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Abstract

This paper introduces a variant of the vehicle routing problem with time windows where a limited number of vehicles

is given (m-VRPTW). Under this scenario, a feasible solution is one that may contain either unserved customers and/or

relaxed time windows.

We provide a computable upper bound to the problem. To solve the problem, we propose a tabu search approach

characterized by a holding list and a mechanism to force dense packing within a route. We also allow time windows to

be relaxed by introducing the notion of penalty for lateness. In our approach, customer jobs are inserted based on a

hierarchical objective function that captures multiple objectives.

Computational results on benchmark problems show that our approach yields solutions that are competitive to best-

published results on VRPTW. Onm-VRPTW instances, experiments show that our approach produces solutions that are

very close to computed upper bounds. Moreover, as the number of vehicles decreases, the routes become more densely

packed monotically. This shows that our approach is good from both the optimality as well as stability point of view.
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1. Introduction

Many practical transport logistics and distri-
bution problems can be formulated as a vehicle

routing problem whose objective is to obtain a

minimum-cost route plan serving a set of customers

with known demands. Each customer is assigned to

exactly one vehicle route and the total demand of

any route must not exceed the vehicle capacity.

To date, most of the proposed algorithms as-

sume that the number of vehicles is unlimited, and

the objective is to obtain a solution that either
minimizes the number of vehicles and/or total

travel cost. However, transport operators in the

real world face resource constraints such as a fixed

fleet. The question we like to ask is, if the given

problem is over-constrained in the sense of insuf-

ficient vehicles, what constitutes a good solution

and how may we find one?

In this paper, we provide some insights to this
question. In our view point, it is desirable to have

an algorithm that not only performs well given a
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standard VRPTW problem, but also handles over-
constrained problems well in the following sense:

1. Optimality: It returns solutions which serve (or

pack) as many customers as possible as the pri-

mary objective, while optimizing standard crite-

ria such as the number of vehicles and distance

travelled.

2. Stability: It degrades gracefully under con-
strainedness, i.e. when the number of vehicles

is reduced, the customer packing density, defined

as the average number of customers per vehicle

in service, must be monotically increasing, al-

though the total number of customers served

will become less.

This paper proceeds as follows. We first introduce
the problem (m-VRPTW) and a computable upper

bound to the problem. We then present a tabu

search approach with the following characteristics:

(a) a holding list to accommodate unserved cus-

tomers; (b) a mechanism that introduces new

vehicles in stages so as to force denser customer

packing within a route. We then extend the algo-

rithm to a generalization of the problem with re-
laxed time windows.

In terms of computational results, experiments

on VRPTW benchmark problems show that our

approach can produce solutions that are very

close to previous best-published results. What is

more interesting perhaps is the performance on m-

VRPTW instances. Results show that our approach

produces solutions that are very close to computed
upper bounds. Moreover, as the number of vehicles

is reduced, the average number of customers per

route is monotically increasing. This shows that our

approach is good from both the optimality as well

as stability point of view.

2. Literature review

The primary objective of m-VRPTW is to

maximize the number of customers served, which

is NP-hard, since finding it is a generalization of

the multiple constrained knapsack problem. Al-

though the classical VRPTW has been the subject

of intensive research since the 80s, to our knowl-

edge, there has been little research work on m-
VRPTW.

We give some research developments in

VRPTW. Solomon�s insertion heuristics [18] is the

seminal work behind heuristic construction algo-

rithms. Many efficient heuristic and meta-heuristic

approaches have been proposed recently, including

the works of Chiang and Russell [5], Potvin and

Rousseau [14], Rochat and Taillard [15], Taillard
et al. [20], and Thangiah et al. [21]. More recently,

Schulze and Fahle [19], Gehring and Homberger

[9] proposed new parallel tabu search heuristics

that enable large-scale VRPTW instances to be

solved.

Several works have been carried out advocat-

ing the hybrid use of constraint programming and

local search. For example, Pesant and Gendreau
[13] applied constraint programming to evaluate

the local neighborhood to find the best local

moves. There is also constrained-directed local

search proposed in [1,11,17]. In [17], for example,

the author presented a method called large neigh-

borhood search (LNS) for VRP in which a part of

a given solution is extracted and then reinserted

into the partial solution using a quasi-complete
search process. If the reinsertion procedure gen-

erated a better solution, then the solution is kept.

