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In this paper, we consider the two-dimensional variable-sized bin packing problem (2DVSBPP) with
guillotine constraint. 2DVSBPP is a well-known NP-hard optimization problem which has several real
applications. A mixed bin packing algorithm (MixPacking) which combines a heuristic packing algorithm
with the Best Fit algorithm is proposed to solve the single bin problem, and then a backtracking algorithm
which embeds MixPacking is developed to solve the 2DVSBPP. A hybrid heuristic algorithm based on iter-
ative simulated annealing and binary search (named HHA) is then developed to further improve the
results of our Backtracking algorithm. Computational experiments on the benchmark instances for
2DVSBPP show that HHA has achieved good results and outperforms existing algorithms.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Combinatorial optimization plays a very important role in oper-
ational research, discrete mathematics and computer science. The
two-dimensional bin packing problem (2DBPP) is a well-known
combinatorial optimization problem. There are many variants of
2DBPP, one of which is the variable-sized bin packing problem
(2DVSBPP) which is a generalization of the standard 2DBPP. In
2DVSBPP, we are given a set of bins, each bin j with dimensions
Wj � Hj, j 2 [1,n] having a type represented by a finite or infinite
number Nj, and a set of items each item i with dimensions wi � hi,
i 2 [1,n], the objective is to use minimum bins (more precisely,
minimum total area of used bins) to pack all items that meet the
following constraints (Lodi, Martello, & Vigo, 1999a).

Orientation: Each item may either have a fixed orientation or
can be rotated.
Guillotine cut: It may or may not to be imposed that the items
are obtained through a sequence of edge-to-edge cut parallel to
the edges of the respective bin.

2DVSBPP with guillotine cuts constraints is abbreviated
2DVSBPP|O|G. 2DBPP is known to be an NP-hard problem,
2DVSBPP|O|G is more computationally challenging than 2DBPP.
This is the reason why several approximate methods have been
proposed to solve 2DBPP, which are generally based on heuristics
and meta-heuristics (Lodi et al., 1999a). Some heuristic algorithms
such as the first-fit decreasing height (FFDH) algorithm (Coffman,
Edward, Garey, Johnson, & Tarjan, 1980), the best-fit decreasing
height (BFDH) algorithm (Coffman & Shor, 1990), the floor-ceiling
(FC) algorithm (Lodi, Martello, & Vigo, 1999b; Lodi et al., 1999a),
improved best-fit decreasing height (BFDH�) algorithm (Bortfeldt,
2006), JOIN (Martello, Monaci, & Vigo, 2003), size-alternating stack
(SAS) algorithm (Ntene, 2007; Ntene & van Vuuren, 2009), modi-
fied size-alternating stack (SASm) algorithm (Ortmann, Ntene, &
van Vuuren, 2010) and best-fit with stacking (BFS) algorithm
(Ortmann et al., 2010) for two-dimensional strip packing problem
were developed for 2DBPP. A two-phase approach was applied to
the FC algorithm resulting in the hybrid floor-ceiling (HFC) algo-
rithm for 2DBPP (Lodi et al., 1999a, 1999b). Lodi, Martello, and
Vigo (2002) reviewed recent advances on solving 2DBPP. Other
methods include the work of Pisinger and Sigurd (2007) based
on decomposition techniques and constraint programming.
Most recently, Omar and Ramakrishnan (2013) proposed an
evolutionary particle swarm optimization algorithm for solving
non-oriented 2DBPP.

The literature mentioned above focus on two-dimensional bin
packing with bins of the same size. For 2DVSBPP, Valério de
Carvalho (2002) defined an LP formulation. Kang and Park (2003)
proposed two greedy algorithms with a worst-case performance
bound of 3/2. Pisinger and Sigurd (2005) used a branch-and-price
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Fig. 2. Horizontal pattern.

Table 1
Score strategy.

Condition (space dimension = w � h,
item dimension = wi � hi)

Fitness m (change of space
number in candidate)

w = wi and h = hi 3 �1
(w = wi and h > hi) or (w > wi and h = hi) 1 0
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algorithm to solve the problem exactly. Liu, Chu, and Wang (2011)
developed a dynamic programming-based heuristic for 2DVSBPP.
Recently, Wei, Oon, Zhu, and Lim (2013) proposed a goal-driven
approach (GDA) for 2DBPP and 2DVSBPP, and achieved the best
published results in these two problems. Alvarez-Valdes, Parreño,
and Tamarit (2013) presented a GRASP/Path relinking algorithm
for two- and three-dimensional multiple bin-size bin packing
problems.

There are a few papers on 2DBPP with guillotine cuts
constraints. Polyakovsky and M’Hallah (2009) studied the two-
dimensional guillotine bin packing problem using a new Guillotine
Bottom Left (GBL) constructive heuristic and its Agent-Based (A-B)
implementation. A-B is particularly fast and yields near-optimal
solutions. Ortmann et al. (2010) proposed a two-stage algorithm
for 2DVSBPP described as follows. In the first stage, sort bins by
DAIP (decreasing area increasing perimeter), and sort items by
DHDW (decreasing height decreasing width) and use a specified
strip algorithm to pack items into a strip with the strip width as
the width of the first bin in the list. Repeat the previous phase until
there are no unpacked items. In the second stage, for each packed
bin, try to use the specified strip algorithm to pack all items in the
packed bin into a bin with a smaller area and not used, if such
smaller bin exists, then replace the pack on the packed bin and free
it. Charalambous and Fleszar (2011) developed a constructive bin-
oriented heuristic for the two-dimensional bin packing problem
with guillotine cuts. Recently, three insertion heuristics and a jus-
tification improvement heuristic were developed for 2DBPP with
guillotine cuts (Fleszar, 2013).

