Available online at www.sciencedirect.com

A , DISCRETE
»~ ScienceDirect OPTIMIZATION

i

¥ LS.
LSEVIER Discrete Optimization 3 (2006) 385-391

www.elsevier.com/locate/disopt

Note

Finding a length-constrained maximum-sum or maximum-density
subtree and its application to logistics

Hoong Chuin Lau®*, Trung Hieu Ngo®, Bao Nguyen Nguyen®
a Singapore Management University, Singapore 178902, Singapore
b National University of Singapore, Singapore 119260, Singapore

Received 20 December 2005; received in revised form 22 June 2006; accepted 29 June 2006
Available online 22 August 2006

Abstract

We study the problem of finding a length-constrained maximum-density path in a tree with weight and length on each edge. This
problem was proposed in [R.R. Lin, W.H. Kuo, K.M. Chao, Finding a length-constrained maximum-density path in a tree, Journal
of Combinatorial Optimization 9 (2005) 147-156] and solved in O (nU) time when the edge lengths are positive integers, where n
is the number of nodes in the tree and U is the length upper bound of the path. We present an algorithm that runs in O (n log2 n) time
for the generalized case when the edge lengths are positive real numbers, which indicates an improvement when U = Q(log2 n.
The complexity is reduced to O (nlog n) when edge lengths are uniform. In addition, we study the generalized problems of finding
a length-constrained maximum-sum or maximum-density subtree in a given tree or graph, providing algorithmic and complexity
results.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Network design; Algorithm; Computational complexity; Logistics

1. Introduction

In this paper, we study the problem of finding a length-constrained maximum-density path in a tree (or LDP).
Let T = (V, E, w,[) be a rooted, undirected and weighted tree with set V of nodes, set E of edges, and a pair of
functions w(e) and I (e) that represent the positive weight and the positive length of each edge e in E respectively. The
Zf:l w(e;)
i1l
O (n log? n)-time algorithm to find a maximum-density path with length at least L and at most U. The complexity can
be reduced to O (nlogn) time when the edge lengths are uniform, i.e. /(e¢) = 1 for each edge e.

Two special cases of LDP are described as follows. Given a sequence of n pairs of real numbers (w;, [;), a lower
bound L and an upper bound U, find a segment, i.e. a consecutive subsequence, of length at least L and at most
U with maximum sum or with maximum density. We denote these two problems as LSS and LDS, which stand

density of the path eje; . . . e is defined as . Given a lower bound L and an upper bound U, we propose an

* Corresponding address: Singapore Management University, School of Information Systems, Singapore. Tel.: +65 68280229; fax: +65
68280919.
E-mail addresses: hclau@smu.edu.sg (H.C. Lau), ngotrung @comp.nus.edu.sg (T.H. Ngo), nguyenba@comp.nus.edu.sg (B.N. Nguyen).

1572-5286/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.disopt.2006.06.002

http://www.elsevier.com/locate/disopt
mailto:hclau@smu.edu.sg
mailto:ngotrung@comp.nus.edu.sg
mailto:nguyenba@comp.nus.edu.sg
http://dx.doi.org/10.1016/j.disopt.2006.06.002

386 H.C. Lau et al. / Discrete Optimization 3 (2006) 385-391

for length-constrained maximum-sum segment and length-constrained maximum-density segment respectively. Lin
et al. [7] solved LSS in O(n) time. For LDS, Huang [4] noted that the length of a maximum-density segment with
length at least L is at most 2L — 1, and thus provided an O (nL)-time algorithm when there is no upper bound. Lin
et al. [7] devised the concepts of right-skew segments and decreasing right-skew partitions, and used them to solve
LDS in O(nlog L) time. Goldwasser et al. [2,3] improved this time complexity to O(n) for arbitrary L and U. In
another track, Kim [5] transformed LDS to a geometric problem and applied geometric algorithms to solve it in O (n)
time. Recently, Chung and Lu [1] proposed the generalized problem of finding a length-constrained maximum-density
segment in a sequence of number pairs (w;, [;), where w; and /; are the weight and length of position i respectively,
and the density between positions (or nodes) i and j is d(i, j) = (w; +wj1+---+w;)/(; +1liy1+---+1;). They
provided linear time algorithms for the new problem.