This process is repeated until certain stopping

criterion is met. The result produced with this

technique is competitive with other meta-heuristic

approaches.

In terms of exact algorithms, Desrochers et al.

[6] has applied column generation that was able
to solve some 100-customer problems optimally.

Based on this, Kohl et al. [12] developed a more

efficient optimization algorithm by introducing

a new valid inequality within a branch-and-cut

algorithm, called k-path cuts, which solves 70 of

the 87 Solomon benchmark problems to optimal-

ity. However, due to the exponential size of the

solution space, it is unlikely that these optimization
procedures can be used for larger-scale problems.

3. Problem definition and notation

The standard VRPTW problem is defined for-

mally as: Given an undirected graph GðV ;AÞ
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where V ¼ fv0; v1; . . . ; vng, v0 is the depot, vi, i 6¼ 0
is a customer with demand di, time windows (ei; li)
and service duration si; A ¼ fðvi; vjÞ : i 6¼ j, vi;
vj 2 V g, each arc (vi; vj) having a travel distance

(time) tij; and vehicle capacity Q, find a minimum

set of vertex-disjoint routes starting and ending at

depot v0 such that each customer vi is served by

exactly one vehicle within its time windows,
P

di
for all customers vi served by each vehicle is less
than Q, and the total distance travelled is mini-

mized (as the secondary objective function).

m-VRPTW is defined formally as: Given m

(number of vehicles) and a VRPTW instance, find

m or less routes with the primary objective func-

tion of maximizing total number of customers

served, and the secondary objective function of

minimizing the total distance travelled.

4. Upper bound for m-VRPTW

In this section, we determine an upper bound

for the total number of customers that can be

served by a given fixed number of vehicles. We

propose an integer programming (IP) formulation.
The IP formulation should be able to solve large-

scale problems, yet not be overly simplified such

that the gap of the bound from the optimum is too

wide. We have adopted a formulation that ac-

counts for the capacity constraints of the vehicles

as well as the time constraints imposed by the

latest return times of every vehicle to the depot.

The upper bound is derived by solving a relaxation
of m-VRPTW, formulated as follows.

Define U ¼ f1; 2; . . . ;mg to be the indices of the
set of m serving vehicles and V c to be the set of

customer nodes (excluding the node at the depot).

Define ri ¼ minj;j 6¼i tij, i; j 2 V which is the travel-

ing time from node i to its nearest neighbor. This

quantity is used to lower bound the travel time

from node i to any other node.
Let wi ¼ li þ si þ ti0, i 2 V c denote the time of

return to the depot after serving node i as its last

customer at its latest start time. Without loss of

generality, assume that all wis do not exceed the

depot close time. Let G ¼ ½g1; g2; . . . ; gm
 be a list of
m unique customers in V such that wi Pwj for all

i 2 G and j 62 G. Since vehicles are identical, the m

elements of G represent the latest possible times of
return to the depot for each of the m vehicles, for a

solution to be feasible. The decision variables are

denoted by xij 2 f0; 1g, i 2 V c, j 2 U where xij ¼ 1

if and only if the customer at node i is served by

vehicle j. The following IP returns the upper

bound of the total number of customers served by

all the vehicles:

max
X

i2V c

X

j2U
xij

s:t:
X

j2U
xij 6 1; 8 i 2 V c

ð1Þ

X

i2V c

xijdi 6Q; 8 j 2 U ð2Þ

X

i2V c

xijðsi þ riÞ þ r0 6wgj ; 8 j 2 U ð3Þ

xij 2 f0; 1g; 8i 2 V c; j 2 U

Constraints (1) state that all customers must be

assigned to at most 1 vehicle. Constraints (2)

ensure that the vehicle capacity constraint is not
violated. Constraints (3) impose some linear tim-

ing constraints: it says that for each vehicle, the

earliest possible time of returning to the depot

(induced by the assignment x) cannot exceed the

latest possible return time (imposed by G). Note

that in this formulation, we ignore the full con-

siderations of time window constraints and the

actual travel time between two nodes. The bound
is thus expected to be less effective on test cases

with tight time window constraints.

Note that the above formulation gives us a

constrained knapsack problem, which is NP-hard.

Fortunately, many variants and generalizations of

the knapsack problem have been well-studied there

exist exact algorithms which are computationally

efficient, such as [22].

