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Abstract. In this paper, we present a simple constraint-based di vemification bech
nigue Lo enhance local seareh in solving opti mization preblems. This technigue
differs from exizbing diversification methods in thatb it iz generie so long as the
given optimization problem can be expresed a2 constraint sabizfaetion problem.
In particular, we will focus our dizcussion on the Vehide Routing Problem with
Time Windows, an impertant combinatorial opti mization problem in logistics man-
agement. Experimental results show that this teclmique is capable of assizting tabu
search to ecape from lecal optimality. Thus eur appreach provide opportundties
for improvicg the quality of Lhe solubions.
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1. Introduction

Local search techniques have been shown to be quite efficient in solving
varions large-scale combinatorial optimization problems. Some well-
known approaches in local search are simulated annealing {Kirkpatrick
et al., 1983), genetic algorithms (Holland, 1975), tabu search {Glover,
1947), ete. In contrast with exact approaches, local searches are efficient
in the senze that satisfactory results can vsually be obtained with signif-
icantly less com putational effort. However, a common weakness of these
approaches is that they may sometimes be trapped in a local optimuanm
with poor quality. This barrier may not be easy to overcome even with
fastidions toning of varions partameters in respective methods.

One of the approaches to overcome this bottleneck is to diversify
the search, where diversification will drive the search to explore new
regions in the search space such that the objective value can be further
optimized. An example is the work of Rochat and Taillard {Rochat and
Taillard, 1995) in which of diversification is applied in a taba search
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setting to solve the Vehicle Rooting Problem with Time Windows
(VRPTW).

Iistead of manipulating upon the varions move operations in local
search to create a diversified search neighbourhood, we propose a very
different technique. We model the given optimization problem as a
constraint satisfaction problem which iz then solved by a generic local
search algorithm, also proposed in this paper. In doing so, diversifi-
cation becomes a straight-forward process of modelling, rather than a
process of inventing algorithms for specific problems.

Without lozs of generality, we will aszsume that the given optimiza-
tion problem iz a cost minimization problem, and that thiz problerm
can be modelled as a constraint satisfaction problem P. Given a lo-
cally optimal solation {derived from an arbitrary problem-specific local
search algorithm), we feed this solution as the initial zolution for onr
constraint-based local search algorithm which operates in twostages. In
the fitzt stage, some of the constraints of P are relaxed hence allowing
the search to further minimize the cost by exploring into infeasible
regions. Restoring feasibility is the second stage of the constraint-based
local search. In this stage, all relaxed constraints are resamed. The
search continues until a new feasible solution is obtained. The quality
of thiz new zolution (if found) is normally worze than the one initially
returned by the two-phase approach. However, the good news is that
this provides opportuonities to enter a possibly more promising region,
to whiclh the standard local search is applied again. The overall process
will be repeated up 1o a pre-set maximum number of times.

In this paper, we will discass our generic constraint-based diversifica-
tion techinique and apply it to solve VREPTW. We believe this approach
can be readily applied o other optimization problems. In VEPTW,
a set of rontes must be constructed so that a set of geographically-
distributed customers can be serviced by a fleet of vehicles, subject
to vehicle capacity and time window constraints, The objective iz to
first minimize the nomber of vehicles uvsed and then the total travel
distance.

In terms of related research, Rochat and Taillard {Rochat and Tail-
lard, 1995) introduced a probabilistic diversification and intensification
technique that overcomes the problem of local optimalicy. They applied
this technique on taba search approaches tailored for YREPTW. They
showed that the rezolt of the first level tabu search may be significantly
improved with this technique. Several works have been carried out ad-
vacating the hybrid use of constraint programming and local zearch. For
example, Pezant and Gendrean {Pesant and Gendrean, 1999) applied
constraint programming to evaluate the local neighborhood to find
the bezt local moves. There iz alzo constrained-directed local zearch
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proposed in {Shaw, 1998; Backer et al., 2000; Kilby et al., 2000). In
(Shaw, 1998), for example, the author presented a method called Large
Neighbourhood Search (LNS) for VRP in which a part of a given so-
lution is extracted and then reinserted into the partial solution vsing
a quasi-complete search process. If the reinzertion procedure generated
a better solation, then the solution is kept. This process is repeated
antil certain stopping criterion is met. The resolt produced with this
techinique is competitive with other meta-heuaristic approaches.

