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ABSTRACT 
 
We study a repairable item inventory system under limited repair capacity and nonstationary Poisson demands, 
motivated by corrective maintenance of military equipment. Our goal is to minimize the cost of both spare and 
repair resource allocation. We propose an efficient analytical model that combines optimization modeling and 
queuing theory. 
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1. INTRODUCTION 
 
Military equipments such as aircrafts are expensive complex structures that break down because components 
are either worn out or damaged during operations. To support operational readiness (or availability), spare 
components and maintenance resources are required. However, since spares and resources are costly, consume 
space and become obsolete over time, there is a tradeoff between cost and availability. The purpose of the 
military planner is to sustain the demands for equipment to support operations with respect to cost and 
availability. 
 
In this paper, we propose a model for a two-echelon repairable item inventory system under nonstationary 
Poisson demands (In this paper, a nonstationary Poisson process refers to one which has a time-dependent 
arrival rate. see, for example [12]) and limited repair capacity. The goal is to determine the optimal allocation 
of spares as well as repair resources given that the demand follows a time-dependent Poisson distribution. In 
most academic and even commercial offering, it is often assumed that the demand is given by a stationary 
Poisson process with a mean such as the annual demand rate. In reality however, the demand rate varies as 
time due to seasonality. This situation is acute in the military context, since military systems usage varies from 
one mission to another, and transits rapidly from peacetime to wartime. This leads to varying utilization rate 
over time, which is used in military. Therefore, mean values will cause high errors at a given time point. 
Another concern peculiar the military context - and perhaps increasingly so in today's commercial context as 
well - is that the planning period is relatively short so that the underlying inventory system may not converge 
to steady state. Finally, military systems usually exhibit low failure rates, which makes it difficult even to 
forecast the average rate in the first place. 
 
This paper is organized as follows. A literature survey is provided in section 2. In section 3, we describe the 
two-echelon reparable item network structure and present a mathematical model. In section 4, we study a 
nonstationary multi-class finite-server queueing system, which is the core computational problem underlying 
our model. We develop an analytical approach to compute the expected number of each class of customers in 
the queueing system at any time efficiently. An optimization algorithm is developed in section 5, considering 
the effect of time. A summary and future work is given in section 6. 
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2. LITERATURE REVIEW 
 
METRIC (Multi-Echelon Technique for Recoverable Item Control) is a pioneer study presented by Sherbrooke 
in [16]. In METRIC, it assumes that there are infinite repair resources at the depot and the failures at bases are 
Poisson processes. Sherbrooke provides an optimization procedure for METRIC by employing marginal 
analysis. In [5], Graves proposes an approach to use negative binomial distribution instead of Poisson by 
introducing variance because the variance-to-mean ratio should be 1 under Poisson distribution, but it is 
usually greater than 1 in practice. 
 
The models with limited repair resources have been studied recently because the assumption of infinite repair 
capacity is unrealistic in industrial applications. In [4], Díaz and Fu develop a model, considering limited 
repair facilities at the depot where all failed LRUs are repaired. Unfortunately the variance of per-class number 
in queue and repair is derived only for single-server due to analytical complexity. In [1] and [2], Alfredsson 
proposes OPRAL, a model for optimum spare allocation as well as repair facility allocation. The queue at the 
repair facility is modelled as M/M/s so that the expected waiting time for an available resource can be 
calculated. 
 
In [10], Jung presents a methodology for a repairable inventory system with time-dependent demand by 
implementing discrete event simulation. In [18], Slay et al. propose an aircraft sustainability model that can 
handle time-dependent demand rates but infinite repair resources.  
 
In recent years, the Queueing Systems community has been actively working on approximations under time-
dependent arrival and service rates (see [6] [7] [8] [15] [19]). However these models suffer one or more of the 
following limitations: single-class customers, assumption that the maximum traffic intensity is less than one, 
only long-run average and not time-dependent performance measures, single server, and high computational 
time complexity. 
 