5. Standard two-phase method

Most of recently published VRPTW heuris-

tics are two-phase approaches. First, a construc-

tion heuristic is used to generate a feasible and as

good as possible initial solution. Then, an iterative

improvement heuristic is applied to this solution.
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It generates successive solutions by searching the
neighborhood of the current solution. In the sec-

ond phase, various methods are then used to pre-

vent the algorithms from being trapped at local

optimal and to explore a larger search space.

The construction phase involves insertion of all

the customers into a set of feasible vehicles routes.

The purpose of the construction phase is to pro-

vide an initial feasible solution. Usually, each
customer will be inserted in turn to the route that

gives the minimum additional cost or distance at

that instance. The order of customer selection then

defines the heuristics, some of which are listed

follows:

• Nearest insertion rule: Next nearest unserved

customer will be selected.
• Earliest ready time rule: Next unserved cus-

tomer with the earliest ready time will be se-

lected.

• Window tightness rule: Next unserved customer

with the tightest time window will be selected.

Observe that these heuristics assume that there are

enough vehicles to serve all the customers. As
such, for over-constrained problems, these heu-

ristics may fail to deliver satisfactory solutions.

Given the initial feasible solution from phase I,

the phase II route improvement phase involves

an iteration of moving from a feasible solution

to its feasible neighborhood until certain termi-

nating condition is met. In this phase, the heuris-

tics are defined by the neighborhood structure, the
choice of the next move, and the terminating

condition.

The simplest approach of the steepest descent

algorithm chooses the best and improved solution

among all the neighboring solutions at every iter-

ation. However, the algorithm would very quickly

be trapped within a local minimum.

The neighborhood structure used is usually a
k-opt local search procedure, where k refers to

the number of customers/arcs that can be inter-

changed from the initial solution to its neighbor-

hood solutions. Some of these interchanges are

• Relocate: Customer from one route transfers to

another route.

• Exchange: Customer from one route exchanges

position with another customer in another

route.

The quality of a two-phase method depends on

whether the choice of construction and improve-

ment heuristics is a good fit to the nature of the

search space. The construction heuristics should
produce a good enough initial location such that

the improvement algorithm starts in a region

where good solutions can be achieved. Subse-

quently, the improvement heuristics would need to

be able to bypass sufficiently many local minima

to terminate at a good solution.

6. Proposed algorithm

The above-mentioned two-phase method would

normally have to work differently for an over-

constrained problem. One way is to use the inser-

tion heuristic to determine whether the problem

instance is feasible. Following which, we have two

sets of heuristics to handle separately the infeasi-
ble case and the feasible case. Another approach

is to increase enough vehicles so as to serve all

customers, and then, through subsequent heuris-

tics, try to obtain a subset of the solution that

maximizes the number of customers that can be

served.

However, there are pitfalls in both of these

approaches. Though the first seems credible, it
demands extensive use of heuristics and does not

value-add in terms of algorithm development. The

second approach is not addressing the issue of

infeasibility directly, and is therefore unlikely to

give a good solution consistently.

We therefore seek to have a generalized method

to handle both feasible and infeasible problem in-

stances. The approach to such an algorithm lies
in the introduction of the holding list, the data

structure that contains unserved customers. Al-

though the idea of holding list is not new at first

sight (for example, the ILOG Dispatcher product

uses the same idea), our overall algorithmic strat-

egy of transferring customers back and forth the

holding list under our tabu search strategy (see

below) is, to our knowledge, a novel idea.
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6.1. Holding list

The holding list contains the list of the cus-

tomers that are not served in the current solution.

The idea of introducing a holding list is triggered

by the role of artificial variables in the phase I of

the simplex algorithm. A feasible solution of the

VRPTW is found when all the customers are dri-
ven out of the holding list, which is analogous to

driving out all the artificial variables from the

simplex tableau.

The holding list will induce an extended neigh-

borhood search space, which includes the follow-

ing moves, in addition to the basic relocate and

exchange moves discussed in Section 5:

• Relocate from holding list: Transferring a cus-

tomer from holding list to an existing route.

• Relocate to holding list: Transferring a cus-

tomer from an existing route to the holding

list.

• Exchange with holding list: Exchanging a cus-

tomer from an existing route with another cus-

tomer in the holding list.