In this paper, we illustrate that oot constraint-based diversification
technique can assist tabu search for solving VRPTW to escape from lo-
cal optimality. A local optimal solation is first generated by taba search.
Using a strategy similar to LNS, a part of this solution is extracted and
paszed to the constraint-based local search. In the first stage, the time
window and capacity constraints are relaxed hence allowing the search
to further minimize the cost by exploring into infeasible regions. In
the second stage all the relaxed constraints are resumed. The search
con tinues until a new feasible solu tion is obtained. This feasible solation
{if found) is then passed back to the tabuo zearch and the whole process
is repeated up to a pre-set maximuom number of times.

This paper is organized as follows, Section 2 illostrates the problem
definition of VRPTW and the well-known two-phase approach involv-
ing a constraction technique to build an initial solution and a tabo
search to improve the solation. In section 3, we present our diversi-
fication technique where VRPTW iz modelled as a linear constraint
satisfaction problem and then solved by a local search method. We
demonstrate how this technique can cooperate with a two-phase ap-
proach, resulting in an improved algorichm. Finally we present the ex-
perimental rezalts, over the well-known Solomon’s benchmark problems
{, 1983), together with some concloding remarks.

2. Problem Definition and Well-Known Approach

21. YEHICLE BROUTING PROBLEM WITH TIME WINDOWS

We consider the standard VRPTW, in which a fleet of identical vehicles
makes deliveriez of a single commodity to costomers from a central
depot. Each costomer has itz own demand and moost be served within
a specified time window by one and only one of the vehicles. A route
consists of one of more than one costomers secved by the same vehicle
that starts and ends its deliveries at the depot. The load of each vehicle
cannot exceed s loading capacity and every vehicle can at most serve
one route.
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The problem has the following inpuots:

i = number of velicles

N = namber of customers

' = capacity of each vehicle

W, = demand of customer #

5; = service dutation for customer ¢

a; = earliest possible start time of delivery to customer ¢
B = latest possible start time of delivery to costomer §
D; = travel distance from customer § to customer j

T = travel time from customer § Lo costomer §

Mote that 5; represents the duration needed to serve customer i
Hence, if costomer ¢ is served starting from £ and assame that the
following customer to be served iz j, then the earliest time that § will
be zerved is £+ 5 + Ty,

The first objective is to find a feasible solution that minimizes the
number of vehicles needed and the second objective is to minimize the
total distance travelled by the velicles.

22, TwWo-PHaSE APPROACH

It hias been shown that a succesful methodolagy for zolving VRPTW
is to construct an initial set of feasible routes that serve all the cus-
tomers (construction phase) and subsequently improve the existing
selation {improvement phase), namely a two-phase approach. Various
techniques have been investigated for both phases (Kilby et al., 2000).
In this paper, we use a greedy insertion algorichm to build che initial
solation and apply tabu search associated with a set of traditional
vehicle routing move operators to improve the solution. Details are
given as follows.

2.2.1. Construction Phase

In the first phase, a least cost greedy insertion algorithm iz used for
generating an initial solation. This is an iterative algorithm with the
following steps:

Llet & := {rp | k =1, ..., £} be the current zet of routes and
Fi={u; | i=1, ..., N} be the set of unassigned costomers

2. for each costomer w in {7, compuate the cost {the resaltant incre-
ment in travel distance) of inserting it into every feasible insertion
position p; in every roate ry in R;
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3. perform an insertion with the minimom cost {let this costomer be
)

4. rermove ;- from {F;

5. repeat steps 2 to 4 until {7 = 4.

The initial feasible solation is then improved in the i provement
phase of the method.

222, Improvement Phase

We perform tabu search to improve the solation given by the inzertion
algorithm described above. In this paper, the steepest decent search
is applied. A meove i this approach corresponds to one of the tra-
ditional vehicle routing move operations. Here, we only focus on two
types of move operations, namely exchange (Taillard, 1993) and refocate
(Savelzberg, 1958).