LDP is an interesting generalization of LDS; for when the tree is a path, the problem on a tree is equivalent to the
problem on a sequence. In addition, LDP is a generalization of the problem proposed in [6], from the case when the
edge lengths are positive integers to the case when the edge lengths are positive real numbers; and our O (n logn)-
time algorithm is an improvement over the O (nU)-time algorithm proposed in [6] when U = (2(logn). This also
generalizes the result of [8] which solves the maximum-sum (they call it the heaviest-path) problem in O (n log? n)
time.

Furthermore in this paper, we consider the generalization of finding a length-constrained maximum-sum subtree
or a length-constrained maximum-density subtree in a graph (LST-Graph or LDT-Graph). That is, we would like to
find a subtree such that the sum of its edge weights or the edge density (the sum of its edge weights divided by the sum
of its edge lengths) is maximized over all length-constrained subtrees. These problems were stated as open problems
in [8]. We prove that LST-Graph and LDT-Graph are NP-complete even when the edge lengths are uniform. We
then provide O (nL?)-time algorithms to find a length-constrained maximum-sum or maximum-density subtree in a
given tree (LST-Tree or LDT-Tree).

While LDP finds its applications in computational biology such as sequence alignment [6], the problems considered
in this paper also have applications in computer, traffic or logistics network design. In a traffic network design for
example, given a limited budget, we would like to upgrade a subgraph of the network that has the highest volume of
traffic. When we model the traffic network as a graph, the length of each edge represents the length of its corresponding
street segment and hence proportional to the upgrading cost. The weight of each edge represents the traffic load on
the corresponding street. When the amount of traffic volume in a subgraph is measured as the amount of traffic load
divided by the size of the subgraph or as the amount of traffic load only, we get the length-constrained maximum-
density problem or the length-constrained maximum-sum problem respectively. Similarly in a global logistics network
or multi-echelon supply network, the problem is often to identify the part of the network where the volume of flow of
goods/passengers is the most dense within a geographical proximity.

The rest of the paper is organized as follows. Section 2 describes our improved algorithm for LDP. In Section 3,
we prove that solving LST-Graph and solving LDT-Graph are NP-hard even when the edge lengths are uniform. We
proceed to propose algorithms for LST-Tree and LDT-Tree when the edge lengths are uniform in Sections 4 and 5
respectively. Finally, in Section 6, we propose some future directions in extending our work.

2. Improved algorithm for LDP

We first consider a decomposition scheme on a tree and then use it to derive a recursive algorithm for solving LDP.
This scheme is modeled after the idea proposed in [8]. Our purpose is to decompose the tree into two or three subtrees
of “small size” rooted at the same node, such that they are disjoint except for the intersection at their root. Based on
the decomposition, the algorithm finds an LDP (length-constrained maximum-density path) of the original tree based
on the LDPs in each subtree or the LDPs crossing two subtrees.

2.1. Decompose a tree using centroid

For any tree T = (V, E) of n nodes, a node ¢ € V is called a centroid of T if when we delete ¢ and all the
edges incident with ¢, each resulting subtree contains no more than n/2 nodes. Each tree has at least one centroid. We
can find a centroid in 7 in O (n) time as follows. We root T at any node and visit the nodes in a postorder traversal.
While visiting a node u, we let T (1) be the subtree rooted at # and compute its number of nodes using the following

H.C. Lau et al. / Discrete Optimization 3 (2006) 385-391 387

Ay | 10,3

6,2 \3,1 | 7.1 \ 9,2 \ 8,3 \

Mj; [4,1 [3.1 \3,1 \ 7.1 \ 2,1 \71,1

Fig. 1. Illustration of the construction of the match sequence M3 corresponding to the pair (77, 73). The original tree T' is decomposed into three
trees: T1, Tp and T3. T} consists of 4 nodes A, B, F and E; T, consists of 3 nodes A, C and G; and T3 consists of 4 nodes A, D, I and H. A3 is
the intermediate sequence which is used to build M3.

recurrence formula: |7 (u)| = 1 if u is aleaf and |T (u)| = Zvechild(u) |T (v)| + 1 otherwise, in which child(x) is the
set of children of u. In the traversal, the first node u that satisfies the inequality |7 (u)| > n/2 is a centroid of T'.