The literature on 2DVSBPP|O|G is relatively scarce, up to now,
the publications to our knowledge include Ortmann et al. (2010).
In this paper, we consider 2DVSBPP|O|G and develop a hybrid heu-
ristic algorithm. The paper is organized as follows. In the Section 2,
we introduce a heuristic named BTVS for 2DVSBPP. Section 3 pre-
sents a hybrid heuristic algorithm named HHA to continuously
improve the solution of BTVS. In Section 4, various benchmark
problems are used to examine the effectiveness of HHA. At last,
Section 5 provides concluding remarks.
w > wi and h > hi 0 1
w < wi or h < hi �1 0
2. Backtracking algorithm

2.1. Heuristic packing algorithm (HPA)

The constructive heuristic algorithm (Leung, Zhang, & Sim,
2011) uses a score strategy to evaluate each item to be packed
for an available space, and then select one item with highest score
to pack that space. The score strategy has been shown in Leung
et al. (2011) to be very effective for solving strip packing. Using
the same technique, we consider all available spaces, and then
evaluate the current item for each available space, then select
one space with the highest score to pack the current item.
Although the constructive algorithm by Leung et al. (2011) evalu-
ates each item and each available space, the proposed procedure
HPA uses an ordered list of items and considers one item at a time.
Usually the piece is placed on the left bottom corner of the space,
such as Figs. 1 and 2. More precisely, our score strategy is shown in
Table 1.

Column one of Table 1 gives the various conditions that can
occur. The next column Fitness is the score to evaluate which space
to place the item, the space with highest nonnegative fitness would
be taken. The third column shows the corresponding change of in
the space value of the candidate if that space had been used to
place the item. Specifically for condition row 1, it is assigned the
highest fitness because the item will fully use the space and the
space would no longer be split, thus the m value is set to �1. For
the second row, one edge length of the space is equal to the item’s
length, so it will fully use either the left or the bottom part of the
space, and the remainder space will be a new space so the m value
is set to zero. For the third row, it will generate a sub space on top
and a sub space on right, hence its m value is set to 1. For the fourth
row, the space cannot cover the item so it is assigned a negative
value, hence it will not change the space and its m value is set to 0.

After choosing the best space to place the current item, we need
to cut the sub space from best space which meets the guillotine
constraint. In general, we have two cut patterns as shown in Figs. 1
and 2, where the current item to be placed is shown in shade. The
vertical pattern first cuts from top to bottom along the current
item’s width, it will generate two new sub spaces Sv1 and Sv2.The
horizontal pattern cuts from left to right along the current item’s
height, it will generate two new sub spaces s Sh1 and Sh2. Both pat-
terns meet the guillotine constraint.

Since we cannot determine which cut is better, we use a mutex-
space (MutexSpace) to record these two patterns at the same time.
When choosing a best space for an item, mutex-space records the
space, item and the four new sub spaces (Sv1 and Sv2 in vertical pat-
tern, Sh1 and Sh2 in horizontal pattern), where Sv1 and Sv2 are
incompatible with (mutex) Sh1 and Sh2. During the search, if the
best space BestSpace is found for the current item, we remove
the best space and its mutex-spaces from space list (SL). At the
same time, we add new subspaces that are generated by packing
the current item (ITEM) in the two patterns. As Figs. 1 and 2 show,
they are two different patterns for the same space and same item.
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For example, we use a space SPACE1 to place an item ITEM1,
we store both patterns and add Sv1, Sv2, Sh1, Sh2 to the space list.
When we process an item ITEM2 and find that Sh1 is the best
space for ITEM2, we need to apply the horizontal pattern to SPACE1
and ITEM1. And as we apply the horizontal pattern, there is no
possible to generate Sv1 and Sv2, so we remove Sv1 and Sv2 from space
list. Then we retain Sh2 in space list, and remove Sh1 from space list
and process Sh1 and ITEM2 in the phases at the start of this
paragraph.

The heuristic packing algorithm is presented as Algorithm 1 in
detail and named as HPA. The input of HPA is a bin (BIN) and a list
of items (ITEMS), the output of HPA is a list of unpacked items and
a list of placements. UP is short for unpacked list. If the item does
not fit, the item was added into the unpacked list UP.

2.2. Best Fit packing algorithm (BFA)

The Best Fit with Stacking algorithm (BFS) proposed by
Ortmann et al. (2010) improves the BFDH� algorithm presented
by Bortfeldt (2006). When packing an item at one level, it may gen-
erate a new sub space at the ceiling of the space due to the guillo-
tine constraint, BFS uses an FFDH (first-fit decreasing height)
strategy to pack the unpacked items into the ceiling sub space
when it is generated.

Algorithm 1. Heuristic packing algorithm (HPA)

Input: a bin BIN, a list of items ITEMS
Output: a list of placement on bin, a list of unpacked items
HPA(BIN, ITEMS)

1: initialize a list of space SL (short for space list) and add
BIN into SL
2: initialize an empty list UP (short for unpacked list) of
unpacked items
3: initialize an empty placement list PL (short for placement
list)
4: for ITEM in ITEMS
5: find a space SPACE with max score(SPACE, ITEM) in
space list SL
6: if cannot find such SPACE then
7: add ITEM into UP
8: continue
9: remove SPACE from spaces list SL
10: add placement(SPACE, ITEM) in left bottom position
into placement list PL
11: if SPACE is a sub-space of mutex-space MutexSpace
then
12: apply the cut pattern of SPACE to MutexSpace
13: remove other two sub spaces in other pattern from
space list SL
14: add another sub space of the applied pattern into
space list SL
15: add sub spaces of mutex-space(SPACE, ITEM) into
space list SL
16: return PL, UP
BFS was proposed to solve strip packing problem, which sorts
items with decreasing height order, and packs them in horizontal
direction. In this paper, we apply this algorithm to the bin packing
problem and consider the vertical direction as well. The Best Fit
packing algorithm (BFA) proposed in this paper is developed from
BFS, and its detailed description is given in Algorithm 2. BFA
regards this sub space as a new space having the same priority
to other spaces on the space list, and only uses it to pack an item
when it has the highest score, which is the major difference com-
pared with the BFS.
Algorithm 2. Best Fit packing algorithm (BFA)