3. MATHEMATICAL MODEL 
 
3.1 Service Support Network Structure 
 
In this paper, we will address a two-echelon, single-indenture repairable item inventory model with finite 
repair capacity under nonstationary Poisson demands. In our environment, one depot supports a number of 
sites called bases where military systems are deployed. Each military system is composed of multiple LRUs 
(Line Replaceable Unit) which are assumed to be connected in series. For simplicity, we assume all systems 
are identical. Our goal is to optimize the allocation of both LRU spares as well as repair resources over the life 
cycle of military systems across all sites within the network. 
 
Due to the limited space at the bases, spares can be allocated at both bases and the depot whereas repair 
resources are only allowed to be allocated at the depot. When an LRU fails, the system will be grounded at the 
base and the failed LRU will be removed and replaced by a good component if it is available at the base. 
Otherwise, the base will place an order from the depot and there is a backorder at the base. The "down" system 
has to wait until a spare is available. The failed and removed LRU will be delivered to the depot where finite 
repair resources comprising technicians and tools are allocated. If the required repair resources are available, 
this LRU will be repaired. Otherwise, it has to wait. When repair is completed, the good LRU will be sent to 
the depot stock for future demands. 
 
In this paper, the following assumptions are made: 
1. All LRUs must and can be repaired at the depot. 
2. Continuous resupply, i.e. an LRU can be sent between the depot and bases immediately at any time. 
3. The structure supplies a serviceable item for a failed one on a one-for-one basis. 
4. The repair time of an item follows an exponential distribution. 
5. Each LRU requires exactly one repair resource. Different types of LRUs may compete for the same repair 

resource, and FCFS (First Come First Serve) is accepted as scheduling policy. 
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6. FCFS (First Come First Serve) replenishment from the depot to bases. 
 
3.2 Notations 
 
We adopt and extend the notations of those in [1] and [17]. We use 0 to denote the depot and index the bases 
by j, j = 1, …, J. As done in [1], the types of LRU are indexed by k, k = 1, ,,,, K. We use g, g = 1, …, G to 
index the repair resource types. Other notations include: 
 
Input Variables 
 
T:  the length of planning horizon 
MTBFk:  mean time between failures of LRU k 
TATk:  mean repair time of LRU k 
OSTk:  constant order-and-ship time for LRU k from the depot to the base 
Nsysj:  number of military systems deployed at base j 
QPMk:  quantity of LRU k that military system has 
UR(t):  utilization rate across all bases at time t 
Csk:  unit cost of spare for LRU k 
Crg:  unit cost of repair resource g 
 
Immediate Variables 
 
λjk(t):  demand rate of LRU k at base j at time t 
λ0k(t):  demand rate of LRU k at the depot at time t 
Nk(t):  random variable representing number of LRU k in repair facility at time t 
EBOjk(t):  EBO of LRU k at base j at time t 
EBO0k(t):  EBO of LRU k at the depot at time t 
BPjk(t):  random variable representing number of LRU k in the pipeline of base j at time t 
OSPjk(t):  random variable representing number of LRU k in the order-and-ship pipeline to base j at time t 
RP0k(t):  random variable representing number of LRU k in the depot repair pipeline at time t 
fjk(t):  fraction of LRU k at base j contributing to the EBO at the depot 
 
Decision Variables 
 
sjk:  number of spare units of LRU k at base j 
s0k:  number of spare units of LRU k at the depot 
rg:  number of repair resource g at the depot 
 
3.3 System Performance Function 
 
First we will compute the demand rate. Similar to the assumption in METRIC, we assume Nsysj is large. The 
demand rate of LRU k at base j and the depot are computed by definition respectively as follows: 
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As with existing literature, we will use time-dependent EBO as our objective function since the demand for an 
LRU is given by a time-dependent Poisson process. Additionally, EBO(s|λ) is used to denote EBO given stock 
level s when the mean pipeline is λ and the computation is in [17]. 
 
