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ABSTRACT 

Standard scheduling theory assumes that all machines are continuously available throughout the planning horizon. In 
many manufacturing and service management situations however, machines need to be maintained periodically to prevent 
malfunctions. During the maintenance period, a machine is not available for processing jobs. Hence, a more realistic 
scheduling model should take into account machine maintenance activities. In this paper, we study the problem of job 
scheduling with unfixed availability constraints on a single machine. We first propose a preliminary classification for the 
scheduling problem with unfixed availability constraints based on maintenance constraints, job characteristics and 
objective function. We divide our analysis into six cases. For each case, we present complexity analysis and exact or 
approximation algorithms. We also present results of tabu search on NP-hard problem instances.  
 
Keywords: Maintenance, Availability, Scheduling. 
 
1. INTRODUCTION 
 
Standard machine scheduling literature assumes that machines are available at all times. However, in many manufacturing or service 
management situations, machines are maintained periodically to prevent malfunctions. During the maintenance period, a machine is not 
available for processing jobs. A more realistic scheduling model should take into account machine maintenance activities.  

 
The schedule of maintenance activities can be determined either before the scheduling of jobs, or jointly with the scheduling of jobs. In 
the first case, the maintenance periods are known and fixed at the time when jobs are to be scheduled. The problem of scheduling jobs 
with this type of maintenance reduces to the problem often referred in the literature as scheduling with machine availability constraints 
because during maintenance periods the machine is not available for processing jobs. Lee and Liman [7] study a single machine problem 
with a machine availability constraint. Lee [6] studies a parallel-machine problem where machines are available starting from different 
times. Lee and Liman [8] consider a two-parallel-machine problem where one machine has an availability constraint. Mosheiov [12] 
studies the same problem by assuming that each machine is available during an interval. Note that all of these results assume that the 
machine unavailability is known and fixed in advance. Schmidt [15, 16] studies a parallel machine problem where each machine has 
different availability intervals. In [9], dynamic programming procedures are given for two-machine flow shops with one non-availability 
period and non-preemptive operations. Espinouse & al. [4] have also considered non-preemptive tasks for a no-wait flow shop problem 
and proposed heuristics with performance guarantee. In [10], Lee handles the preemptive flow shop problem with two machines and one 
unavailability period first imposed on machine 1 and then on machine 2 with the makespan objective. Lee proved that both problems are 
NP-hard in the ordinary sense, and proposed heuristics with error bounding analysis. [11] extends the complexity results found in [10] for 
a generalized model where an operation is completely (nonresumable) or partially (resumable) restarted if its execution is preempted by a 
maintenance task. He also developed heuristics with an error bound analysis. Blazewicz & al [1] investigated the 2-machine problem 
with arbitrary number of unavailability periods on one machine, and proved that the problem is strongly NP-hard. Also, they proposed a 
branch and bound algorithm for the problem with arbitrary number of unavailability periods on both machines. Cheng and Wang [2] 
investigated the problem studied in [10], in which an availability constraint is imposed only on the first machine. They proposed a 
heuristic that improves the worst-case error bound provided by Lee [10]. Lee [9] considers scheduling problems with availability 
constraints under different machine configurations and performance measures. According to the case, he has provided a polynomial 
algorithm to solve the problem, or proved that the problem was NP-hard and developed pseudo-polynomial algorithms or heuristics with 
an error bound analysis. Besides, Lee introduces a way of giving the error bound for non-resumable case. Instead of dealing with non-
resume case directly, he considers resumable case first, and uses it to obtain an error bound for non-resumable case.   
 
In our experience with industry applications, especially in semiconductor manufacturing, it is often observed that a machine is idle while 
waiting for maintenance personnel to perform preventive maintenance, even though jobs are waiting and the machine has not broken 
down. This is due to lack of coordination between production planning and maintenance operations. Obviously, a careful coordination 
between maintenance and job processing would result in a better overall schedule. Hence the scheduling problem to be studied in this 
paper is to determine simultaneously when to perform each maintenance activity and when to process each job so that a certain 
performance measure is optimized. Little research has been done in the literature for the model of jointly scheduling maintenance 
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activities and jobs. Qi, Chen, and Tu [14] conducted a study on scheduling the maintenance on a single machine. In their model, there is 
a constraint on the maximum allowed continuously working time T of the machine. Graves and Lee [5] considered a special case where 
the sum of processing time is less than 2T of this model. These studies addressed the problem of maintenance, but only in a limited way. 
They considered constraints only on the maximum length of an available interval, and the jobs scheduled are without release times and 
deadlines constraints, which is inadequate for solving real problems. One can imagine for instance that it is unreasonable to schedule a 
maintenance immediately after another one. Hence, we need to consider constraints on the minimum length of an available interval.  
 
