
EFFICIENT ALGORITHMS FOR MACHINE
SCHEDULING PROBLEMS WITH EARLINESS
AND TARDINESS PENALTIES

Guang FENG
School of Computing
National University of Singapore

Hoong Chuin Lau∗
School of Information Systems
Singapore Management University
80 Stamford Road, Singapore (178902) Tel: +65- 6828 0229
hclau@smu.edu.sg

Abstract In this paper, we study the multi-machine scheduling problem with earliness
and tardiness penalties and sequence dependent setup times. This problem can
be decomposedinto two subproblems - sequencing and timetabling. Sequencing
focuses on assigning each job to a fixed machine and determine the job sequence
on each machine. We call such assignment a semi-schedule. Timetabling fo-
cuses on finding an executable schedule from the semi-schedule via idle-time
insertion. Sequencing is strongly NP-hard in general. Although timetabling is
polynomial-time solvable, it can become a computational bottleneck if the pro-
cedure is executed many times within a larger framework. This paper makes two
contributions. We first propose a quantum improvement to the computational ef-
ficiency of the timetabling algorithm. We then apply it within a squeaky wheel
optimization framework to solve the sequencing and overall problem. Finally,
we demonstrate the strength of our proposed algorithms by experiments.

Keywords: Earliness-Tardiness, Meta-heuristics, Scheduling, Squeaky Wheel

1. Introduction
Scheduling problems arise commonly in manufacturing and logistics op-

erations. As business move toward greater customer focus, the underlying
scheduling problems need to be extended to cater to those needs. Traditionally,

∗Corresponding Author

1

2

only lateness (or tardiness) is a concern. Research is concerned primarily with
regular performance measures, i.e. measures that are non-decreasing functions
of job completion times, such as mean weighted flow times, makespan, mean
weighted tardiness. Concepts of Just-in-time enriched manufacturing and lo-
gistics practices and raised a new class of non-regular performance measures
involving earliness. The cost of earliness can be enormous. Cisco, for instance,
wrote off $2.25 billion worth of inventory in 2001 because the company had
placed large orders in anticipation of future projected sales which did not ma-
terialize (cnet.com (2001)). In logistics and supply chain management, a key
decision is to determine when to assemble components into final products, and
when to ship items across the multi-tier distribution centres across the chain.
Again, the cost of holding inventory can be enormous for the organization if
the customer does not accept an early shipment. Scheduling problems that
consider both earliness and lateness penalties are often called ET problems.

In this paper, we use the following notations. There are N jobs to be pro-
cessed on M identical machines. A job can be processed on any machine with
no machine preferences. Each job is processed exactly once non-preemptively.
All jobs are ready at time 0. Job i has processing time p i and due time di.
The unit penalty (or cost) for earliness is α i, and that for lateness is βi. Of-
ten, we need to impose setup time sij between two successive jobs i and j. A
schedule (or more precisely, executable schedule) is defined as the set of com-
pletion times ci for all jobs. This is opposed to a semi-schedule which is an
intermediate solution specifying the job sequence on each machine (but with-
out the actual completion times). The total penalty (or cost) of the schedule is
defined as

∑
(αi(0, di − ci)+ + βi(0, ci − di)+). For convenience, we define

Ei = (0, di− ci)+ as the earliness of job i, and Ti = (0, ci−di)+ as the tardi-
ness of job i . It is called early if Ei > 0, or it is called tardy if Ti > 0. Notice
at least one of Ei and Ti is zero. When Ei = Ti = 0, job i is an on-time job.
Sometimes the on-time jobs are also treated as early jobs. The performance
measure can hence be defined as

∑
(αiEi + βiTi). A schedule is optimal if

there is no other schedule with a lower cost.
MGET refers to the class of Multiple (as opposed to single) parallel ma-

chine Generalized ET problems with non-uniform sequence dependent setup
times, job processing times and due times, and earliness/tardiness penalty weights.
By classical scheduling classification, this problem is termed P |r j, sij|

∑
αjEj + βjTj

While the single-machine ET problem has been well-studied, MGET is rela-
tively new and less regarded. The literature on MGET can be broadly divided
into two classes. One class formulates MGET as mixed-integer programming
models. For example, Balakrishnan, Kanet, & Sridharan (1998) solved the
general MGET, while Zhu & Heady (2000) considered MGET with no setup
times. Unfortunately, these models are incapable of solving problems with
more than 12 jobs and/or 3 machines. Hence, an MIP approach is unlikely

Efficient Algorithms for Machine Scheduling Problems with Earliness and Tardiness Penalties3

to be practical for large-scale real-world problems. The other class is based
on heuristics. Kanet & Sridharan (2000) suggested decomposing the prob-
lem into two subproblems: the sequencing problem and timetabling problem.
The algorithms will accordingly proceed in two iterative stages: sequencing
and timetabling. The sequencing stage generates a semi-schedule specifying
which machine a job is assigned to and its execution order on that machine.
The timetabling stage completes the schedule by determining the start time for
each job on each machine. The results from the timetabling stage will be used
by the next sequencing stage to generate a new semi-schedule. The two stages
iterate until a satisfying schedule is achieved.