Input: place pattern PATTERN, a bin BIN, A list of items ITEMS
Output: a list of placement on bin, a list of unpacked items
BFA(PATTERN, BIN, ITEMS)

1: sort the items by DHDW (or DWDH)
2: initialize a list of space SL and add BIN into SL
3: initialize an empty list UP of unpacked items
4: initialize an empty placement list PL
5: for ITEM in ITEMS
6: find the space SPACE with minimum horizontal(or
vertical) residual space for item ITEM
7: if no space fit for ITEM then
8: add ITEM into UP
9: continue
10: add placement(SPACE, ITEM) in left bottom position
into placement list PL
11: cut space SPACE with item ITEM in horizontal(or
vertical) pattern and add the two sub spaces generated into
SL
12: return PL, UP

The input of BFA is a bin, a list of item and a place pattern
(PATTERN). The place pattern has two patterns: horizontal pattern
(Fig. 2) or vertical pattern (Fig. 1). Algorithm MixPacking (will be
described in Section 2.3) invokes BFA with a different PATTERN,
where the horizontal PATTERN uses DHDW (decreasing height
decreasing width), and the vertical PATTERN uses DWDH (decreas-
ing width decreasing height) in the first line of BFA.

2.3. Mixed bin packing algorithm (MixPacking)

Before invoking algorithm HPA, we need to sort items in a spec-
ify order. Since it is hard to say which order is better for a special
bin and a list of items, we copy items and sort each copy in differ-
ent order, and try to pack each copy and choose the best copy (i.e.
the maximum sum of item area packed in the bin).

The detailed algorithm is given in Algorithm 3 and named as
MixPacking. Note that in this algorithm, we need to include the
implicit input of the various sort orders, these orders are used to
sort the items’ copies for HPA. MixPacking invokes HPA and BFA
with different parameters (different order for HPA, different
pattern for BFA), and returns the best result. The HPA’s orders are
increasing reference index (IR), decreasing reference index (DR),
decreasing height decreasing width (DHDW), decreasing width
decreasing height (DWDH), decreasing area (DA), decreasing
perimeter (DP).

Algorithm 3. Mixed bin packing algorithm (MixPacking)

Input: a bin BIN, A list of items ITEMS
Output: a list of placement on bin, a list of unpacked items
MixPacking(BIN, ITEMS)

1: initialize a list of packed bins PBLIST
2: initialize an empty list UP of unpacked items
3: initialize an empty placement list PL
4: for order ORDER in HPA’s orders
5: sort ITEMS with ORDER
6: PB = HPA(BIN, ITEMS)
7: add PB into PBLIST
8: for pattern PATTERN in (horizontal, vertical)
9: PB = BFA(PATTERN, BIN, ITEMS)
10: add PB into PBLIST
11: return the best of PBLIST
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2.4. Backtracking algorithm for variable-sized bins packing
The MixPacking algorithm was designed to solve a single bin
packing problem; for a variable-sized bin packing problem, we
need to consider the arrangement of the bins. We use a backtrack-
ing algorithm to invoke the MixPacking algorithm. We name this
algorithm as BTVS and its detail is given in Algorithm 5. Here, bins
are selected sequentially according to the algorithm binarySearch.
They are sorted in decreasing area order. The copy operation in line
3 serves to copy the current state, (the current packed bins PACKED
or BINS, SET), so we can modify it during search and do not need to
rollback when we backtrack. Cloned PACKED in line 9 uses sum of
remained items’ area and used bins’ area to estimate current
situation, so it is possible to achieve better result.

Algorithm 4. Inner backtracking procedure of BTVS

Input: current packed bins PACKED, a list of bins available
BINS, a set of item lists with different orders named SET

Output: none
BT(PACKED, BINS, SET)

1: for each bin BIN in bins available
2: PB = MixPacking(BIN, SET)
3: clone PACKED
4: add PB into clone
5: if cloned PACKED pack all items then
6: if cloned PACKED achieves a better result then
7: update global result with cloned PACKED
8: continue
9: if cloned PACKED may achieve a better result then
10: clone BINS and SET
11: update cloned BINS and cloned SET with PB
12: BT(clone, cloned BINS, cloned SET)

For a list of bins and a set of items, BTVS incrementally builds

the packed bins by invoking the MixPacking algorithm to fill items
into a specified bin as much as possible, and prunes each partial
solution as soon as it determines that plan cannot generate a valid
solution or obtain a better solution.

The input of BTVS is an instance of the variable-sized bin pack-
ing problem, i.e. a list of bins and a list of items. The BT() function
in line 5 of Algorithm 5 is the procedure stated in Algorithm 4.

Algorithm 5. Backtracking algorithm for variable-sized bins
packing (BTVS)

Input: a list of bins BINS, a list of items ITEMS
Output: a feasible packing of the items into the bins with the

aim of minimizing unutilized space in bins containing items
BTVS(BINS, ITEMS)

1: initialize a set of items list SET
2: for ORDER in ORDERS of HPA(IR, DR, DHDW, DWDH, DA,
DP) and BFA(DHDW, DWDH)
3: copy ITEMS, use ORDER to sort copy, add copy into SET
4: initialize global result
5: BT(empty, BINS, SET)
6: return global result
3. Hybrid heuristic algorithm

BTVS uses a simple backtracking and greedy strategy which
simply searches several items’ order (DHDW, DWDH, DA, DP,
etc.). In this section, we propose a method to explore the search
space more thoroughly to obtain a better solution.