The holding list is similar to a ‘‘phantom’’ route

which participates in the regular local search, with

a variant that insertion of a customer to the hold-

ing list is always feasible and does not incur any

cost. The customers of a selected route will be

searched completely for possible of transfer to/

from or exchange with customers in the holding
list. The next accepted move is determined by

using a best improvement strategy depicted in the

hierarchical cost structure.

6.2. Hierarchical cost structure

m-VRPTW introduces the additional objective

of maximizing the number of served customers
and minimizing lateness (if time windows can be

relaxed). This implies that the objective function

becomes a composite function:

• maximize total number of customers served,

• minimize total number of customer served late

(if allowed),

• minimize total lateness duration (if allowed),

• minimize total number of vehicle used,

• minimize total distance traveled.

One possible way of dealing with multi-criteria

objective is to define a composite cost function

with different weights for the different cost pa-

rameters. However, setting the proper weights

becomes a tricky (or almost impossible) mission,
and the resulting function becomes meaningless

to interpret.

Our approach is to define a hierarchical cost

structure. For example, serving more customers is

always better regardless of the number of vehicles

used. Although one can argue that the �big M�
approach on the composite cost function can be

used to enforce the hierarchy, we believe our ap-
proach is a cleaner way. We propose a hierarchical

cost structure in decreasing order of priority of the

above list of objectives.

In hierarchical cost comparison between two

states (during local search), the state with greater

preference down the hierarchy of importance as-

sumes a �lower cost�. As opposed to the composite

cost function, where the total composite cost is
computed, hierarchical cost is never computed.

This is because in local search techniques, com-

putation of the absolute cost is not needed.

Rather, the hierarchical cost is used for comparing

the current solution state with the previous best

solution state.

6.3. Tabu search strategy

Although many construction and local im-

provement techniques have been reported to solve

VRPTW problems, it is unclear how these heuris-

tics will behave when constrained by a limited

vehicle fleet. Particularly, it is unclear how the two-

phase approach can work co-operatively in ensur-

ing the ultimate solution to have good customer

packing while not exceeding the prescribed vehicle
limit. For instance, if we use too few vehicles in the

construction phase, it may limit the search space of

the local improvement phase; on the other hand, if

we use up to the maximum allowable number of

vehicles, then it leaves little room for the local

search phase to add more unserved customers,

since all routes have been used up. The outcome
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may be a solution where some of the routes are
relatively loosely packed, but no more customers

can be added to any one of them unless drastic

changes are made to the solution, which local

search, by its nature, is incapable of realizing.

To deal with limited vehicle fleet, our strategy is

to meld the two-phase approach into a nested

approach. The idea is to increase the number of

vehicles in stages and at each stage, apply standard
tabu search to maximize the number of customers

to be inserted onto those vehicles. Within each

stage, the number of vehicles is fixed and hence the

search will not consider adding a vehicle to serve

unassigned customers. In other words, we steer the

tabu search to favor packing of customers within

the existing routes. With certain abuse of termi-

nology to draw parallelism with duality, the dual
of the vehicle minimization problem is the maxi-

mization of customer packing problem. Empirical

results have shown that this strategy has tremen-

dous improvement of packing density on Solomon

test cases, without having to rely on a set of good

construction heuristics.

With the incorporation of the holding list, it is

easy to implement the tabu search strategy dis-
cussed above. The hierarchical cost structure fa-

vors transfer of customers from the holding list to

the routes. Unlike many tabu search algorithms,

where the search space is always feasible, the

holding list is a neat way of incorporating local

search towards a path of feasibility that favors

customer packing.

Let TS denote one iteration of a standard tabu
search procedure with the search neighborhood

and hierarchical cost structure discussed in Sec-

tions 6.1 and 6.2 respectively. The tabu list stores

customers that have been moved within the preced-

ing number of iterations defined by the tabu length.

A move is tabu if and if only the customers are in

the tabu list and it is not aspired by being better

than the best solution so far, in the sense of the
hierarchical cost function defined in Section 6.2.

Let StepSize denote the additional number of

vehicles introduced in each stage. Let numVeh

denote the current number of vehicles used, ini-

tialized to StepSize. Let CountLimit denote the

maximum number of non-improving moves using

numVeh vehicles.