In this paper, we will study the single machine problem where there are constraints either on the length of available intervals or the 
number of jobs completed before starting a new maintenance, and we need to schedule both jobs and maintenance activities. We term 
this the Job Scheduling with Unfixed Availability Constraints problem (JSUA). We will provide a classification designed to emulate the 
classical Job Scheduling Problem, where the three key parameters are maintenance properties, job characteristics and objective function.  
 
2. PRELIMINARIES 
 
Following scheduling terminology, each problem is defined on three fields α/β/µ, where α denotes the maintenance constraint, β denotes 
the job characteristic, and u represents the performance measure to be optimized. Each field has the following possible cases:  
For α, 
Case 1: Constraints on the length between two adjacent 

maintenances. Here, we are given two positive values A 
and B, and the length between two adjacent maintenances 
must be between A and B.  Notation: A-B/ _ / _ 

Case 2:   Constraints on the number of jobs completed between two 
adjacent maintenances. Here, we are given a positive 
integer C, and we must complete C jobs within an 
available interval. Notation: C/ _ / _ 

For β, 
Case 1: jobs do not have release time or deadline.                  

Notation: _ / _ / _ 
Case 2:    jobs have release time. Notation: _ / r / _ 

Case 3:    jobs have deadline. Notation: _ / d /_ 
Case 4:    jobs have both release time and deadline.              

Notation: _ /r- d /_ 
For µ,
Case 1:    length of the schedule. Notation: _/_ / MakeSpan 
Case 2:   number of jobs that can be completed in time in the 

available intervals. Notation: _/_ / Fulfilment 

Case 3: total tardiness of all the jobs.                             
Notation: _/_/Total-tardiness 

 
 
The notations used in this paper are:  

is  : starting time of ith maintenance 

it  : end time of ith maintenance 

iu  : job i, i=1, …,n 

ip  : processing time of iu  

ir  : release time of  iu

id  : deadline of iu  

ic   : completion time of iu  

L   : length of schedule i.e. makespan 
*L : optimal length of schedule 

 f :  number of jobs completed in time (i.e. 
fulfilled) 

*f :optimal number of jobs completed in 
time

Q : maintenance duration

In this paper, we assume that the set of jobs are independent with deterministic processing times to be scheduled on a single machine. All 
jobs are available at the beginning. Unless we mention that job is preemptive, job preemption is not permitted. No two jobs can be 
scheduled at the same time on the single machine. Note that machine idle times are allowed, hence the assumptions are exactly the ones 
defined in Baker (Baker (1974, p.10) - assumptions C1, C2, C3, C5). 
 
3. THEORETICAL ANALYSIS 
 
In this section, we present theoretical results for the 6 JSUA problem cases.  
 
3.1 A-B/_ /MakeSpan 
Input:  n jobs with processing time , maintenance duration Q,, two positive real value A, B. ip ( ni ≤≤1 )
Output: A schedule of minimum length such that the length of available intervals between adjacent maintenance is between A and B.  
 
Complexity Analysis 
The Bin Packing Problem is defined as follows: Given a finite set U of N’ items; for each item u in U a positive integer size s(u); positive 
integer C (called the bin capacity), partition U into disjoint sets such that for each set, the total sum of the sizes of the items in the set 
does not exceed C and the number of sets is minimized. Since Bin-Packing problem is a well-known NP-hard problem and a special case 
of A-B/_ /MakeSpan where A=B, A-B/_ /MakeSpan is also NP-hard problem. 
 
