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Abstract

In a rapidly changing environment, the behavior and
decision-making power of agents may have to be adaptive
with respect to a fluctuating autonomy. In this paper, a cen-
tralized fuzzy approach is proposed to sense changes in en-
vironmental conditions and translate them to changes in
agent autonomy. A distributed coalition formation scheme
is then applied to allow agents in the new autonomy to re-
negotiate to establish schedule consistency. The proposed
framework is applied to a real-time logistics control of a
military hazardous material storage facility under peace-
to-war transition.

1. Introduction

The dynamism in complex systems may require behav-
ioral changes in agents in terms of their local goals and the
manner they collaborate and negotiate with other agents. It
may also require agents to transfer their decision-making
power either completely or partially to other agents. The
extent to which changes or transfers occur is often referred
to as the adjustable autonomy of the agent. Often, adjust-
ments occur in stages as situations on the ground continu-
ally change. The challenge is in devising mechanisms that
continuously translate changes on the ground to the agents’
adjustable autonomy.

In this paper, we propose a centralized approach to dy-
namically adjust the local objectives and autonomy lev-
els of the agents. Here, a fuzzy framework is designed
which translates the environmental changes to changes in
the agents’ local objectives and autonomy. Given the exist-
ing objectives and autonomy levels, a distributed coalition

formation based algorithm is then applied where agents ne-
gotiate to obtain a consistent solution with respect to a set
of global constraints and objective.

2. Literature Review

Various reasons entail changes of agent autonomy over
time. In some instances, the agent might lack the capabil-
ity to make decisions [5]. Others tend to make provisions
for human intervention to cater for unexpected events where
the agent may act irrationally [4]. Reduced confidence in a
fully automated system is a common reason where some
crucial decisions require user interference. [7] studies the
possibility of transferring autonomy for higher quality deci-
sions with minimizing coordination problems. While agent-
to-agent transfer of autonomy is considered, there is little
work on the needs for such a transfer and the practical ad-
vantages and implications of such a strategy. Most of the
mentioned work have focused on a single agent and a sin-
gle user. While [7] has expanded beyond the one-to-one
relationships, the author limits the transfer to a complete
transfer of autonomy and does not consider situations where
some autonomy may be retained. [1] proposes three discrete
levels of autonomy: ”Command-Driven” where the agent
does not make decisions and must obey orders, ”Consen-
sus” where the agent shares decision making equally with
other agents and ”Locally Autonomous” where the agent
makes decisions alone. In this paper, we consider a real-life
military situation where there a need to vary the autonomy
gradually and continuously to suit changing circumstances.

Constraint Satisfaction Problem (CSP), Dynamic CSP,
Distributed CSP and other variants are well-studied prob-
lems. For Dynamic CSP, constraints can change over time.
[3] developed methods for adapting consistency computa-



tions to such changes, and [2] solved this problem by seek-
ing minimal change on the solution. [6] extended this prob-
lem to Distributed Constraint Optimization Problem as well
and proposed the ADOPT algorithm which guaranteed a
user-defined optimality. [8] also provide an algorithm (Ap-
tOPT) to solve distributed Constraint Optimization Prob-
lem, which experimentally performs better than ADOPT.

3. Problem Definition

Essentially, the problem we study can be divided into
two parts, i.e. sense and response. The sense problem is how
to correctly translate all sensing data gathered by the agents
to new local objectives and autonomy levels for each agent.
The response problem is, given the new objectives and the
autonomy levels of the agents, how the agents should inter-
act with each other to respond to the environment.

Let N be the index set of n agents, and each agent
i ∈ N holds a set of mutually exclusive variables
Ai = {ai1, ai2, ..., aili}. The domains for the vari-
ables held by agent i are Di = {Di1, Di2, ..., Dili}.
The values that can be taken by the variables
a11, a12, ..., a21, a22, ..., anln are restricted by a set of
global constraints C = {C1, C2, ..., Cq}. Each agent i has
a set of objective functions Fi = {f1

i , f2

i , ..., f
pi

i }. Each

function is defined as fk
i :

∏

1≤j≤li Dij → R.
These agents exist in a dynamic environment that are

captured by the dynamic environment variables. Let E be
the set of m environment variables E = {e1, e2, .., em} that
can be sensed by the agents. The domain for variable ei is
the set Dei

of real numbers. Each agent senses some of the
environment variables. Let the function sensed : N → 2E

returns the set of variables that an agent can sense, equiva-
lently sensed(i) ⊆ E. This is to capture the idea that each
agent has its own sensor, and able to sense its surrounding.