The algorithm proceeds as follows (refer to
Algorithm A). The holding list initially contains

all customers of the given instance. We introduce

StepSize additional number of vehicles (i.e. empty

routes) in each stage. Each stage is implemented by

the while loop (i.e. steps (3) to (6)). When TS is

called in step (4), it will return a solution which

differs from the previous solution by a local move

made with respect to the neighborhood and the
hierarchical cost structure. In step (5), a better

solution means that the hierarchical cost objective

value is better than that of the best solution found

so far. If a better solution has not been found after

CountLimit consecutive tries, then the stage ends,

and the algorithm proceeds to the next stage by

adding more vehicles.

Algorithm A

(1) until holding list is empty or numVeh ¼ m
(2) set Count ¼ 0
(3) while Count6CountLimit
(4) call TS based on numVeh vehicles

(5) if better solution found then set Count ¼ 0

else set Count ¼ Count þ 1

(6) endwhile

(7) set numVeh ¼ minðnumVehþ StepSize;mÞ
(8) end until

6.4. m-VRPTW with relaxed TWs

The logical extension to solving m-VRPTW
problems is to relax the time window constraints.

In other words, we allow late arrivals after the

intended due time to increase the number of cus-

tomers that could be served. Although one could

perceive this as a separate objective that may entail
a separate algorithm, our challenge is to incorpo-

rate this feature into one seamless generalized al-

gorithm.

We define late period to be the amount of late-

ness between the time windows upper bound and

the actual arrival time (and 0 if the arrival time lies

within the time window). We impose the late pe-

riod as a soft time constraint which can be vio-
lated. This is done by incorporating the number of

late arrivals and the total late period into the hi-

erarchical cost function.
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Intuitively, by relaxing the time window con-
straints, we would expect to have improved solu-

tions (in terms of its objective value). However,

from experimentation with our proposed local

search technique, we discovered an anomaly that

the solution for some cases become worse if we

relax the constraints as it is. This is illustrated in the

sample run in solving an over-constrained Solo-

mon benchmark problem R103 with 13 vehicles.
Without relaxing the time windows, the total late

period is 0, while with relaxed time windows, the

late period became 77.8 units! This contradicts with

the intuition that with relaxed time windows, the

solution obtained from local search will always be

an improvement. As local search techniques do not

guarantee global optimality, it is likely that even

with relaxed constraints the reported solution may
be worse off.

To deal with this anomaly, we propose Algo-

rithm B. Here, we first solve the problem without
relaxing the time windows. The solution then be-

comes the initial feasible solution for the problem

with relaxed time windows. In the latter case, more

customers may be inserted from the holding list,

albeit at the expense of relaxed time windows. In
this manner, we can always guarantee improve-

ment, if any, on the relaxed problem. Table 1 pre-

sents the new result obtained for R103 under this

new scheme.

Algorithm B

(1) call Algorithm A

(2) if holding list not empty
(3) relax time windows constraints

(3) set Count ¼ 0

(4) repeat steps (2) to (7) of Algorithm A

7. Results and analysis

In this section, we present experimental results

of applying our algorithm to solve both the stan-

dard VRPTW as well as m-VRPTW problems.

In our experiments, we set the tabu length to be

100. We set the values of CountLimit and Step-
Size in Algorithm A to be 500 and 1 respec-
tively. We refer to our implementation as the OV

method.

7.1. Performance on VRPTW problems

Here, we test the performance of Algorithm A

on the set of 56 Solomon�s test cases with 100

customers. The run time of the algorithm tested
on a Pentium II 433 machine is about 1 min on

average.

We first compare our results with the overall

best-published heuristics results. 1 The comparison

of solutions is presented in Table 2, where the Best

and OV columns contain the best published and

our results respectively.

Next, we also compare our results with the
specific results of (a) Rochat and Taillard [15]

(RT), (b) Chiang and Russell [3] (CR), (c) Taillard

et al. [20] (TBGGP), (d) Homberger and Gehring

[10] (HG), and (e) Cordeau et al. [4] (CLM). A

summary of the comparison is given in Table 3.