Approximation Ratio 
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Heuristic 1 (Best-Fit), defined as follows: 
Step 1: Set the length of available interval as B. 
Step 2: Sort all the jobs in decreasing order of processing time. For each job in the job list, place it into the available interval that will 
leave the least amount of room left over after the item is placed in the bin. If it will not fit into current any available interval, create a 
new bin for it.  
Step 3: After all the jobs have been assigned, scan the available intervals. If there is space left in an available interval, we shift the 
schedule, while ensuring that the length of any available interval is at least A. 
 
Observe that Heuristic 1 takes O(n log n) time in the worst case.  

Theorem 1:  A-B/_ /MakeSpan can be approximated within a factor of 2 in O(n log n) time.  
 
Proof: First we obtain a schedule λ1 using the Best-Fit heuristic. Then in this schedule, if there is any available interval, the length of 
which is smaller than B, shift the latter jobs to the left, as though all the jobs are preemptive. After this step, we get a new schedule λ2 in 
which all the lengths of the available intervals are B (no space wasted), and the length L of this schedule λ2 is smaller than or equal to *L  
where *L  is the optimal solution of the non-preemptive case. On the other hand, we can obtain a schedule λ1 from λ2. But in this case, 
instead of shifting the job to the right, we can get this job out and set a new available interval for it at the end of the schedule. We denote 
the schedule as λ3. Clearly, λ3 is no better than λ1. The number of jobs put at the end is exactly the number of maintenances in λ2, and the 
length of the available interval set at the end for each of this kind of tardy jobs is ( )Api ,max . Hence, the length of the part added at the 

end of λ2 is less than that of λ2. Hence, λ3 is no worse than , since λ**2 L 2 is the optimal solution of preemptive case and it is better than 
or equal to the optimal solution  of non-preemptive case. After moving those jobs, when we get λ*L 3, we can also shift the schedule to 
the left, because of the space around the maintenances where the jobs are slipped. But this schedule is still no better than λ1. Hence, we 
can see that, the solution of the Best-Fit heuristic is much better than **2 L .  (QED) 
  
It turns out that the above result can be further tightened if we consider the following two special cases: 
 
Case A=B: Since this problem is exactly the Bin Packing problem which can be approximated within 1.5 [17], it can also be 
approximated likewise.  
Case |B-A|  : If we use Best-Fit to solve A-B/_ /MakeSpan, we see that for each available interval between any two adjacent 
maintenances, the length is between value A and value B, since we can always assign one more job or continue processing the current job 
after the point of A. Thus there is no empty space before a new maintenance started. And for the schedule achieved from the Best-Fit 
heuristic the total sum of the lengths of available intervals is always fixed because there is no wasted space. 

≥ maxp

 
Corollary 1: When |B-A| ≥ , A-B/_ /MakeSpan can be approximated within maxp k++ 1

11 , where k is the ratio of ∑ and the sum 

of maintenance time in the optimal solution. 
=

n

i
ip

0

 
Proof:  Again, we use the Best-Fit heuristic to solve A-B/_ /MakeSpan. But for λ1, the sum of the lengths of all the available intervals is 

exactly , since there is no empty space in each available interval as mentioned above. From migrating from λ∑
=

n

i
ip

0

2 to λ3, we can easily 

see that the number of maintenances is at most two times of that of the optimal solution. Then we know the solution L achieved from 
Best-Fit, where  

∑∑
==

⋅+≤
n

i
i

n

i
i pkpL

00

2 . Since ( )∑
=

+≥
n

i
ipkL

0

* 11 , we get ( )

( ) k
pk

pk

L
L

n

i
i

n

i
i

++=
+

⋅+
≤

∑

∑

=

=
1

11
11

21

0

0
*

  

Note that in a typical manufacturing environment, the processing time of a machine is much larger than its maintenance time. Hence, the 
approximation ratio is very close to 1 (i.e. optimal). 
 
3.2 A-B/ r /MakeSpan 
 
Input:  n jobs with processing time i and release time , maintenance duration Q,, two positive values A, B p ir
Output:  A schedule of minimum length such that the length of available intervals must be between A and B. 
 
Complexity Analysis 
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This problem is NP-hard, since A-B/_ /MakeSpan can be treated as a special case of A-B/r/MakeSpan where the release times of all the 
jobs are zero. 
 