We focus on HPA again, since it is a powerful heuristic
algorithm which allows us to do more things to obtain a better
solution. More precisely, we will try to improve HPA by searching
a proper order of items and a better combination of bins.

3.1. Simulated annealing packing (SAP)

Recall that HPA is a heuristic algorithm which generates a com-
plete solution with a few proper orders. Here we use a simulated
annealing algorithm to find a proper item order. Simulated anneal-
ing has been widely applied in packing and many other NP-hard
problems, (Leung et al., 2011; Zhang, Liu, M’Hallah, & Leung, 2010).
It generates a solution from a given current solution with variation,
and accepts a better or worse solution with a probability which is
computed from the current temperature and objective value.

Algorithm 6. Sequential packing (SP)

Input: a list of bins BINS, a list of items ITEMS
Output: a feasible packing of the items into the bins
SP(BINS, ITEMS)

1: initialize a list of packed bin PBLIST
2: for BIN in BINS
3: for i 1 to BIN’s number do
4: PB = HPA(BIN, ITEMS)
5: add PB into PBLIST
6: if ITEMS is empty then
7: return a complete solution based on PBLIST
8: return an incomplete solution based on PBLIST

Sequential packing (SP) is given in Algorithm 6. The input to SP
is a variable-sized bin packing problem instance. The available
number of each bin types may be infinite in the original problem,
but SP is designed to pack items into a set of bins with finite total
area sum, so the available number of each bin types must be finite.
The order of items is fixed in SP, but for different invocation of SP,
the order may be different. The output of SP is a solution of the
problem, and the solution may not be complete (not every items
have been packed). For an incomplete solution, we use the area
sum of packed items to evaluate the order of items.

Simulated annealing packing algorithm (SAP) is given in
Algorithm 7. It generates a list of items with different orders and
uses SP to pack items into bins one by one. Mapkob length is the
number of iterations of simulated annealing search. In algorithm
SP and SAP, the parameters of invoking SP and SAP include a list
of bins named BINS, which is a specific bin combination chosen
by algorithm binarySearch.

Algorithm 7. Simulated annealing packing (SAP)

Input: mapkob length L, a list of bins BINS, a list of items
ITEMS

Output: a feasible packing of the items into the bins
SAP(L, BINS, ITEMS)

1: temperature T, T T0

2: while not reach the stop criterion do
3: for i 1 to L do
4: copy ITEMS to COPY
5: randomly select two items p and q in COPY and swap
them
6: current = SP(BINS, ITEMS)
7: if current is complete then
8: return current
9: if current > best or exp((current – best) / T) P
rand(0, 1) then
10: best = current
11: ITEMS = COPY
12: return best
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3.2. Hybrid heuristic algorithm
In general, there will be more than one bin combination usually
which may have different performance. In addition, different
instance may require different mapkob lengths to find good item
orders, and up to this point, we have not discussed an effective
method to determine this mapkob length.

Algorithm 8. Binary search packing

Input: mapkob length L, upper bound UB, a list of bins BINS, a
list of items ITEMS

Output: a feasible packing of the items into the bins
binarySearch(L, UB, BINS, ITEMS)

1: LB = item area sum of ITEMS
2: Set = the set of sub bin combination of BINS whose area is
in [LB, UB)
3: sort Set in decreasing area order
4: BCSet = head finite sub set of Set
5: while time limit not exceeded do
6: ind = 0
7: while BCSet – Ø do
8: ind = ind + |BCSet|
9: BC = BCSet[ind]
10: remove BC from BCSet
11: sol = SAP(BC, ITEMS)
12: if sol is complete then
13: best = sol
14: remove all bin combinations whose area is large
or equal to BC
15: ind = 0
16: if best – null then
17: return best
18: BCSet = next finite sub set of Set
19: if BCSet = Ø then
20: break
21: return null

In the following, we propose a hybrid heuristic algorithm (HHA)
to try to find a better bin combination and item order. HHA first
starts with an initial length, and uses binary search similar to
Zhang, Wei, Leung, and Chen (2013) as shown in Algorithm 8 to
find a better bin combination that generates a complete solution
with a specified order of items. If there are possible better solu-
tions, the mapkob length is doubled, and the process is repeated
until time limit is exceeded.

Binary search as shown in Algorithm 8 is designed to find a
complete solution by invoking the SAP with a fixed mapkob length.
The input of Algorithm 8 includes a variable-sized bin packing
Fig. 3. Ilustration of HHA performance.
problem instance, a mapkob length and an upper bound of area
sum of bin combination. The output is a feasible solution (better
than the upper bound) or null if not found. Algorithm 8 lists all
possible bin combinations and uses binary search to search a bin
combination that leads a complete solution. A little difference to
general binary search is when Algorithm 8 finds a complete solu-
tion, it does not return immediately, but continues to search all
possible bin combinations.

Algorithm 9. Hybrid heuristic algorithm (HHA)

Input: a list of bins BINS, a list of items ITEMS
Output: a feasible packing of the items into the bins
HHA(BINS, ITEMS)

1: current = BTVS(BINS, ITEMS)
2: mapkobLength = initial mapkob length(BINS, ITEMS)
3: while time limit not exceeded do
4: pack = binarySearch(mapkobLength, current’s area,
BINS, ITEMS)
5: if pack is better than current then
6: current = pack
7: if current achieve the best solution then
8: return current
9: mapkobLength = mapkobLength � 2
10: return current
The main function of HHA is given in Algorithm 9. The input of
HHA is a variable-sized bin packing problem instance. The output
of HHA is a complete solution. First, HHA uses BTVS to find a
complete solution within a short time. Then HHA tries to find a
better solution by invoking Algorithm 8 with a fixed mapkob
length. If there is possibly better solution, HHA doubles the
mapkob length and invokes Algorithm 8 with the doubled mapkob
length. This process will repeat until time limit is exceeded or the
best solution is found. In this paper, we use a fixed initial temper-
ature, a fixed cooling rate, and use a mapkob length that is doubled
after each round of HHA.