After finding a centroid ¢ of T, we root the tree T at ¢ and let c1, ¢, ..., ¢t be the children of ¢ in the order
from left to right. Let T (c;..;) be the subtree of T that consists of ¢ and the subtrees T'(¢;), T (¢ci+1), ..., T(c;). Let
j =min{/ € [1..k — 1]| 25:1 |T (c;)| = n/2 — 1}. Note that this definition is well-defined; in other words, j must
exist because c is a centroid. If j = k — 1, we have two subtrees T (c1.x—1) and T (ck. k), each of which contains no
more than n/2 + 1 nodes. If j < k — 1, we have three subtrees T'(c1..j—1), T(cj..j) and T(cjy1.k), each of which
contains no more than n/2 + 1 nodes. Hence, we can decompose any tree T into two or three subtrees rooted at the
same node, such that they intersect with each other only at their root and the size of each subtree is not greater than
n/2+1.

2.2. Building a match sequence

From Section 2.1, we can decompose any tree T into three subtrees 77, 7> and T3, where 73 could possibly be
an empty tree, such that they intersect with each other only at their root # and the size of each subtree is not greater
than n/2 + 1. Thus, an LDP is either a path in one of these subtrees or a path that consists of two downward paths
starting from u to two nodes in two different subtrees. Let us call the later path a path crossing two subtrees. Besides,
if we can find a path crossing 77 and 7> such that it satisfies the length constraints and its density is maximum among
those paths crossing 77 and 7> (we denote this path as path(77, 7»)), we can do similarly with each pair (77, 73) and
(T», T3). The algorithm can therefore proceed recursively for each subtree to find an LDP in T'.

For the pair (77, T>), we build the match sequence M1, as follows. We traverse 7 to build a sequence [(u1) <
I(up) < --- < I(up,) consisting of all the path lengths from u to all the nodes u; of 77, where n is the number of nodes
in T7. If two distinct nodes u; and u ; have the same path length from u in T7, we just keep a node such that the weight
of the path from u to that node is higher in the sequence and drop the other node. Without loss of generality, we assume
that the resulting sequence is [(u1) < I(u2) < -+ < I(uy,) where m; < nj. Similarly, we build a sequence / (u’l) <
luh) < --- < l(u;nz) where my < nj for T», where n; is the number of nodes in 7. Let f(u,_y) = Zf:x f(u;) and
fwl, y) = Z?:x f (u;) where f may either be the length function / or the weight function w. We concatenate these
two sequences to form My as follows: M1y = up, ... upuuju . .. u;nz. A new length function I’ and a new weight
function w’ is assigned for the match sequence M, such that I'(u1 ;) = I(u;), w'(u1.;) = w(u;) for 1 <i < ny, and
l/(u’l"j) = l(u’j), w’(u’li_j) = w(u’j) for 1 < j < ny. According to our construction, [’ is a positive-valued function.
M3 and My3 are computed similarly. See Fig. 1 for the illustration. We have the following lemma, the proof of which
is straightforward from the construction of the match sequences and therefore can be omitted.

Lemma 1. The density of path(T;, T;) is equal to the maximum density of all segments in M;; that have length at
least L and at most U, and contain two nodes u| and u/1 where 1 <i < j <3.

2.3. Algorithm and time complexity

The algorithm can thus be described as the following procedure:

388 H.C. Lau et al. / Discrete Optimization 3 (2006) 385-391

1. Root T at a centroid ¢ and decompose it into three subtrees 77, 7> and T3 (see Section 2.1).

2. For each of the pairs (7;, T;) where 1 <i < j < 3, we build a match sequence M;; (see Section 2.2).

3. For each match sequence M;; (1 <i < j < 3), we find a length-constrained maximum-density segment that
contains two nodes u1 and u/. The path(7;, T;) and its density can be computed based on the segment that has been
found in M;;.

4. Repeat the algorithm recursively for each of three subtrees 71, 7> and 73. The LDP in T is the path that has
maximum density among the LDPs in 7; for 1 < i < 3 and the paths path(7;, T;) for 1 <i < j < 3.