The timetabling subproblem for MGET (popularly known as SEQ) is polynomial-
time solvable. There are numerous extensions to this classical problem, for in-
stance to convex piecewise linear functions. Garey, Tarjan, & Wilfong (1988)
developed the first polynomial algorithm for SEQ whose time complexity is
O(N logN). We shall name this algorithm as SEQ-V1. Szwarc & Mukhopad-
hyay (1995) developed another SEQ algorithm with time complexity O(NMC),
where MC is the number of clusters in the schedule and it is no larger than N .
We name this algorithm as SEQ-V2. No SEQ algorithm is absolutely better
than the other. Although both these algorithms run in polynomial time, they
can become a computational bottleneck if embedded within an MGET algo-
rithmic framework as a base module which is called many times. Hence, it is
still desirable to make the timetabling algorithm run as fast as possible.

Sequencing subproblems, on the other hand, are typically strongly NP-hard,
since the most basic problem 1|| ∑wjTj is already strongly NP-hard (Lawler
(1977)). For large scale problem instances, heuristic approaches have been
proposed. Cheng, Gen, & Tosawa (1995) proposed a genetic algorithm to
solve MGET with no setup times. The semi-schedule is the chromosome. The
chromosome has two kinds of symbols: job id and partition symbol. Each
chromosome is a permutation of all jobs with M − 1 partition symbols in-
serted. These partition symbols divided the permutation into M subsequences,
which were considered as the job sequences on each machine. Radhakrishnan
& Ventura (2000) proposed a simulated annealing algorithm for MGET with
αi = βi = 1, based on job interchange schemes, i.e., selected two jobs and in-
terchange them to generate a neighbourhood solution. This algorithm defined
three schemes to perform interchange: “best preceding jobs”, “best succeeding
jobs” and adjacent pairs scheme. The best succeeding jobs j of job i are the
ones with minimum |di + sij + pj − dj|. The best preceding jobs j of job i are
the ones with minimum |di−sji−pi−dj|. Kim et al.(2002) applied simulated
annealing to solve MGET where jobs are organized in lots. The setup times
only occur between lots, and the jobs are allowed to be assigned to any lot.
The neighbourhood schemes include manipulating lots and reassigning job to
other lots.

4

Joslin & Clements (1999) proposed a new meta-heuristic called squeaky
wheel optimization (SWO) for solving combinatorial optimization problems.
They had demonstrated the effectiveness of SWO in solving the machine schedul-
ing problem with regular performance measures, which inspired us to extend
the work to MGET.

In this paper, we propose a provably more efficient SEQ algorithm than the
ones in the literature. Then we propose a meta-heuristic framework based on
SWO to solve the sequencing (and thus overall) problem. We will demonstrate
the effectiveness of our approach by benchmarking our algorithms against the
algorithm proposed by Radhakrishnan & Ventura (2000).

2. A More Efficient Algorithm for SEQ
The SEQ problem is concerned with finding an executable schedule on

a single machine for a fixed job sequence. Given a sequence of N jobs,
j1, j2, . . . , jN , where job ji must be processed before ji+1, jobs having pro-
cessing times pi, due times di, unit penalties for earliness αi and tardiness βi,
find job completion times ci that minimizes the total penalty. Note that the
multi-machine problem can be expressed as independent single-machine prob-
lems, each with its own job sequence. Note also that we do not need to consider
the sequence dependent setup times since such problems can be converted into
problems without setup times, according to Davis & Kanet (1993). Since the
job sequence is fixed, SEQ algorithms are best described as idle-time-insertion
algorithms.

Garey, Tarjan, & Wilfong (1988) and Szwarc & Mukhopadhyay (1995) pro-
posed two different algorithms, SEQ-V1 and SEQ-V2, with time complexity
O(N logN) and O(NMC) respectively, where MC is the number of clusters
in the original job sequence. Garey, Tarjan, & Wilfong (1988) insert jobs into
the schedule one by one, while Szwarc & Mukhopadhyay (1995) first insert
all jobs into the schedule and shift them along the time dimension by clus-
ters. By processing more than one jobs at a time as clusters, a more efficient
algorithm can be expected. In this paper, we improve the results of Szwarc
& Mukhopadhyay (1995) to time complexity O(N log MC) by proposing a
clever way to manage the clusters.

A cluster is a sequence of jobs such that in any optimal schedule, no idle
time need to be inserted between them. In other words, we can shift all jobs
within the same cluster as an entity. Hence, the entire cluster will be sched-
uled once the first job has been scheduled. Szwarc & Mukhopadhyay (1995)
identifies a sufficient condition for clustering of jobs:

Definition For a sequence of N jobs (j1, j2, . . . , jN), consecutive jobs ji and
ji+1 are in the same cluster if dj+1 − dj < pj+1.