Fig. 3 reports an example of finding a good bin combination. The
horizontal axis represents the iteration round, and vertical axis
represents the area utilization (defined in Section 4.2) associated
with a given bin combination, higher utilization means better qual-
ity. Each C label stands for a particular combination. These points
describe an example of running HHA, from which we can find that
HHA is an algorithm considering both time complexity and solu-
tion quality. A larger area is easier to place all items, so its compu-
tation time is smaller, but its solution quality is worse. On the
contrary, a smaller area is harder to place all items, so it takes more
computation time, but it may achieve a better result. For the exe-
cution of HHA in Fig. 3, at first, iteration round is set to 50. At the
first pass, HHA only finds the solution with bin combination named
C12. At the second pass, iteration round is doubled to 100, and the
solution with C5 is found. At the third pass, we double iteration
round to 200, we need to explore the C1 to C4, and find the best
solution C1. In this example, HHA needs a long execution on C8,
C4 and etc., if we would like to find the best solution on each bin
combination from small to large one by one. Also it will spend sev-
eral times of time resource on the C3 and C4, even though their
area is close to the best solution C1, if we want to use the binary
search with a fixed but large iteration round. We cannot assign a
big iteration round at the first, or we spend too much time resource
on the exploration of C11, C8, etc.

4. Computational experiments

These algorithms were written as sequential algorithms in Java,
compiled and run using oracle JDK7. Experiments were performed
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on an Intel Core i5-2400 CPU (quad core, 3.10 gigahertz) and
8 gigabytes RAM running the Centos 6 Linux operating system.

For this experiment, algorithms are run in a time limit, BTVS’s
limit is 10 CPU seconds or it searches all possible solutions, HHA’s
limit is 60 CPU seconds or it finds the best solution. The initial
mapkob length of HHA uses the number of items.

4.1. Benchmarks

We use three set of benchmark data to evaluate the effective-
ness of HHA. First benchmark data is for 2DVSBPP, we compare
HHA with various algorithms in Ortmann et al. (2010). And we
compare HHA with different algorithms with correspond bench-
marks, these two benchmarks are for 2DBPP.

We use a large set of benchmark data to evaluate the effective-
ness of HHA to the two-stage algorithm with different strip pack-
ing algorithms in Ortmann et al. (2010). There are several online
repositories of benchmark data for packing problems, but bench-
marks for variable-sized bin packing problem are fewer than the
popular strip packing problem. There are only data set M from
Hopper and Turton (2002) and data set PS from Pisinger and
Sigurd (2005) for this problem.

From the benchmark instances for 2DBPP, Pisinger and Sigurd
(2005) generated new 2DVSBPP instances with variable bin cost.
Each original instance contains a type of bin without limit of num-
ber, and the corresponding instance adds five new 5 types of bin
without limit of number, the new added bin’s dimensions are
selected from range [W/2,W] � [H/2,H] independently, W and H
is the original bin type’s dimension. Ortmann et al. (2010) remove
the bin costs in their paper. They created benchmarks for testing
the effects on nice and pathological data, and their benchmarks
are generated in the same manner of Wang and Valenzela (2001)
and are named as Nice and Path. Since Nice and Path’s generation
Table 2
Summary of the average packing utilizations achieved for 2DVSBPP.

Source M1 M2

n 100 100
FFDH Coffman et al. (1980) 93.5 87.5
BFDH Coffman & Shor, 1990 93.5 88.8
JOIN Martello et al. (2003) 86.8 82.8
FCOG Lodi et al. (1999a) Lodi et al. (1999b) 94.9 89.6
BFDH� Bortfeldt (2006) 94.9 89.6
SAS Ntene (2007) Ntene and van Vuuren (2009) 83.5 81.7
SASm Ortmann et al. (2010) 91.6 88
BFS Ortmann et al. (2010) 95.5 90
HHA 98.4 95.6

Table 3
Average packing utilizations achieved for benchmark in Pisinger and Sigurd (2005).

Class n FFDH BFDH JOIN FCOG

I 60 86.3 86.6 83 87.3
II 60 83.7 83.7 80.9 85.2
III 60 81.1 81.7 76.7 81.9
IV 60 80 80 79.1 82.7
V 60 80.4 81.1 77.6 81.3
VI 60 79.1 79.3 78.3 80.7
VII 60 79.9 80.2 79.6 80.8
VIII 60 80.7 81.1 74.2 81.3
IX 60 72.8 72.6 72.1 72.6
X 60 83.3 83.8 79.3 85.4
20 20 73.5 73.7 71.7 75.4
40 40 79.1 79.3 76.9 80.3
60 60 81.7 82 79.2 83
80 80 84 84.1 80.9 84.6
100 100 85.3 85.8 81.9 86.3

Average utilization 80.7267 81.0000 78.0933 81.920
algorithm begins with a square rectangle of dimension
1000 � 1000, each case should have an optimal solution. Both
include combinations of 2–6 bin types and 25–500 items (these
is no combination of 6 bin types and 25 items), each combination
contains 5 problems.