An exchange operation swaps two costomers from two different exist-
ing routes, whereas in a relocate operation, a customer is removed from
the original route and is reinserted into an existing route (it conld be the
same toute but at different position]. A move is considered feasible if the
correzponding opetation does not violate any requirement (for instance,
time window and vehicle capacity constraints, etc) in ¥YRPTW. Hence
the neighbourhood of the current solution is defined by all the feasible
moves. I each itetation of the steepest decent approach, the feasible
move that gives the best improvemnent (or least deterioration) of the
cost i selected.

To avoid the search from revisiting the same solation in near futuare,
the tabu zearch mechanism iz introdoced. A fadu fig! that records the
i previous moves performed is maintained in memory. The number n
is usually called the fabu length. A move is considered tabu if it is in
the tabu list. Moreover, a move is aspired if the resultant cost is lower
than the cost of the best solution encountered.

If the best move selected by the steepest decent approach is tabu
and not aspited, then the next best move in the neighbourhood of
the current solation iz considered; otherwize, make the selected move,
The improverent process in this phase continues antil a pre-set max-
imuam number of iterations maxfter is reached or a naumber of non-
improving iterations mar Stag have been performed. The key steps of
the improvement phase are given as follows:

1. let the current solution 2 be the feasible solation generated in the
construction phase, and set ™ = oo
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2. choose the best move bestMove from the neighbourhood of the
current solution;

3. if bestMove is tabu and not aspired, let destdfove be the next
best move in the neighbouchood and go to step 3, otherwise accept
begtAfove and update the solution 2 and cost z{2);

4. if z{2) < &7, then 2™ = » and 27 = z(2);

5. repeat steps 2 to 4 until the nomber of iterations equals max ftep
of raar Slag non-improving iterations have been performed;

6. ontput 2™ and £

3. FProposed Approach

I this zection, we propose a conztraint-based local search method, and
demonstrate how this method may serve as a divewsifier for the two-
phase approach discuszed in the previons section. We then propose a
co-opetative framework for the two-phase approach to work in tandem
with the diversifier.

31 ConNsTRAINT-BASED Local SEarcH METHOD

We model VRPTW as a linear constraint satisfaction problem and
introduce an efficient local search method for zolving this class of con-
straint satisfaction problems.

111, Modelting VRPTW as Constraint Satisfaction Froblem

In our model, the constraints of VRPTW are represented as a set of
hard linear constraints, whereas the optmization objective is repre-
sented by a set of seft constraints. A feasible solution in this fermulation
is an assignment to all vatiables in the model that satisfies all con-
straints in the hard category, whereas an optimal solation is a feasible
solation with the minimum total degree of violation contributed by the
soft constraints.

The degree of violation of a constraint X 2 Y iz defined as max(0, (¥ —
XJ). Onar goal is to obtain an assignment to all variablesthat minimizes
the total degree of violation of the soft constraints while zatisfying all
the hard constraints.

The model iz based on the “previous™ and “next™ nodes represen ta-
tion, where every node references the nodes that come before and afier
it. There are &% nodes representing & costomers. In additon, there is
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an additional node for each vehicle reprezenting the starting and ending
point {depot) of its route. Thos we have & + & nodes (where the first
N nodes correspond to the N costomers) and i vehicles. The variables
i this model are:

X5 1, if node § is visited immediately after node §;

0, otherwise; {1)

where ¢, =1, ..., & + i. Note that x;; =0, for i =1, ..., ¥.

g 1, if node #is visited by vehicle k;

0, otherwisze; {(2)

where t =1, ..., N+ K and k=1, ..., K. Note that ¥ > N: vy = 1,
if i — N = k; otherwise vy = 0. This means each additional node is
mapped onto one vehicle.

4 € [ﬁ'f: bt]: {3]

where £; is the start time of delivery to node i foralli = 1, ..., N, and
(@, 8] reprezents the delivery time window of costomer i.

The hard constraints are given as follows. Let min(E) and maz(E)
denote the minimuam (resp. maximum) possible value of the expression
E over all possible values of variables in the expression. For example,
rin(vik — v, means the minimom value of vy — v, over all possible
indices {, § and k. These min-max fonctions serve as the "big M* which
converts an implicational constraint into a linear constraint.

1. One-successor constraint - each node must have exactly one succes-
SOL:

i=1
Wiz, a, N+ K

2. One-predecessor constraint - each node must have exactly one pre-
decessor:

Z 2y = 15 >

Yi=1, ... N + .
' Mote that each equality can be mepresented by two [(“>™ and “<™) inequalities,
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One=vehicle consfraint - each node can only be visited by one vehi-
cle:

K
B = 13 ()
k=1
¥Yi=1, ... N+ fi.