We observe that although our results are in general

inferior compared to these results, they are within

only several percent worse on average. We believe
this is justifiable, in two sense. First, our goal is in

obtaining results within 1 min on average and

hence set the maximum number of iterations to

500. This is in contrast to the other methods which

typically require hours of CPU time on compatible

Table 1

Consistency of solution with relax TWs

Without relaxed

time windows

With relaxed time

windows

# Vehicles 13 13

# Customers

inserted

99 100

# Customers

served late

0 2

Total late period 0 15.792

1 Contributions to the best-published results are taken from:

Cordeau et al. [4]––R107, R108, RC104, RC106, R204, RC201,

RC207, Chiang and Russell [3]––R207, Homberger and Geh-

ring [10]––R103, R109, R112, R201, R203, R208, R210, R211,

C202, RC203, RC204, RC205, R110, Rousseau et al. [16]––

R111, RC105, R202, R205, R209, RC206, RC208, Rochat and

Taillard [15]––R101, R104, R105, R106, C101, C102, C103,

C104, C105, C106, C107, C108, C109, RC103, R206, C201,

C202, C203, C204, C205, C206, C207, C208, R102, Taillard

et al. [20]––RC101, RC102, RC107, RC108.
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machines. Second, this work is not aimed at

beating the best VRPTW results, but rather on

proposing an algorithm that works well when

limited to a number of vehicles.

7.2. Performance on m-VRPTW

To assess the performance of our algorithm on

m-VRPTW, we will measure the total number of

Table 3

Summary of comparison

RT CR TBGGP HG CLM OV

C1 mean no of vehicles 10.00 10.00 10.00 10.00 10.00 10.00

C1 mean distance 832.59 828.38 828.38 828.38 828.38 832.13

C2 mean no of vehicles 3.00 3.00 3.00 3.00 3.00 3.00

C2 mean distance 595.38 591.42 589.86 589.86 589. 86 589.86

R1 mean no of vehicles 12.83 12.17 12.17 11.92 12.08 12.16

R1 mean distance 1208.43 1204.19 1209.35 1220.97 1210.14 1211.55

R2 mean no of vehicles 3.18 2.73 2.82 2.73 2.73 3.00

R2 mean distance 999.63 986.32 980.27 968.55 969.58 1001.12

RC1 mean no of vehicles 12.75 11.88 11.50 11.50 11.50 12.25

RC1 mean distance 1381.33 1397.44 1389.22 1388.24 1389.78 1418.77

RC2 mean no of vehicles 3.62 3.25 3.38 3.25 3.25 3.37

RC2 mean distance 1207.37 1229.54 1117.44 1140.43 1134.52 1170.93

Table 2

OV solutions against best-published results

Best OV Best OV

Vehicles Distance Vehicles Distance Vehicles Distance Vehicles Distance

C101 10 828.94 10 828.94 R112 9 1003.73 10 1021.95

C102 10 828.94 10 834.64 R201 4 1252.37 4 1292.53

C103 10 828.06 10 834.56 R202 3 1191.70 3 1158.98

C104 10 824.78 10 846.32 R203 3 942.64 3 980.70

C105 10 828.94 10 828.94 R204 2 849.62 3 847.74

C106 10 828.94 10 828.94 R205 3 994.42 3 1146.80

C107 10 828.94 10 828.94 R206 3 912.97 3 1007.00

C108 10 828.94 10 828.94 R207 2 914.39 3 869.94

C109 10 828.94 10 828.94 R208 2 731.23 2 790.46

C201 3 591.56 3 591.56 R209 3 909.86 3 1020.06

C202 3 591.56 3 619.36 R210 3 955.39 3 1032.65

C203 3 591.17 3 604.01 R211 2 910.09 3 866.10

C204 3 590.6 3 644.23 RC101 14 1696.94 15 1657.46

C205 3 588.88 3 601.43 RC102 12 1554.75 13 1535.79

C206 3 588.49 3 588.88 RC103 11 1262.02 12 1386.03

C207 3 588.29 3 608.94 RC104 10 1135.48 10 1213.25

C208 3 588.32 3 591.83 RC105 13 1633.72 15 1625.13

R101 19 1650.8 20 1765.00 RC106 11 1427.13 12 1426.07

R102 17 1486.12 18 1548.61 RC107 11 1230.54 11 1330.59

R103 13 1292.85 14 1258.34 RC108 10 1139.82 10 1175.88

R104 10 982.01 10 1018.48 RC201 4 1406.94 4 1468.46

R105 14 1377.11 15 1462.69 RC202 3 1389.57 4 1222.69

R106 12 1252.03 12 1328.66 RC203 3 1060.45 3 1171.88

R107 10 1113.69 12 1160.08 RC204 3 799.12 3 839.32

R108 9 964.38 10 1045.83 RC205 4 1302.42 4 1338.70

R109 11 1194.73 13 1259.09 RC206 3 1153.93 3 1201.27

R110 10 1124.4 11 1127.70 RC207 3 1062.05 3 1139.48

R111 10 1096.72 11 1097.10 RC208 3 829.69 3 985.60
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customers that can be served per unit vehicle

against a computable upper bound. To compute

upper bounds, we use a software developed in-

house (based on MATLAB) which can compute
optimal solutions for the IP formulation given in

Section 4. We will demonstrate that our algorithm

is optimized in the sense that the solutions produced

are close to the upper bound, and is stable in that

the customer packing density 2 increases mono-

tonically when the number of vehicles is reduced.