From the assumption that demand for an LRU is given by a time-dependent Poisson process and from the 
splitting theorem for non-homogeneous Poisson process, we know that a sum of Poisson processes is still a 
Poisson process [18]. By the linearity of expectation, the expected value of BPjk(t) is given as: 

)()()]([)]([ 0 kkkjkjkjk OSTtEBOOSTtftOSPEtBPE −⋅−+=    (2) 
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Based on the assumption that OSTk is constant, the dynamic form of Palm's theorem tells us that OSPjk(t) is a 
Poisson random variable with mean equal to 
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The number of LRU k in the repair pipeline at time t is a Poisson random variable with mean equal to the 
expected number of LRU k in the repair facility, consisting of those in queue and in process at time t. That 
is  . Therefore, given the stock of LRU k at the depot s)]([)]([ tNEtRPE kok = 0k, the depot EBO at time t 

is . )])([|()( 000 tRPEsEBOtEBO kkk =
 
Since we assume FCFS replenishment policy and the utilization rates are the same across all bases, i.e. demand 
rates vary synchronously over time, the waiting time for an available spare from the depot at the bases are the 
same. Hence, we distribute EBO according to the proportion of demand rate, i.e. )(/)()( 0 tttf kjkjk λλ= . 
 
Following that, the expected number of LRU k in the pipeline of base j at time t can be calculated according to 
equation (2). Therefore, given the stock of LRU k at base j sjk, the EBO of LRU k at base j at time t is given by 

. Finally, the total time-dependent EBO is the sum of EBOs over all LRUs 

at all bases at time t, i.e. . 
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3.4 Optimization Model 
 
In this paper we only consider the investment cost incurred by spares and resources. We will use the 
terminology LSC (standing for Life Support Cost in [13] and [14]) as the notation for total cost, where 
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Our optimization model is to determine a minimum-cost spare and repair resource allocation such that the 
EBO at any time will be less than or equal to a given target. So given the planning horizon T, we define 
MaxEBO = maxt∈T EBO(t) as our final objective function. Given a budget, the model should determine an 
allocation of spares and repair resources that minimize the EBO while not exceeding the budget. The ultimate 
goal is to generate a curve (called C/E-curve) where each point on the curve is an optimal allocation for a 
given cost and a target EBO. 
 
Given a budget B, it can be expressed as the following mathematical model: 

min  MaxEBO 
s.t.  LSC ≤ B 

 
4. NONSTATIONARY MULTI-CLASS FINITE-SERVER QUEUEING SYSTEM 

 
The computation of EBO involves the calculation of the expected number of LRUs in the repair facility, which 
has a queueing system behavior. While Palm's theorem is based on infinite channel queueing, our problem is 
subject to finite repair resources. Furthermore, compared with traditional queueing models such as M/M/s, we 
have multiple classes of customers (LRUs), each of which has its own arrival and service rates, where the 
arrival process is a non-stationary Poisson process. 
 
In queueing theory terminology, a repair resource is called server and LRU is called customer. Based on our 
assumption that each LRU requires exactly one repair resource, LRUs can be partitioned into resource groups, 
each of which consists of all LRUs competing for the certain type of resource. The scheduling policy in each 
resource group is FCFS, i.e. all demands will wait in a single queue regardless of type until one of the identical 
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parallel repair resources is free. Then the first customer (LRU) in the queue enters service and so on. We call 
this queueing system nonstationary multi-class finite-server queueing system. (See Figure 1) 
 

 
Figure 1: Multi-Class Queueing System with Finite Servers 

 
Our aim is to compute the expected number of customers in the queueing system of each class at any time. To 
our knowledge, there is no literature on how to compute the required measure. 
 
4.1 Approximation of Queueing System 
 
In [15], a method was proposed that gives good approximations for nonstationary single-class queueing 
systems. In [1] and [4], the authors view multiple classes of customers as a single class by using cumulative 
arrival rate and mean service rate.  Our method is essentially to first merge multiple classes into a single class 
as [1] and [4] and employ the method in [15] to estimate the expected number of customers in the system of all 
classes. We then calculate the expected number of customers of each class via disaggregation. 
 