For 2DBPP with guillotine cuts, the bins are of same size, one
data set (BWMV) include classes 1–6 proposed by Berkey and
Wang (1987) and classes 7–10 proposed by Martello and Vigo
(1998). Each class has 10 instances of size 20, 40, 60, 80, and 100
items. This data set has a total of 500 instances. Classes differ in
the bin size ranging from10 � 10 to 300 � 300. Item dimensions
are random integers from uniform distributions in various ranges.
Another data set (Ngcutfsd) includes classes d = 1, 2, 3 proposed by
Beasley (2004). For each class, seven problem sizes are considered:
n = 40, 50, 100, 150, 250, 500 and 1000. For each problem type, 10
instances are included. The bin sizes are 100 � 100. Two data sets
are well-known and classic, and then they are widely used to test
the performance of different algorithms for 2DBPP.
4.2. Numerical results 2DVSBPP

In order to test the effectiveness of HHA, experiments use utili-
zation to evaluate it and other algorithms. The utilization l of a
solution is the total area of items divided by the area of the bins
used, that is

l ¼ total area of items
area of the bins used

� 100%:

With area of bins used decreases, wasted space decreases and
the utilization increases. If a solution’s utilization is 90%, that
means 10% space wasted. Thus the goal is to maximize the
utilization.
M3 PS Nice Path Average utilization

150 60 231 231
92 80.7 81.8 80.9 86.0667
92.6 81 81.7 81.2 86.4667
85.5 78 78.6 78.7 81.7333
93.6 81.9 82.7 85.3 88
93.6 81.7 82.5 83.5 87.6333
86.8 74.9 76.8 76.9 80.1
91.8 79 78.4 78.5 84.55
94.9 82 82.6 85 88.3333
97.4 87.8 91.5 94.6 94.2167

BFDH� SAS SASm BFS HHA

87.4 79.4 86.3 88.6 91.5
85 80.1 82.2 85.1 96.3
81.9 69.6 75.7 82.2 86.6
82.1 76 78 82 91.7
81.2 72.6 78.3 81.4 84.6
80.5 76.1 77.1 79.5 90.2
80.6 74 80.4 80.9 86.9
81.2 76.4 79.5 81.6 85.9
72.8 71.6 72.9 73 74.3
84.6 73.2 79.4 85.5 90.3
75.4 70 72.3 75.2 82.9
79.8 74.6 78 80.1 88.5
82.7 74.9 80 83.1 89.3
84.4 76.7 81.6 85 88.8
86.3 78.3 83.1 86.5 89.7

0 81.7267 74.9000 78.9867 81.9800 87.8333



Table 4
Average utilizations achieved for benchmark in Ortmann et al. (2010).

Class n FFDH BFDH JOIN FCOG BFDH� SAS SASm BFS HHA

Nice25i 25 73.9 73.6 70.6 73.9 73.6 68.3 71.8 73.6 94.3
Nice50i 50 76.7 76.7 73.3 77.9 77.7 70.8 73.1 77.8 89.2
Nice100i 100 79.4 79.4 77.5 79.9 79.4 75.7 76.3 79.4 88.3
Nice200i 200 82 82 81.5 84.5 84.5 78.5 79.4 84.5 91
Nice300i 300 85.8 85.8 83.3 86 86.5 80.2 81.7 86.8 92
Nice400i 400 85.1 85.1 82.7 86.6 85.7 80.2 81 85.7 92.8
Nice500i 500 87.2 87.2 84.8 87.7 87.7 81.8 83.8 87.7 93.1
Path25i 25 76.3 76.3 73.9 77.9 77.6 72.2 74.4 78.3 97.2
Path50i 50 76.4 78.6 74.2 81.6 79.4 72.4 75.6 81.9 94.9
Path100i 100 79.7 79.7 77.8 83.2 81.3 72.4 75.8 83.5 93.5
Path200i 200 84.1 84 81.8 88 85.9 77.7 79 87.5 93.3
Path300i 300 82.9 82.9 82.7 87 86 81.4 81.7 87.3 94.9
Path400i 400 82.7 82.7 82.3 89.6 87 79.9 80.1 88.5 94.8
Path500i 500 82.9 82.9 81.2 88.7 86.4 81.3 82.4 86.7 94
Nice2bin 225 75 75 73.4 75.8 75.8 71.3 72 75.8 83.2
Nice3bin 225 81.5 81.5 79.1 82.8 82.8 76.3 77.7 82.9 92
Nice4bin 225 83.2 83 80.9 83.8 83.4 78.4 81.3 83.6 94.1
Nice5bin 225 83.8 83.8 80.7 85 84.4 77.7 79.1 84.6 94.1
Nice6bin 258 85.3 85.3 83.2 86.2 86.3 80.5 82.1 86 94.3
Path2bin 225 69.7 70.2 68.5 74.7 71.6 70.8 70.6 74 87.4
Path3bin 225 80.1 80.1 78.9 86 83.9 75.2 76.3 85.2 94.9
Path4bin 225 82.9 83.3 81.3 86.6 85.5 74.7 78.3 86.3 96.5
Path5bin 225 84.3 84.8 83.2 89.5 88 79.7 81.9 89.8 96.9
Path6bin 258 88.3 88.4 85.4 90.5 89.5 85.2 86.9 90.5 97.6

Average utilization 81.2167 81.3458 79.2583 83.8917 82.9125 76.7750 78.4292 83.6625 93.0958

Table 5
The performance ratio of GBL, A-B and HHA for data set Ngcutfsd.