The sense problem is defined as, given the existing val-
ues of the environment variables in E, find

1. the objective that the agent must focus on, i.e. a map-

ping for each agent i, Mi :

∏

1≤j≤m Dej
→ Fi;

2. the relative autonomy levels of the agents, i.e. a map-

ping for each agent i, Li :

∏

1≤j≤m Dej
→ [0, 1].

The response problem is defined as, given both
the objective fi and autonomy level ali set for each
agent i, find an assignment for the agent variables
(a′

11
, a′

12
, ..., a′

21
, a′

22
, ..., a′

nln
) which is consistent with C

and minimizes the agent local objectives and the global ob-
jective which is defined in this work as the sum of the
relative ”errors” of all agents, i.e. minimizing

∑

i∈N

(

ali ∗
f∗

i − fi(a
′
i1, a

′
i2, ..., a

′
ili

)

f∗
i

)

where fi
∗ is the value of the objective given the optimal as-

signment to the variables of agent i.

4. Solution Approach

The overall solution approach is given as follows. For
the sense problem, we propose a fuzzy framework to cap-
ture the relationships between environment variables and
the agent objectives and autonomy levels. The role of the
fuzzy framework is to continually capture the sensor data
from all the agents and in turn translate these data into new
objectives and autonomy level of the agents. Then, based on
the objectives and the autonomy levels set, we apply a dis-
tributed branch-and-bound algorithm to obtain the solution
for the response problem.

4.1. Fuzzy Framework

The system behavior of a sense-and-response system is
often difficult to design. Due to the adaptive nature required
of the system, the interpretation of the inputs to the system
such that a proper reaction can be designed is a complex
task. In this paper, we propose a fuzzy selection process to
determine the autonomy and objective of agents. Fuzzy sys-
tem has been studied extensively in the literature, and has
been applied to a wide range of real life applications. The
advantages of using a fuzzy system are that it generally cap-
tures relationships between non-discrete data and handles
incomplete data effectively.

The five-stage fuzzy process listed below has been exten-
sively reported [4][8]. In the following, we define the func-
tion Li(e

′
1
, e′

2
, ..., e′m) as consisting of:

• Normalization, performs a scale transformation of the
input metric into a normalized variable. For each input
variable ej ∈ E, its domain Dej

= [0, rj ] is normal-
ized into the interval [0, a] for some value a, and the
normalization function is:

nj(e
′
j) =

(

a

rj

)

.e′j

• Fuzzification, determines the degree to which the nor-
malized variables belong to each of the appropri-
ate fuzzy sets via membership functions. The do-
main [0, a] of each of the normalized variable ej

can be divided into several states, called fuzzy sets:
I1

j , I2

j , ..., I
sj

j , let Ij = {I1

j , I2

j , ..., I
sj

j }. This ap-
plies to the output variable as well. The partial
functions µIk

j
for 1 ≤ k ≤ sj measure the de-

gree of membership of the normalized value to the set
Ik
j .

• Fuzzy Inferencing, a rule base, also known as the in-
ference engine, links the fuzzy inputs to the fuzzy out-



puts via linked statements called rules. A rule is an if-
then statement of the form:

if ej is in Ik
j and ep is in Iq

p and ...
then ali is in Ot

i .

for some p, q, t where ali is the autonomy level of
agent i, Ot

i ∈ Oi, and Oi is the set of fuzzy sets for the
output variable ali. In other words, the if-part of a rule
contains a set of fuzzy sets of the input variable, and
the then-part of the rule contains a fuzzy set of the out-
put variable. A rule will fire if µIk

j
(nj(e

′
j)) is defined

for all Ik
j contained in the if-part of the rule. The result

of firing a rule is the state (fuzzy set) that the output
variable in and the degree of the membership which is

min
{

µIk
j
(nj(e

′
j))

}

for all Ik
j in the if-part of the rule.