. Vehicle consistency constraint - if 2:; = 1, then vy = vy

vie — vk = M ox (1 —2y);
Wik — l‘.?j;j, “:_: ﬂr‘f*}_‘ = (1 —.T-fj];

(7)
Vi, j=1, oy N+ K,i# 4 and¥k =1, ., K (whete M, =
min(vy — vy) and My = mazr{e, — v;,)).

Vehicle capacity constraint- the load of each velicle B cannot exceed
the capacity £ of the vehicle:

i
Z vaW: < &

(8)
i=1
Ye=1, .., K.
6. Service time constraint - if x;; = 1, then £ + 5 4+ T € 45:
L+ S8+ Ty -t £ Maox (1 —24); (2
i, =1, ...

, ¥, and i # j (where M = max(t; + 5 + Ty —£5)).
The objective of VRPTW, namely minimizing the total nomber of

velicles and the travel distance are modelled as the follow'mg =et of soft
CONSLEAINLE:

Number of vehicles constraints -
V=1, .., Kst. DF, v <8

M
Zvﬁ: = { {1{}]

=1

Yh=1, . Kat TN, 0y > 8

N
S v 2 8 (11)
=1
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Thavel disfantee consiraint -
N4 K
Z 2y £ 05 (12)
i=

Yi=1, ., ¥ + K.

Constraints (1) to {12) form a linear constraint satizfaction problem
for VRPTW which can be solved by LS{CP).

Constraints (10) and (11) require some explanation. Intaitively, it
says that for routes whicl are “short™ (i.e. whose length is shorter than
some & > (), we want to make them nuall, whereas for the rest of them,
we want to prevent them from becoming shorter. In doing so, we are
in fact attempting to emove short rontes by relocating the costomers
on the rontes. Thiz formulation came about through the obzervation
that locally optimal solutions are the ones that often contain “short™
routes {containing 1 or 2 customers). Hence, in our experiments, we set
# = 3. Note that if we had directly modelled modelled minimization of
nurmber of vehicles ditectly via the constraint (like the Travel distance
constraint):

E N
30 vz £ 0 (13)
k=) =}
it would not have produced the desited resuolt, since this constraint is
too weak in effecting customer relocation.

31.2. Solving CSP with Local Search
To solve a constraint satisfaction problem via local search, we pro-
pose a scheme {called LS{CP) (Henz et al., 2000)) that generalizes the
WSAT(OIP){, 1983) and the WSAT (Selman et. al, 1994) algorithms.

L5(CP) iz a greedy local search method which incorporates a tabu
mechanism as well as a random walk component to explore the search
space and overcome the effects of local minima. The algorithm always
works on a full assignment to all the variables in the given C5P in-
stance. Beginning with an initial assignment to all the vatables {not
necessarily a feasible solation], for example a random assignment, the
algorithm inclines to reduce the degree of violation of the constraints
in every iteration by performing a local flip. It maintains a saved copy
of assignment whenever it encounters a better solation according to
certain comparison critetia. The search continues until the number of
iterations reaches a preset valoe maxbloves or some solation critetia
are met. The above process is repeated op to maxTries times.

To deal with hard and soft constraints, constraints are further parti-
tioned into levels, hence forming a constraint hierarchy. This constraint
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hiecarchy induces a partial ordering on the solution space, and LS(CP)
compares solotions in terms of degree of violation over this partial
ordering. For details of LS{CP], the reader is referred to (Henz et al,,
2000).

3.2, Co-OFERATIVE FRAMEWORK

We now proceed to describe a co-operative framework between the
the two-phase approach discussed in Section 2.2 and our constraint-
based diversification technique. By doing =0, the overall algorithmic
framework iz capable of moving from one local optimum to another
in the objective landscape, thos enchancing the likelihood of finding a
better zolution.

We use a strategy similar to LNS {Shaw, 1998) in which a part of a
solation retarned from tabo search is extracted and passed to LS{CP)
to diversify the zearch neighbourhood of the corrent solution.

The co-operative framework iz given as follows.