Approximation Ratio 
 
Heuristic 2:  We can solve the corresponding problem for A-B/_ /MakeSpan by Heuristic 1 first, and obtain the final solution by shifting 
jobs to the respective release time. 
 
Although Heuristic 2 does not seem very efficient (since there is wasted slot before its release time), it is interesting to obtain the 
following approximation result:  
 
Theorem 2: 
A-B/r/MakeSpan can be approximated within a factor of 1+k,  for some k ≤ 2 in O(n log n) time. 
 
Proof: Let  denote the optimal solution for the corresponding problem A-B/_ /MakeSpan. Let  denote the solution achieved by 

Heuristic 1 for A-B/_ /MakeSpan. Let 

*
1L 1L

L  denote the solution achieved by Heuristic 2. Clearly,  ( )*
1max,

* max LrL ≥   

Since , we get 1max LrL += ( ) ( )
( )*
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1max Lr ≥ ( ) ( ) kr
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Hence, k
L

L +≤1*
. By Theorem 1, we know that 2≤k , and hence k

L
L +≤1*

 , for some 2≤k . 

 
3.3 A-B/ d /Fulfilment 
 
Input:  n jobs with processing time and deadline , maintenance duration Q, two positive real values A, B. ip id
Output: A schedule such that the length of available intervals must be between A and B, and the number of jobs completed in time is 
maximized. 
 
Complexity Analysis 
Like A-B/_/MakeSpan, based on the reduction from bin-packing, A-B/ d /Fulfilment is also NP-hard. 
 
Approximation ratio  
 
From Moore-Hodgson’s algorithm [13], we derive a new algorithm: Algorithm 3 
 
Step 0: Set the length of each available interval as B. 
Step 1: Sort the jobs in EDD order, and place the jobs into the schedule as though all the jobs are preemptive. If there exists a tardy job, 
among the first k jobs find the job with largest processing time, delete it from the job list and assign it at end of the sequence. From the 
above, we obtain a schedule λ1. 

Step 2: From λ1, delete the jobs started before , and completed after of the ith maintenance. Then shift the schedule to the left if 

there is gap before any maintenance, but ensure that the length of any available interval is at least A. We obtain a new schedule λ
is it

2. We 
also use the jobs removed to form a new schedule λ3.  
Step 3: Compare schedule λ2 and λ3, and choose the one with more jobs in schedule. 

 
Theorem 3: 
A-B/d/Fulfillment can be approximated within ( )k

k-1,2
1max , where k=

⎥⎦
⎥

⎢⎣
⎢

maxp
B , in O(n log n) time. 

Proof: Let f denote the solution achieved from algorithm 3,  denote the optimal solution of non-preemptive case, and  denote the 

optimal solution of preemptive case. From [9], we know that the solution of λ

*f rf *

1 is .  rf *
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Note that,  since we can shift those jobs completed after  of the non-preemptive problem to the left to fill in the gap. Thus 

 must have at least the same number of jobs as . We can see that the complete time of the jobs in either schedule λ

** ff r ≥ it
rf * *f 2 or schedule λ3 

is smaller than the corresponding complete time in schedule λ1, then all the jobs in schedule λ2 and λ3 can be completed in time. 
Since  and , we can say ** ff r ≥ rff **2 ≥

2
1

* ≥f
f . Furthermore, let k=

⎥⎦
⎥

⎢⎣
⎢

)max( ip
B , we can say that for each available interval 

of schedule λ1, there are at least k jobs. And after we remove the jobs slipped by maintenances, we can still have k-1 jobs in each 
available interval of λ2. Then, we can get

k
k-

f
f 1

* ≥ . Hence, the approximation ratio of Heuristic 3 is max (
k

1-k ,
2

1 ). 

3.4  A-B/ r-d /Total-tardiness 
 
Input: n jobs with processing time , release time , and deadline , maintenance duration Q,, two positive real values A, B. ip ir id
Output: A schedule such that the length of available intervals must be between A and B, and the total tardiness is minimized. 
 
Complexity Analysis 
In [3], the problem of minimizing total tardiness on one machine has been proved to be NP-hard, and it can be treated as a special case of 
A-B/ r-d /Total-tardiness where the values of A and B is infinitely large and the release time of all the jobs are at the zero point. Thus, A-
B/ r-d /Total-tardiness is also NP-hard. 
 