Before presenting our method, we introduce some notations. 
λc(t) = arrival rate of class c at time t 
µc(t) = service rate of class c at time t 
λ(t) = cumulative arrival rate at time t 
µ(t) = mean service rate at time t 
Nc(t) = expected number of class c customers in the system at time t 
N(t) = expected number of customers of all classes in the system at time t 
Qc(t) = expected number of class c customers in queue at time t 
Q(t) = expected number of customers of all classes in queue at time t 
Rc(t) = expected number of class c customers in repair (service) at time t 
U(t) = utilization of servers (i.e. expected number of customers of all classes in repair) at time t 
 
The cumulative arrival rate at time t which is the summation of arrival rates of all classes at time t and the 
mean service rate at time t are given by 
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From [11] and [15], we know how to compute the expected number of customers of all classes in the queueing 
system at time t. The algorithm is given in [15], starting from t = 0 when the system is empty. After computing 
N(t), we calculate the time-dependent expected number of each class customers in the system. We 
have  for all t. ∑=

c
c tNtN )()(

We know from [1] and [4], the expected waiting time for a server is equal for all customers under steady state. 
Let W be the expected waiting time for a server under steady state. We have  for stationary 
models. If we divide the expected number of customers in the system into two parts: one in queue Q

cccc WN µλλ /+=

c, and the 
other in repair (service) Rc,, we can see that Qc = λcW, which is proportional to the arrival rate of class c, and 
Rc = λc/µc, which is proportional to the utilization of class c. 
 
Under time-dependent case, since the in-rate is dependent on the arrival rate λ(t) and out-rate is dependent on 
both the arrival rate λ(t) and service rate µ(t), we will divide the expected number of customers of all classes in 
the system at time t N(t) into two parts: one is that in queue Q(t) and the other is that in service i.e.  U(t). Hence, 
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the expected number of each class customers in queue is proportional to the arrival rate and that in service is 
proportional to the utilization. We have: 

)()()( tUtQtN +=  and )()()( tRtQtN ccc +=     (6)  
 
Since Qc(t) is proportional to λc(t) and Rc(t) is proportional to λc(t) / µc(t), we have 
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4.2 Results and Discussion 
 
We verify the accuracy of this method by experimental comparisons. We run a number of experiments using a 
combination of different arrival and service rates and compare the results with those generated by simulation. 
We call our method “analytical” method in contrast with “simulation”. 
 
In all of our experiments, we set the number of replications to be 1000, the discrete time step δ to be 0.1 and 
start with empty system. We first conduct a stationary system with 3 servers and 2 classes of customers whose 
arrival and service rates are λ1 = 1/3, µ1 = 0.2 and λ2 = 0.25, µ2 = 0.25. The results are shown in Figure 2. From 
that, we can find that our analytical method agrees well with simulation. 
 

 
Figure 2: Expected number of customers of each class in the system 

 
Next we consider a nonstationary system similar to the first case. There are 3 servers and 2 classes of 
customers whose service rates are µ1 = 0.2, µ2 = 0.25. But the demand rates vary as time, which are given as 
follows: λ1 = 1/3(0-48hr), 1/12(48-120hr), 1/6(120-168hr); λ2 = 1/4(0-48hr), 1/16(48-120hr), 1/8(120-168hr). 
The results are shown in Figure 3. From that we can see that our analytical model agrees well with simulation 
under nonstationary scenario. 
 