• Defuzzification, the fuzzy sets for the output from dif-
ferent rules that fire are merged and the center of area
of the combined fuzzy sets is found to get a defuzzi-
fied value called the centroid ci.

• Denormalization, is the reverse of the normalisation
process where the scaling biases are removed. The co-
efficients which are obtained for each agent, can be
viewed as weights that have to be applied to determine
the autonomy of the agent, i.e. ali =

(

1

a

)

.ci

The value of a, the membership functions and the rules are
defined based on empirical methods. Mi is defined in a sim-
ilar way.

4.2. Coalition Formation Based Algorithm

Here, we propose a coalition formation based algorithm
for the agents to find the assignment to all the variables
(a′

11
, a′

12
, ..., a′

21
, a′

22
, ..., a′

nln
) that is consistent with C

while optimizing the measure of objective described above,
or to output no solution if such solution is not found.

This algorithm is based on distributed branch-and-
bound. The idea is to have the agents form coalitions, and
to find local solutions. If these local solutions do not con-
flict each other with respect to C, then the solution is
found. If conflicts between these local solutions oc-
cur, then the agents will try to form a bigger coalitions, and
then find the consistent solutions within this bigger coali-
tions. In the worst case, all the agents will form one big
coalition, and if consistent solution still can not be found,
the algorithm will output no solution.

The algorithm is divided into 3 parts, namely initializa-
tion, coalition formation, and negotiation.

During intialization, each agent first constructs an opti-
mal assignment to its variables using a branch and bound
search that maximizes its given objective function fi. This
optimal value is then stored in the variable f ∗

i . Gi is the
set that stores all the agents that are currently in coalition

with agent i. The set is initialized to i itself. The variable
Li indicates the agent that has the role as the leader in the
current coalition of agent i, this agent is the one with the
highest autonomy level in the coalition. The set Ki stores
all the agents having conflict with agent i, initially set to
empty. Variable statei indicates the state of the agent i. Af-
ter initialization, the agents will enter into coalition forma-
tion stage.

In coalition formation stage, each agent first checks
for any external conflicts , which is done through ex-
change of variables. After detecting conflicting neighbors,
each agent will send invitations to all its conflicting neigh-
bors to form a coalition . Along with the invitation, the
agent also sends the variable alLi

which is the autonomy
level of the leader of the current coalition, or the highest in-
dividual autonomy level in the set Gi. An agent will tend
to join a coalition which has a member with the higher au-
tonomy level. This is important for the convergence of the
algorithm. The algorithm uses concurrent invite and ac-
cept to ensure each agent is in at most one coalition at
any point of time. When the agents have formed the coali-
tions, they will enter the negotiating stage of the algo-
rithm given as follows:

NEGOTIATE()
1 if (all agents are in no conflict state)
2 then return (ai1, ai2, ..., aili )
3
4 Li ← j where alj ≥

max
k∈Gi

{alk}
5 if(i 6= Li)
6 then SEND((Di1, Di2, ..., Dili ),fi,f∗

i
) to Li

7 else
8 n← #Gi

9 when received((Dj1, Dj2, ..., Djlj )fj , f∗

j
) do

10 n← n− 1
11 if(n = 0)
12 then do branch and bound search to find an

assignment dpq to all the variables
apq ∈ Ap for all p ∈ Gi

that minimizes
∑

p∈Gi

(

alp ∗
f∗

p −fp

f∗

p

)

13 if (no consistent solution found)
14 then return ”NO SOLUTION”
15 SEND(dp1, dp2, ..., dplp ) to all p ∈ Gi

16
17 when received(di1, di2, ..., dili ) do
18 assign (di1, di2, ..., dili ) to ai1, ai2, ..., aili
19
20 FORM-COALITION()

If all the agents are in no conflict state, then a con-
sistent solution has been reached, and each agent will re-
turn their current assignment to the variables as the solu-
tion (lines 1-2). If the agents are in negotiating state, then
the agent with the highest autonomy level in a coalition
will gather the data from all other agents in the coalition.
A branch and bound search will then be performed to find
a consistent solution that minimizing the sum of the rela-
tive error of each agent in the coalition. If a consistent so-
lution cannot be reach, the algorithm returns no solution.



When a solution is reached, it is broadcasted to every mem-
ber of the coalition, and the agents return to coalition for-
mation stage.