Let T'(n) be the time complexity for the above algorithm when it is applied for a tree of size n. Step 1 can be done
in O(n) time. Step 2 can be done in O(nlogn) time because it consists of a sorting phase. If the edge lengths are
uniform, the sorting phase can be implemented by the counting sort algorithm and therefore Step 2 can be done in
O (n) time. Step 3 can be done in O (n) time by using the algorithm described in [1] with little modification. Thus we
have the following recurrence relation:

T(n) = O(nlogn) +T(ny) +T(n2) +T[n3)

where ny, ny, n3 < n/2 + 1. We can easily derive that T'(n) = O(n log2 n). If the edge lengths are uniform, we have
T (n) = O(nlogn). Hence Theorem 2 follows.

Theorem 2. An LDP in a tree of size n can be found in O (n log2 n) when the edge lengths are positive numbers, and
in O(nlogn) when the edge lengths are uniform.

3. Hardness of LST-graph and LDT-graph

The general case when the edge lengths are general positive numbers is easily proved to be NP-hard even when
the graph is a tree using a reduction from the Knapsack problem, as pointed out in [8]. In this paper, we prove that
LST-Graph and LDT-Graph are still NP-hard when the edge lengths are uniform.

3.1. LST-graph is NP-hard

We first present a polynomial-time reduction from the Minimum Set Cover problem to LST-Graph.

Minimum (Set) Cover (SC)

INSTANCE: A collection C of subsets of a finite set S and an integer m.

QUESTION: Is there a set cover for S, i.e. a subset C’ € C such that every element in S belongs to at least one member
of C’ and the cardinality of C’ is not greater than m?

Length-constrained maximum-sum subtree in graph (LST-Graph)

INSTANCE: A graph G(V, E), alength function/ : E — N and a weight function w : E — N and two integers L, U.
SOLUTION: A subtree T of G whose length is bounded above by U and bounded below by L.

MEASURE: The weight of T.

Consider an instance (S, C,m) of the Minimum Cover problem where |S| = n, |C|] = k. Let ¢
denote the ith set in C and s; denote the jth element in §. We construct a graph G(V, E) where V =
{u,u',cr,co, ..., ck, 51,82, ..., 80, 8], 85, ...,5,} and E consists of the following edges:

o (u,u’) € E.

o (u',c;) € Eforalli.

e (ci, sj) € E if the set C; contains s;.

. (sj,s;.) € E forall j.
The length function [is defined so that all edges of G have uniform length.
The weighting function w : E — A is defined as follows:

w(u,u’)=N.

w(s;, s}) = N where N is some integer bigger than (n + 1)k.
w(u', ¢;) =1 foralli.

w(ci, sj) = 1forall (¢;,s;) € E.

H.C. Lau et al. / Discrete Optimization 3 (2006) 385-391 389

Lemma 3. SC(S, C, m) has a solution if LST-Graph(G,0,2n+m + 1) > (n+ 1)N.

Proof. Let T(V’, E’) be the maximum-sum subtree of G whose length does not exceed 2n +m + 1. Denote the length
and weight of T by /(T) and w(T). We have: w(T) > (n + 1)N.

Since the sum of the weight of (u’, ¢;) for all i and (c;, s;) for all i and j is less than N, any subgraph of G whose
weight is bigger than (n 4+ 1)N must contain all (n + 1) edges that have weight N, i.e. (u, u’) and (s;, s}) for all i.
Hence, {(u, u’)} U {(si, s))|1 <i <n} C E’. This implies

{u,u/}U{Sj|l <j 5n}U{s}|1 <j<n}cV.

In addition, that 7’s length does not exceed 2n +m + 1 implies |V'| < 2n+m + 2. Thus, V'’ contains at most m nodes
from {c¢;, 1 <i < k}. Itis obvious that for each s;, 1 < j < n, there exists an edge (c;, 5;) € E’. The collection of all
subsets represented by ¢; € V' hence covers S. [

Lemma 4. If SC(S, C, m) has a solution then LST-Graph (G,0,2n+m +1) > (n+ 1)N.