3.5 C/ d /Fulfilment 
Input:  n jobs with processing processing time and deadline i , maintenance duration Q, a positive value C ip d
Output: A schedule such that we have to process C jobs, and the number of tardy jobs is minimized. 
 
Heuristic 4: 
Step 0: sort the jobs in EDD order.  
Step 1: place the jobs into the schedule. If there is a tardy job , among the first k jobs find the job with largest processing time, 

delete it from the job list and assign it at end of the sequence. When there are C jobs in the current available interval, start a new 
maintenance.  

ku

Step 2: Repeat Step 1. 
 
Theorem 4: 
C/ d /Fulfilment can be solved optimally in in O(n log n) time. 
 
Proof: Since we index the jobs in EDD order, then when the job  is found tardy, we can say before the current completion time t of 

 there exists at least one tardy job no matter how to schedule the jobs.  Suppose there is a schedule λ
ju

ju 1 with no tardy job before t, hence 

the deadlines of , …  are smaller than t, then the jobs , …  should be all finished before t in schedule λ1u 2u ju 1u 2u ju 1. However, the 

sum of processing time of , …  equals t., and surely the last job in the schedule is a tardy job. This is a contradiction with the 

assumption. So we can say there exists at least one tardy job before t. Hence, after the step that the job with the largest processing time is 
taken out, the schedule λ

1u 2u ju

2 achieved is optimal currently, and it leaves more time for the following jobs compared with the schedules that 
any other job is taken out. We can perform the above process for the following jobs, and after we schedule all the jobs, the schedule λ2 
achieved is optimal. In this algorithm, the time complexity for sorting in EDD order is O(n log n), the scheduling algorithm itself is linear. 
Hence, the time complexity is O(n log n). 
 
3.6 C/ r/Makespan 
 
Input:  n jobs with processing time and release time , maintenance duration Q,, a positive value C. ip ir
Output: A schedule such that C jobs have been processed, and the length of schedule is minimized. 
 
Analysis 
The number of available intervals is ⎡ ⎤c

n , implying that the number of maintenances is ⎡ ⎤c
n -1. Whenever a job is released, we insert it 

into a queue. When the machine is available, fetch a job from the queue. If the queue is empty, we have to wait. Hence in each available 
interval, no time is wasted. The total length of available intervals is always optimal. And the number of maintenances is always the same. 
Hence the sum of available intervals and maintenance is optimal. 
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4. TABU SEARCH 
 
In this section, we present results of a tabu search scheme for solving A-B/_/MakeSpan, A-B/r/MakeSpan and A-B/r-d total-tardiness. The 
basic ideas for all three problems are similar, except their initial solution and objective function.  Since there is no benchmark available 
for the above problems, we compare the results with the standard greedy approach. We illustrate our results with problem instances that 
are generalized from the OR Library Bin-Packing problem instances by randomly generating the range (from A to B) based on the bin 
sizes given by Bin-Packing problem instances. By applying our tabu search scheme, we improve the results achieved by the greedy 
algorithms discussed above. The following chart summarizes the results obtained:  

0%

20%

40%

60%

80%

100%

case1 case2 case3

Before TS

After TS

 

case1: A-B/_/MakeSpan 
case2: A-B/r /MakeSpan 
case3: A-B/r-d/Total-tardiness 

From the above results, we observe that the greedy results of A-B/r-d/Total-tardines can be improved by 20% using tabu search. For A-
B/_/MakeSpan, the results can be improved by around 10%. However, A-B/r/MakeSpan is not improved significantly by using tabu 
search. In fact, for each instance of A-B/r/MakeSpan and the corresponding instance of A-B/_/MakeSpan, the difference is that A-
B/r/MakeSpan has one more constraint: the release time. This constraint apparently restricts the potential of tabu search of making local 
improvement significantly. 
 
5.   CONCLUSION 
 
In this paper, we proposed a taxonomy that categorizes the JSUA problem according to 3 driving factors we believe to be important.  As 
this is the first such taxonomy, we anticipate much future research work to refine the results presented here.  
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