 
Figure 3: Expected number of customers of each class in the nonstationary system 

 
It can be seen that our approach can be efficiently implemented to estimate the expected number of each class 
customers in the system at a certain time for a nonstationary multi-class finite-server queueing system. 
Furthermore, our approach gives quite good results within short computational time by means of an analytical 
model when compared with simulation results.  
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5. OPTIMIZATION 
 
5.1 Significance Levels and Resource Groups 
 
In [13] and [14], the concept of significance level is introduced. A stock position is defined by both the item to 
be stored and the site where it is stored. The significance level describes the importance of different stock 
positions. The more important the stock position, the higher the significance level is. In our problem, the stock 
positions of LRUs at bases are the most important because they have direct effects on EBO whereas the spares 
at the depot are of next importance because they determine the resupply delay for LRUs. The repair resources 
at the depot are the least important stock position, only influencing the repair pipeline of LRUs at the depot. 
Consequently, the significance level of repair resources at the depot is set to be 0, that of spares at the depot is 
1, and that of spares at the bases is 2. Since the computation of EBO at a certain level only requires the 
information on stock positions whose significance levels are less or equal, optimization can be carried out 
level-by-level from the lowest-significance level 0-until the highest level. 
 
Our algorithm follows and extends the approach proposed in [1]. Under the assumption that each failed LRU 
requires only one repair resource, different LRUs can be partitioned into independent resource groups, where 
each group contains LRUs that share a common repair resource. 
 
5.2 Optimization Algorithm 
 
Marginal analysis is a greedy heuristic where one unit of the item with maximum marginal utility is increased 
at each step. However here we should consider EBO values at different time points together, in order to 
prevent marginal analysis from being misled. This lead us to develop a generalization of marginal analysis, 
called cross-time optimization, presented as follows. First we divide the time horizon into several periods, each 
of which is short. And then we apply cross-time optimization. The algorithm is given as follows. It proceeds in 
3 phases. The first phase is to apply marginal analysis to find the optimal allocation of repair resources at 
significance level 0 and generate a C/E curve: 
 
1. Initialize MaxEBO and LSC based on the initial allocation (such as zero units for all spares and repair 

resources). 
2. Until (LSC > B or MaxEBO is not improved) do the following. Apply marginal analysis to make 

incremental allocations. Here, an additional unit from each resource group constitutes a candidate, and the 
marginal utility is computed as the increase in MaxEBO per unit cost incurred. Each incremental allocation 
will result in a new point on the C/E curve. 
 

The next phase is to apply marginal analysis to generate a C/E curve for significance level 1: 
 

3. For each point on the C/E curve of significance level 0 do the following: Generate a C/E curve using that 
point, and initialize MaxEBO and LSC based on the existing repair resource allocation at that point until 
(LSC > B or MaxEBO is not improved). 

4. Apply marginal analysis to make incremental allocations. Here, an additional spare unit of each LRU 
constitutes a candidate, and the marginal utility is again computed as the increase in MaxEBO per unit cost 
incurred. 

5. Output a convex curve that envelops all curves obtained from the previous step. 
 
The third phase is to output a C/E curve for significance level 2. In the same way, for each point on the C/E 
curve of significance level 1, generate a C/E curve for optimal spares allocations at the bases, and output a 
convexification of these curves. Note that our algorithm can be extended to handle multi-echelon problems in a 
straight-forward fashion. 
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6. CONCLUSION AND FUTURE WORKS 
 
In this paper, we presented the technology for automating military corrective maintenance. The work 
essentially involves an innovative application of analytical modeling, optimization, queuing theory, and 
simulation to solve a two-echelon repairable item inventory problem under non-stationary Poisson demands 
and finite repair resources. We proposed a cross-time optimization algorithm, based on marginal analysis. We 
investigate EBO values at different time points together, to prevent marginal analysis from being misled. In 
considering time-dependency, we studied a nonstationary multi-class finite-server queueing system at the 
depot. We developed an analytical approach to compute the expected number of each class customers in the 
queueing system at any time. 
 
In our work, the assumption that each LRU requires exactly one repair resource is crucial in reducing the 
complexity of the problem. What is challenging for future work is to develop analytical models that relax this 
assumption. We also assume the utilization rates are the same across all bases so that the demand rates vary 
synchronously. Another challenging aspect of future work is the development of a model where utilization 
rates vary with different systems at different units at different time. 
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