Proof. Without loss of generality, let {Cy, C3, ..., Cp} be a set cover of S. We construct a tree T(V’, E’) that has
length m 4 1 + 2n and weight bigger than (n 4+ 1) N as follows:

o Vi={u,u'tUfcill =i =m}U{s;|1 <= j<n}U{s;|1 <j=<n}

o (u,u’) e E.

o (u,c;) € E'foralll <i <m.

. (sj,s}) € E'forall1 < j <n.

e (c1,55) € E/Vs]' e (C

o (ci,speE'VsjeC\UlZ|G. O

Lemmas 3 and 4 yield the following theorem:

Theorem 5. LST-Graph is NP-hard even when the edge lengths are uniform and there is no lower bound.
3.2. LDT-Graph is NP-hard

The same reduction with a new weighting function featuring N' bigger than ((n 4+ 1)k + 2n + 1)? can be used to
prove that finding a maximum-density subtree with length not smaller than L is also NP-hard. Lemma 6, Lemma 7
and Theorem 8§ are derived similarly to Lemma 3, Lemma 4 and Theorem 5.

Length-constrained maximum-density subtree in graph (LDT-Graph)

INSTANCE: A graph G(V, E) with a length function / : E — N and a weight function w : E — N, two positive
integers L < U

SOLUTION: A subtree T of G whose length is at least L and at most U

MEASURE: The density of T.

Lemma 6. SC(S, C, m) has a solution if LDT-Graph(G,2n+m + 1,00) > [(n+)N +n+m]/2n+m+ 1).
Lemma 7. If SC(S, C, m) has a solution then LDT-Graph(G,2n+m+1,00) > [(n+ 1N +n+m]/Qn+m+1).

Theorem 8. LDT-Graph is NP-hard even when the edge lengths are uniform and there is no upper bound.
4. Algorithm for LST-Tree

Although the general problems of finding an LST of either a graph (even with uniform-length edges) and general
edge-length tree are NP-hard, an LST of a tree with integer edge lengths can be efficiently computed.

390 H.C. Lau et al. / Discrete Optimization 3 (2006) 385-391

(a) (b)

Fig. 2. (a) A general tree. (b) The binary tree transformed from the tree in (a); the black nodes are original nodes, the white nodes are newly created
nodes.

4.1. Binary tree

We start by considering binary trees, in which each node has degree less than or equal to 3. The algorithm works
by first choosing a leaf and rooting the tree at that leaf. It then annotates each node u of the tree with an array A, of
size U such that A, [i] stores the weight of the maximum-sum subtree of size i rooted at u.

Initially, for any leaf /, we set A;[0] = 0 and A;[i] = —oo foralli € {1, 2, ..., U}. The arrays are then updated in
a bottom-up fashion. Given the arrays stored at its children, A, for internal nodes u is computed using the formulas
below:

1. If u has only one child v,

Aulil = Ayli — 1w, v)] + w(u, v). (D
2. If u has two children v and ¢,

max{Ay[j]+ A i —l(u,v) —Il(u,t) — jl+wu,v) +wu,t)
0=<j=<i—Iu,v)—1Iu,1)}

Ayli — I(u, v)] + w(u, v)

Ali —1(u,)]+ w(u, t).

Ayli] = max

2

At each node, we have to update an array of length U. Each element of this array can be updated in O (U) given
the array stored at the node’s children. Hence, each node is processed in O (U?). Each node is visited exactly once in
this algorithm. The time complexity of the algorithm is O (nU?).

4.2. General tree

To deal with a general tree, we first transform it into a binary tree by the following procedure (see Fig. 2 for the
illustration):
1. Root the tree at any leaf.
2. Traverse the tree in top-down fashion. At each node u, if it has more than 2 children, divide the set of children of
u into pairs of two children p1, p2, ..., pr. for each pair p;, create a new node u; and set the two nodes in p; to be
children of u;. The length and weight of the edge connecting each child to u; are set to 0. If there are more than 2 new
nodes, we repeat the process with them taking the place of children of u. After finishing processing u, we process its
children in the original tree. Note that we do not visit the newly created nodes.

Lemma 9. The above transformation takes O (n) time.