Instance n Class d = 1 Class d = 2 Class d = 3

RGBL RA-B RHHA RGBL RA-B RHHA RGBL RA-B RHHA

Ngcutfsd_11 40 1.200 1.200 1.200 1.200 1.200 1.200 1.143 1.000 1.000
Ngcutfsd_12 40 1.222 1.111 1.111 1.333 1.222 1.222 1.333 1.167 1.167
Ngcutfsd_13 40 1.222 1.111 1.111 1.182 1.091 1.091 1.286 1.000 1.000
Ngcutfsd_41 50 1.154 1.154 1.154 1.333 1.111 1.111 1.200 1.200 1.100
Ngcutfsd_42 50 1.167 1.083 1.083 1.222 1.222 1.111 1.125 1.125 1.000
Ngcutfsd_43 50 1.167 1.167 1.083 1.214 1.214 1.143 1.143 1.143 1.143
Ngcutfsd_71 100 1.174 1.130 1.130 1.182 1.136 1.136 1.133 1.067 1.067
Ngcutfsd_72 100 1.115 1.115 1.077 1.095 1.048 1.048 1.111 1.111 1.056
Ngcutfsd_73 100 1.125 1.125 1.083 1.095 1.095 1.048 1.133 1.067 1.067
Ngcutfsd_101 150 1.111 1.056 1.056 1.097 1.065 1.065 1.095 1.048 1.048
Ngcutfsd_102 150 1.121 1.091 1.061 1.100 1.067 1.033 1.150 1.100 1.100
Ngcutfsd_103 150 1.097 1.065 1.065 1.094 1.094 1.063 1.154 1.077 1.077
Ngcutfsd_131 250 1.086 1.069 1.069 1.132 1.094 1.094 1.077 1.051 1.051
Ngcutfsd_132 250 1.143 1.095 1.095 1.077 1.058 1.058 1.103 1.051 1.051
Ngcutfsd_133 250 1.098 1.082 1.066 1.095 1.048 1.048 1.079 1.053 1.053
Ngcutfsd_161 500 1.091 1.066 1.066 1.051 1.040 1.040 1.052 1.039 1.039
Ngcutfsd_162 500 1.083 1.058 1.074 1.065 1.043 1.065 1.051 1.038 1.051
Ngcutfsd_163 500 1.080 1.072 1.096 1.067 1.034 1.056 1.057 1.043 1.043
Ngcutfsd_191 1000 1.079 1.041 1.071 1.054 1.034 1.044 1.039 1.026 1.033
Ngcutfsd_192 1000 1.070 1.035 1.065 1.044 1.027 1.038 1.034 1.027 1.027
Ngcutfsd_193 1000 1.081 1.051 1.064 1.056 1.036 1.056 1.034 1.027 1.034

Average ratio 1.127 1.094 1.089 1.132 1.094 1.084 1.120 1.069 1.057
9 1 5 8 2 3 6 5 5
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Table 2 gives a summary of the average packing utilizations
achieved by different algorithms for 2DVSBPP. Where the
name of algorithms is given in the first row, the second row is
source on algorithms. Table 3 gives average packing utilizations
achieved for VSBP on benchmark in Pisinger and Sigurd (2005).
And Table 4 reports average packing utilizations achieved for
VSBP on benchmark in Ortmann et al. (2010). Average denotes
the average utilization of the considered problems. All of these
strip algorithms observes the guillotine constraint. Except for
HHA, results of other algorithms are cited from Ortmann et al.
(2010).

Comparing the results (see Average utilization) in Tables 2, 3,
and 4, we can observe that HHA achieves a better result than
other algorithms, especially for the data sets Nice and Path. The
improvement on average utilization is huge. For data sets M
(M1-3) and PS, HHA achieves a better result, but its improvement
on these two data sets is not good enough comparing to Nice and
Path. The reasons are that M and PS are not designed with an opti-
mal solution of full utilization of bins, their solutions are irregular,
so it is difficult to find an optimal solution.

4.3. Numerical results 2DBPP of same bin size

A-B (Polyakovsky & M’Hallah, 2009) and CHBP (Charalambous
& Fleszar, 2011) are the best methods available for 2DBPP with
guillotine cuts in the literature. The performance of A-B, CHBP



Table 6
The performance ratio of TS, A-B,CHBP and HHA for data set BWMV.

BWMV n RTS RA-B RCHBP RHHA

Class 1 20 1.11 1.01 1.00 1.00
40 1.08 1.02 1.00 1.00
60 1.05 1.03 1.02 1.02
80 1.04 1.00 1.00 1.00

100 1.05 1.02 1.01 1.01
Average ratio 1.066 1.017 1.008 1.006

Class 2 20 1.00 1.00 1.00 1.00
40 1.10 1.10 1.10 1.00
60 1.15 1.00 1.05 1.00
80 1.07 1.00 1.07 1.00

100 1.03 1.00 1.00 1.00
Average ratio 1.070 1.020 1.043 1.000

Class 3 20 1.18 1.05 1.03 1.03
40 1.12 1.08 1.07 1.03
60 1.07 1.07 1.03 1.03
80 1.08 1.06 1.05 1.02

100 1.09 1.05 1.04 1.03
Average ratio 1.108 1.062 1.046 1.029

Class 4 20 1.00 1.00 1.00 1.00
40 1.10 1.00 1.00 1.00
60 1.20 1.10 1.10 1.10
80 1.10 1.10 1.10 1.07

100 1.10 1.03 1.07 1.03
Average ratio 1.100 1.047 1.053 1.040

Class 5 20 1.13 1.02 1.00 1.00
40 1.09 1.04 1.02 1.00
60 1.07 1.04 1.02 1.01
80 1.08 1.06 1.03 1.03

100 1.09 1.06 1.04 1.03
Average ratio 1.092 1.043 1.021 1.014

Class 6 20 1.00 1.00 1.00 1.00
40 1.50 1.40 1.40 1.30
60 1.10 1.05 1.05 1.05
80 1.00 1.00 1.00 1.00

100 1.10 1.10 1.07 1.10
Average ratio 1.140 1.110 1.103 1.090

Class 7 20 1.08 1.04 1.00 1.00
40 1.07 1.05 1.03 1.02
60 1.05 1.04 1.02 1.02
80 1.05 1.05 1.04 1.04

100 1.04 1.03 1.02 1.02
Average ratio 1.058 1.043 1.023 1.018

Class 8 20 1.12 1.02 1.00 1.00
40 1.04 1.03 1.02 1.01
60 1.03 1.04 1.03 1.02
80 1.03 1.03 1.01 1.01

100 1.04 1.04 1.02 1.02
Average ratio 1.052 1.032 1.015 1.011

Class 9 20 1.00 1.00 1.00 1.00
40 1.01 1.00 1.00 1.00
60 1.01 1.00 1.00 1.00
80 1.01 1.00 1.00 1.00

100 1.01 1.00 1.00 1.00
Average ratio 1.008 1.000 1.001 1.000

Class 10 20 1.14 1.05 1.05 1.02
40 1.09 1.03 1.00 1.00
60 1.08 1.08 1.05 1.05
80 1.10 1.06 1.06 1.06

100 1.07 1.08 1.07 1.05
Average ratio 1.096 1.058 1.044 1.033

Total average ratio 1.079 1.043 1.036 1.024

Table 7
The performance for data set BWMV.

