµ
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We use σ as an overall measure on the overall agents’ 
satisfaction level. We plot different problem instances 
(with agent numbers ranging from 7 to 20 and variable 
pool size ranging from 10 to 20) against the two metrics.  

From Fig 2, we can see that the total cost computed by 
our approach is reasonably near to optimality. The worst-
case ratio between our result and the optimal solution is 
21%, and the average ratio is 13%. In terms of standard 
deviation however, Fig 3 shows that that σ has a value 
within the low range of [1.4, 2.1], implying that agents do 
not have a large deviation from the average option index 
and thus illustrates the fairness of our approach.   
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Fig 2: Comparison with respect to total cost 

 

Our result
Optimal Result 60 

50 
0

0 

30 

20 

10 

40 

     10/7   10/10   10/12 10/15  10/18  15/10 15/12  15/25  20/15  20/20 

Variable Number (
Agent Number (A) 

V)/



 
Fig 3: Comparison with respect to standard deviation     
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1 19 19 0 21 10.53 1.46 1.33 
2 19 21 9.52 20 5.26 1.53 1.47 
3 19 21 9.52 20 5.26 1.53 1.47 
5 19 22 15.79 22 15.79 1.89 1.78 
8 19 28 47.37 22 15.79 1.87 1.84 
10 19 32 68.42 23 21.05 2.23 1.97 
15 19 42 121.05 27 42.11 2.17 2.12 
20 19 47 147.37 28 47.37 2.21 2.14 

 
Table 1: Effects of different tier sizes 

 
We next investigate the effects of tier-size on our 

approach for a 10-agent 15-variable problem. Table 1 
presents the results. We can see that the general trend is 
the ratio between the total cost of the initial solution and 
the optimal solution increases as tier-size increases. This 
is not surprising as when the tier-size increases, 
information is lost and hence widening the gap to the 
optimal solution. In the lower level, standard deviation σ 
will decrease as compared with σ achieved in the upper 
level. This shows that the lower level negotiation is 
effective and improves the agents’ overall satisfaction 
level. As for the total cost, the general trend is that the 
lower level will yield better reduced cost for larger tier-
sizes (for which the upper-level solution has high total 
cost). Unfortunately, there is no guarantee for all tier-
sizes, as agents are more interested to improve their 
overall satisfaction level rather than the total cost in the 
negotiation. For example, when tier-size is set to 1, the 
upper level will find the optimal solution, while the lower 
level will take place to improve the overall satisfaction 
level (improved from 1.46 to 1.33 as shown in the table) 
at the cost of increase of total cost (from 19 to 21).  

 
 8. Conclusions and Future Work 

In this paper, we studied a generalized version of 
OCOP where the agents are self-interested and the 
objective is not only to reduce the total cost but also 
improve the agents’ overall satisfaction level in the long 
run. We proposed a two-level framework that searches 

for the solution based on the tiers of options reported by 
agents in order to better protect the agents’ privacy. 
Experimental results show that the two-level framework 
has achieved a good balance between the total cost of the 
solution and the agents’ overall satisfaction level in the 
long run. We regret that we cannot achieve a smaller ratio 
when benchmarked against [1] in terms of total cost.  

Option 
Index 
Standard
Deviati
n (σ) 

Possible future work includes the study of the 
generalized OCOP with respect to other objectives such 
as those discussed in section 3.4. It is also interesting to 
investigate other metrics for agent’s satisfaction level 
other than the one proposed in this paper. In addition, 
more experiments should be performed to measure the 
communication cost under this framework and how it 
scales with the size of input data. Finally, we await more 
effective approaches from the community to solve the 
generalized OCOP proposed in this paper.  
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