To analyze the performance of the algorithm in

packing density against the upper bound, we select
the C1 set of the Solomon�s test cases. For this set,
it is easy to verify from the vehicle capacity con-

straint that the minimum number of vehicles re-

quired to serve all the customers in all the cases is

10. With the uniformity in the number of vehicles

in service, we compute the unbiased mean of the

packing density for all the test cases in the C1 set.

By starting from the fleet size of 10 vehicles for
every test case in C1, we gradually reduce the

number of vehicles in service and determine the

unbiased mean of the packing density for all

the test cases. The comparison is given in the

Tables 4 and 5. Experiments on other Solomon

test sets yield similar behavior, but since their ve-

hicle requirements are less uniform, we do not

present their results in this paper.
The results of comparison are summarized in

Figs. 1 and 2. The two curves represent respec-

tively the values obtained by our algorithm (i.e.

Table 5

Computed upper bound of the number of customers served

Number

of vehicles

10 9 8 7 6 5 4

C101 100 99 91 81 70 59 48

C102 100 99 95 90 78 65 52

C103 100 99 95 90 78 65 52

C104 100 99 95 90 78 65 52

C105 100 99 95 86 75 63 51

C106 100 99 95 86 75 63 51

C107 100 99 95 87 75 63 51

C108 100 99 95 87 75 63 51

C109 100 99 95 90 78 65 52
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Fig. 1. Average customers served vs vehicle availability.
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Fig. 2. Customer packing density vs vehicle availability.

Table 4

Number of customers served using our algorithm

Number

of vehicles

10 9 8 7 6 5 4

C101 100 92 84 75 66 57 47

C102 100 99 92 84 72 60 49

C103 100 99 93 84 72 60 48

C104 100 99 94 84 72 60 48

C105 100 92 84 75 66 57 47

C106 100 93 86 77 68 58 47

C107 100 93 85 76 66 57 47

C108 100 96 87 78 69 59 48

C109 100 99 92 82 72 60 48

2 Recall that this refers to the total number of served

customers in the solution divided by the total number of

vehicles used.
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OV method) and the computed upper bounds.
From Fig. 1, we observe that the proposed algo-

rithm generates solutions that are substantially

close to the upper bound. In term of packing

density illustrated in Fig. 2, the average gap from

the upper bound is less than one customer per

vehicle. Moreover, the solution quality in response

to tighter vehicle constraints is consistent with the

upper bound. This demonstrates the stability of
our algorithm.

7.3. Performance on m-VRPTW with relaxed time

windows

For m-VRPTW problems with relaxed time

windows, we apply Algorithm B. For stability

analysis, we again use the set of C1 test cases. We
set the relaxed time window of each customer to be

its early start time and the closing time of the de-

pot, i.e. we do not allow any customer to be served

earlier than its prescribed early start time, but

allow every customer to be served late potentially,

but not later than the closing time of the depot.

The results are summarized in Figs. 3 and 4, which

contain one additional curve in between the pre-
vious two curves. Our algorithm again generates

consistent results with more customers served and

improved packing density when compared with

the case with unrelaxed time windows.

8. Conclusion

In this paper, we considered a variant of

VRPTW constrained by a limited vehicle fleet,
which we believe is a more realistic problem in lo-

gistics. We presented an analytical upper bound for

that formulation, and showed that our tabu search

approach came fairly close to the upper bound.

This algorithm is also good from the stability point

of view. We also showed that the same algorithm

could be used to give reasonably good results for

the standard VRPTW problem. Hence, in terms of
achievements, we have opened a new variant of a

well-studied research problem, and provided the

first step in tackling this problem. Future works

include closing the optimality gap, by perhaps a

tighter upper bound or more elegant algorithms;

experiments on larger-scale problem instances.
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