Avg. dev. Avg. time (seconds) Processor

TS 1.079 32.55 Silicon graphics
A-B 1.043 Athlon XP 2800
CHBP 1.036 0.033 Intel i3 2.13 GHz
HHA 1.024 38.582 Intel Core i5-2400
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and HHA is verified by using the data sets BWMV and Ngcutfsd.
The performance ratios RA on algorithm A are computed as fol-
lows: RA = ZA/LB, where ZA is the average number of bins
obtained by algorithm A, LB is the lower bound for the minimum
number of bins. The running time of HHA does not exceed
60 seconds.
Table 5 shows the results of GBL, A-B and HHA for 2DBPP with
orientation and guillotine cuts constraints. Column 1 refers to the
instance where d = 1, 2, 3 indicates the class of the instance
whereas column 2 refers to the problem size n. The performance
ratios of GBL and A-B are taken from Polyakovsky and M’Hallah
(2009), where A-B’s solution is the global optimum of 50 indepen-
dent runs and the running time is not reported.

From Table 5, we can find that both A-B and HHA achieve the
better results on some instances. A-B achieves better results on
some instances with large number of items while HHA achieves
better results on instances with small number of items. For Class
d = 1, Class d = 2 and Class d = 3, the average performance ratio
(Average ratio) of HHA is 1.0895, 1.0843 and 1.0575 (see bold num-
ber in Table 5) respectively. Although HHA is not specially devel-
oped to solve two-dimensional bin packing of the same size,
HHA still outperforms GBL and A-B on average.

Table 6 shows the results of TS, A-B, CHBP and HHA for two-
dimensional bin packing of the same size with orientation and
guillotine cuts constraints. The performance ratios of TS, A-B and
CHBP are taken from Charalambous and Fleszar (2011). From
Table 6, we can find that HHA achieves the best results for each
class problem, therefore, HHA outperforms TS, A-B and CHBP on
average.

Algorithms in Tables 2, 3, 4 are simple heuristic algorithm, the
computing time of these algorithms is much less than HHA. As
algorithms GBL and A-B in Polyakovsky and M’Hallah (2009), their
computing time is small, and they did not provide a table about it,
so we did not compare about it. For algorithm CHBP for data set
BWMV, it provides an average time of it, so we add a new Table 7
about this data set. The quality of solutions is reported in terms of
average deviations from lower bounds (Avg. dev.) and the total
number of bins used. Deviation for each instance is computed as
the number of bins divided by the lower bound on the number
of bins. Average processing times (Avg. time) is reported in sec-
onds. HHA can find better solutions than other algorithms within
a reasonable time.
5. Conclusions

This paper tackles 2DVSBPP|O|G. The importance of this prob-
lem lies in its widespread applications in transport, loading and
industry. Unfortunately, this problem belongs to the class of
NP-hard problems. To solve this problem, a hybrid heuristic algo-
rithm is proposed in this paper. The main contributions of this
paper propose a hybrid heuristic algorithm based on simulated
annealing and binary search for 2DVSBPP|O|G. To the best of
our knowledge, it is the first hybrid meta-heuristic algorithm
for 2DVSBPP|O|G. The second main contribution is the use of
backtracking and an improved score strategy. The third contribu-
tion is the improvement of the scoring strategy. Computational
results are very encouraging and clearly show HHA outperforms
the exist algorithms. As perspective, we want to extend HHA to
solve three-dimensional variable-sized bin packing problems or
other variants.
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6. Abbreviation
Abbr.
 Name
 Source
2DBPP
 Two-dimensional bin
packing problem
2DVSBPP
 Two-dimensional variable-
sized bin packing problem
SAS
 Size-alternating stack
algorithm
Bortfeldt
(2006)
BFDH
 Best-fit decreasing height
algorithm
Coffman and
Shor (1990)
FFDH
 First-fit decreasing height
algorithm
Coffman et al.
(1980)
FC
 Floor-ceiling algorithm
 Lodi et al.
(1999a)
BFDH�
 Improved best-fit decreasing
height algorithm
Lodi et al.
(1999b)
HFC
 Hybrid floor-ceiling
algorithm
Lodi et al.
(2002)
JOIN
 Martello et al.
(2003)
SASm
 Modified size-alternating
stack algorithm
Ntene and van
Vuuren (2009)
BFS
 Best-fit with stacking
algorithm
Ortmann et al.
(2010)
BFA
 Best Fit algorithm
 This article

binarySearch
 Binary search packing

HHA
 Hybrid heuristic algorithm

HPA
 Heuristic packing algorithm

MixPacking
 Mixed bin packing algorithm

SAP
 Simulated annealing packing

SP
 Sequential packing

BTVS
 Backtracking algorithm for

variable-sized bins packing

DA
 Decreasing area
 Sort order

DHDW
 Decreasing height

decreasing width

DP
 Decreasing perimeter

DR
 Decreasing reference index

DWDH
 Decreasing width decreasing

height

IR
 Increasing reference index
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