5. Application in Military Storage Facility

In this section, we apply our solution framework to solve
a real-time control problem within a military storage facil-
ity with a high space restriction.

In this problem a wide range of hazardous products are
to be stored in containers. A job comprises a combination
of products of given quantities retrieved from a given set
of containers. One or more vehicles will be used to trans-
port the requested products out of the facility. Demands are
dynamic since their arrival timings are not known apriori.
The paths leading to the entrance are defined by a road net-
work and there is a restriction on the number of vehicles that
can travel on a particular road segment at any time point.
Road segments are separated by doors which should be kept
closed for safety of the facility, and opened only to allow
vehicle moments. The number of door opening and closing
should also be minimized because they generate heat within
the facility. The door temperature increases each time the
door is opened or closed, and decreases gradually over time
in between. There is also a safety consideration that discour-
ages doors from opening concurrently (to contain possible
leakages and explosions).

5.1. Experimental Setup

We perform experiments on a prototype of the storage fa-
cility problem. In this paper, we report results for a 7-agent
problem responsible for the 7 doors (not including the main
door). Each agent has two objectives, namely to minimize
request tardiness (by minimizing the waiting time of the ve-
hicles), and to minimize the heat caused by opening/closing.
The constraints are: the exposure of the facility due to the
opening of the doors must not exceed certain level. The ex-
posure is measured by the number of road segments that are
revealed because of the opening of the doors. In this case,
it must not be more than 4. There are 3 traffic agents with 1
overlapping road segment. The congestion level of this seg-
ment is limited to 15 vehicles at any point of time. The traf-
fic agents have a single objective, that is to minimize the de-
lay of jobs. The outline of the system is given in Figure 1.

The environmental variables captured in the experiment
are the war level and the temperatures of each door. These
two inputs are fed into the fuzzy system. The domain of
the temperature [25, 65] is normalized to [0, 1] and divided
into five fuzzy sets {L,LM,M,MH,H} as shown in Figure 2.
Similarly, the domain of the input war-level [0, 100] is nor-
malized and divided into three sets {L,M,H}. The output
variables of the fuzzy system are: autonomy level, with do-

Figure 1. Storage Facility

Figure 2. Fuzzification of Input Variables

main [0, 1], and objective function, with domain {0, 1}. The
domain of the autonomy level is also normalized and di-
vided into five sets {L,LM,M,MH,H}. The rule base inside
the fuzzy system are obtained from empirical and histori-
cal data.

A subset of the rules for determining the autonomy lev-
ael and objective function of the door agents is shown in
Figure 3, where a low objective function refers to minimiz-
ing tardiness and high refers to minimizing temperature.

For each pair of environmental variables, we generate
3000 requests with different deadlines. The two output vari-
ables that we observed are: the tardiness of the requests
(how late the requests are satisfied) and the safety level of
the system, by measuring the exposure caused by the open-
ing of the doors.



Figure 3. Subset of The Inferencing Rules

Figure 4. Comparison of Tardiness

5.2. Experimental Results

The test cases are divided into 3 parts. First, we fixed the
average temperature to 25oC, and varied the war level. Sec-
ond, we fixed the war level, to 15% and varied the average
temperature. Thirdly, we varied both the war level and the
average temperature.

Figure 4 shows the measure of tardiness for three differ-
ent cases. The first case shows that as the war level increases
over time, tardiness decreases but at the same time the se-
curity level of the whole system also decreases, as seen in
Figure 5. In the second case, as we increase the temperature
over time, the effect is the opposite of the first case, as seen
in both figures. For the third case, the variations in the ob-
served output variables are shown in Figures 4 and 5. It can
be observed that the system adapts to changes in environ-
mental variables and respond accordingly.

Figure 5. Comparison of Safety

6. Conclusion

We studiued the problem of partial adjustable autonomy
in the context of sense and respond to dynamic environ-
mental changes via changing automony levels and objec-
tives. Our solution approach has shown promising results
for a real problem involving the design of a control system
for a military storage facility under a peace-to-war transi-
tion. We believe the proposed approach can be adapted to
solve other real-time logistics management problems where
drastic changes in environmental variables (such as peace-
to-war) is an issue.
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