Proof. It is easy to see that at each node u of degree d(u) in the original tree, there are O (d(u)) nodes and edges are
created, taking time O(d(u)). Since), d(u) = n, the time complexity of this procedure is O (n). Furthermore, the
resulting binary tree has O (n) nodes and edges. [

It is clear that from an LST of the resulting binary tree, we can obtain an LST of the original tree by removing all
newly created nodes and joint # and v if v is an ancestor of u and the path from u to v contains only newly created
nodes. Hence, an LST of the original tree can be obtained by the following O (nU?)-time procedure:

1. Transform the tree to a binary tree.

H.C. Lau et al. / Discrete Optimization 3 (2006) 385-391 391

2. Obtain an LST in the resulting binary tree.
3. Transform this subtree back to a subtree of the original tree.

5. Algorithm for LDT-Tree

The same algorithm above can be applied to find an LDT by replacing L by U and Egs. (1) and (2) by Egs. (3) and
(4) as follows:

(Ayli = I(u,)]G —il(u,v))+w(u,v))' 3)

max { JA+ G =1, v) =1, 1) — AL — I, v) = 1w, 1) — jl+w, v) + wu, 1)
i

Ayli] =

0<j<i-—Iu,v) —l(u,t)}
Ayli] = max

“)

Ay [i =1 (u,v) [=1 (u,v)]+wu,v)
i

Agli=1@u,t) 1[I =1 (u,t)]+w(u,t)
7 .

This algorithm runs in O (nU?) by the same argument as above. Besides, if each edge length is either 0 or 1, we
have:

Lemma 10. The length of the smallest LST is at most 3L.

Proof. This lemma is clear since we can always separate a tree of length 3L into two subtrees of length at least L.
The subtree with higher density has density higher than that of the original tree. O

By Lemma 10, the algorithm can be easily modified to run in O (nL?).
6. Open problems and future research directions

Some future work can be proposed for the problems studied in this paper. It is an open question as to whether
the above algorithms can be improved to have linear time complexity. More investigations on the maximum-sum or
maximum-density problems in a graph should be conducted. In addition, the LST-Tree or LDT-Tree problems can be
extended to solve for the case of general edge lengths. Finally, an interesting direction is to find either exact or good
approximation algorithms for the problems that are proved to be NP-hard, namely, LST-Graph and LDT-Graph.

References

[1] K.M. Chung, H.I. Lu, An optimal algorithm for the maximum-density segment problem, SIAM Journal on Computing 34 (2) (2004) 373-387.

[2] M.H. Goldwasser, M.Y. Kao, H.I. Lu, Fast algorithms for finding maximum-density segments of a sequence with applications to bioinformatics,
in: Proceedings of the 2nd Workshop on Algorithms in Bioinformatics, WABI 2002, 2002, pp. 157-171.

[3] M.H. Goldwasser, M.Y. Kao, H.I. Lu, Linear-time algorithms for computing maximum-density sequence segments with bioinformatics
applications, Journal of Computer and System Sciences 70 (2005) 128—144.

[4] X.Huang, An algorithm for identifying regions of a dna sequence that satisfy a content requirement, Computer Applications in the Biosciences
10 (1994) 219-225.

[5] S.K. Kim, Linear-time algorithm for finding a maximum-density segment of a sequence, Information Processing Letters 86 (2003) 339-342.

[6] R.R.Lin, W.H. Kuo, K.M. Chao, Finding a length-constrained maximum-density path in a tree, Journal of Combinatorial Optimization 9 (2005)
147-156.

[7] Y.L. Lin, T. Jiang, K.M. Chao, Efficient algorithms for locating the length-constrained heaviest segments, Journal of Computer and System
Sciences 65 (3) (2002) 570-586.

[8] B.Y. Wu, K.M. Chao, C.Y. Tang, An efficient algorithm for the length-constrained heaviest path problem on a tree, Information Processing
Letters 69 (1999) 63-67.

	Finding a length-constrained maximum-sum or maximum-density subtree and its application to logistics
	Introduction
	Improved algorithm for LDP
	Decompose a tree using centroid
	Building a match sequence
	Algorithm and time complexity

	Hardness of LST-graph and LDT-graph
	LST-graph is NP-hard
	LDT-Graph is NP-hard

	Algorithm for LST-Tree
	Binary tree
	General tree

	Algorithm for LDT-Tree
	Open problems and future research directions
	References