1. Set count = 0.

2. Generate a feasible solution 2 with the two-phase approach. Set
™ =2, and ™ = (2] (z(2) iz the cost of zolution z)

1. Extract P oof the customers to form a sub-VEPTW instance.
4. Pass the sub-VRPTW instance and 2 to LS{CP).

a) Relax all time windows and veliicle capacity constraints and
allow LS{CP) to reduce the cost by exploring into infeasible
[egions.

bB) Resume all the constraints relaxed instep 3 and continoe search
antil a new feasible solution is obrained.

3. Feed the partial solution back to tabu search.

6. Perform tabu search with the modified solation and this will gen-
erate a new feasible solution 2.

7.0 2(2) < 27, then 2™ = ¢ and 2™ = 2(2).

8. count = count + 1. if cound < maxlter?, go to step 3; otherwize,
cutput ™ and ",

Instep 3, we first measure the tightness of each route (a route is tight
when the arrival times are very close to the start times of delivery to
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customers in that route). Routes are then sorted in descending order ac-
cording to their tightness, We choosze the last few rontes that consist of
roughly % of the costomers from the list. With this selection strategy,
those rontes with tight schedule will be preserved. Step 4(a) is where
the diversification takes place, since tabuo zearch in general does not
handle infeasibility. In addition, the quality of the new partial solation
returned from LS{CP) in step A(b) is usoually worze than the one initially
recarned by the two-phase approach. However, the good news is that
this provides opportunities to enter a possibly more promising region,
to which tabu search is applied again in step 4.

4. Experimental Resulis

In this section, we compare the experimental esalts of the two-phase
approach discussed in Section 2.2 as well as our proposed co-operative
framework presented in Section 3.2. Numerical experiments are per-
formed over the well-known Solomon™s benchimack problems.

In these experiments, we set tabo length n = 30, maxfter = 100,
and marStag = 20. For the co-opetative framework, we set P = 90
and max fler2 = 3. In step 4a of co-opetative framework, we relax the
constraints defined in Eqg. (6)-(9). We performed our experiments on a
SUN Spare Il workstation, and impose a time-out of 10 CPU minutes
on each test casze.

Table 4 shows the results {in terms of the number of vehicles needed
and the travel diztance] obtained by the best publizhed results taken
from the literature and oor resolis.

Contributions to the best-known results from heuristics are taken
from:

— Cordean ef ol. (, 1983)- R707, R108, RCI04, RCI08, R204, R{C201,
RC207

— Chiang and Russell {Chiang and Russel, 1696) - R207

— Homberger and Gehring (Homberger and Gehring, 1999) - R105,
Ri0g, RT12, R201, R203, R208, R210, R211, 202, RC203, RC24,
RC205, Riig

— Roussean ¢f al.{Roossen et al., ) - R177, RCIGS, R202, R205,
R209, RC208, RC20S

— Rochat and Taillard {Rochat and Taillard, 19953) - K17, Rid,
R105, R108, €101, C102, Cr08, O, Cr08, C108, €107, €108,
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104, RCIOS, R206, C201, C202, C205, C204, C205, C208, C207,
{208, RiG2

— Taillard ef al. (Taillard ec al., 1997) - RC101, RC102, RC1O7,
RC108

It can be observed that our results are inferior compared to the best
pubizhed rezults. Yet, when compared against a specific algorithm, our
approach performs well. For instance, when matehed against the resolts
of Rochat and Taillard {Rechat and Taillard, 1993) (as summarized in
{Schulze and Fahle, 1999) Row 1 of Tables } and 4 for compatible CPU
times), we obzerve the following results, as shown in Table 4.

5. Conclusion

In this paper, we discussed a simple constraint-based technique for
diversifying local search. This method iz simple and applicable to any
optimization problem so long as the given problem can be rcast as a
constraint satisfaction problem. A futare work that follows logically
would be to apply this techiique on different optimization problems.
Clearly, applying oor technique ditectly may not yield the best pos-
sible rezults. The challenge therefore i in designing problem-specific
heuristics to strengthen the varions steps in oor proposed co-operative
framework. For inztance, in the case of VRPTW, we need to design
algorithms to find a good sabset of routes to be extracted, and to
determine which constraints should be relaxed {(since not all constraints
need o be relaxed).
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