Efficient Algorithms for Machine Scheduling Problems with Earliness and Tardiness Penalties5

Figure 1. Cluster penalty function

The total penalty of a cluster can be expressed as a function of the comple-
tion time of the first job c. Figure 1 shows an example of a 3-job cluster. The
upper diagram shows the penalty functions of individual jobs with respect to
their completion times. The lower diagram shows the aggregate penalty func-
tion of this cluster with respect to c. The function is composed of piecewise-
linear line segments, where the slope at any point represents the marginal cost
per unit shift of the cluster from that point. Observe that the slope changes
only at the points when some job within the cluster is due.

6

It turns out that, in deciding where to place the first job (and hence the rest
of the jobs in the cluster), we only need to consider these limited number of
extreme points (Szwarc & Mukhopadhyay (1995)). Let a cluster be denoted
by a pair (i, i′), where i and i′ are the indexes of the first and last jobs of the
cluster respectively. Let W (i, i′) denote the set of extreme points (i.e. the set
of possible completion times for the first job of cluster (i, i ′) such that some
job within the cluster completes on its due time). More precisely,

W (i, i′) = {wl : wl = max(0, dl −
l∑

q=i+1

pq), i ≤ l ≤ i′}.

There are at most N such extreme points across all clusters. Since the values
in W (i, i′) are only dependent on the input, this set can be pre-determined, and
hence the sorted list W comprising a union of these sets over all M C clusters
can be obtained in O(N log MC) time (via merging MC sorted sub-lists).

Observe in Figure 1 that the slopes of the lines are non-decreasing as c
increases. Let Δ−(c, i, i′) and and Δ+(c, i, i′) denote the slope of the line
segment to the left and right of x = c. Clearly, the optimal position of (the first
job of) a cluster is at time point c where Δ−(c, i, i′) ≥ 0 and Δ+(c, i, i′) ≤ 0.
However, from the perspective of global optimality, this cluster may need to
start earlier (so that subsequent clusters can incur less penalty). Once a cluster
has reached its optimal position, it does not require further shifting since it
offers no cost advantage to shift a cluster beyond its optimal position. (Should
the subsequent cluster requires to start later, we can always shift that cluster
rightwards.)

The strategy of our algorithm is to first schedule the jobs where no left-
shifting can reduce cost. Based on the idea of Davis & Kanet (1993), this
is equivalent to the situation where each job is at its earliest possible com-
pletion time. Then, we perform a plane sweep from left to right, each time
right-shifting the first (i.e. leftmost) non-optimal cluster rightwards (positions
given by W), and repeat until no such cluster can be found. By Davis & Kanet
(1993), we conclude that the solution is optimal. At any point during the algo-
rithm, each cluster is associated with a current completion time point (for its
first job). Henceforth, we denote a cluster comprising jobs i to i ′ by (c, i, i′),
where c is the current position of job i.

We define three cluster operations: shift, concatenation and consolidation.
Cluster shift shifts the cluster from its current position c to a new position

w. It entails the computation of Δ+(w, i, i′) and Δ−(w, i, i′), which can be
computed in O(1) time using previous Δ values.

Cluster concatenation merges two adjacent clusters (c1, i1, i
′
1) and (c2, i2, i

′
2)

so that they can be treated as one and shifted together thereafter. It entails the

Efficient Algorithms for Machine Scheduling Problems with Earliness and Tardiness Penalties7

Algorithm 1 SEQ-V3

1 (Initialize) For all 1 ≤ k ≤ N , assign ck =
∑k

l=1 pl.

2 Cluster the jobs and compute Δ+(c, i, i′) and W (i, i′) for all clusters.
For cluster m, define the indexes of the first job and the last job as i m

and i′m.

3 Perform cluster concatenation from the first to the last cluster. Let h
denote the first non-optimal cluster.

4 Compute the set W .

5 If h > MC , this algorithm terminates.

6 Find the minimum positive integer w ∈ W . If the corresponding job to
w is in some cluster h′ < h, repeat this step.

7 Shift cluster (ih′ , jh′) from c to w.

8 Consolidate cluster (ih′ , jh′) and update the value of h.

9 Goto step 5.

computation of Δ+(c1, i1, i
′
2) = Δ+(c1, i1, i

′
1) + Δ+(c2, i2, i

′
2), which can be

computed in O(1) time.
Cluster consolidation ensures that each non-optimal cluster (c, i, i ′) satis-

fies the property that Δ+(c, i, i′) > 0. This is achieved by three rules:

If Δ+(c, i, i′) > 0, do nothing.

If Δ+(c, i, i′) ≤ 0 and there is some cluster (c1, i1, i
′
1) before it, con-

catenate cluster (c, i, i′) and (c1, i1, i
′
1) and consolidate the new cluster

(c1, i1, i
′).

If Δ+(c, i, i′) ≤ 0 and there is no cluster before it, this cluster is optimal.
These jobs are marked optimal and exempted from further shifting.

Now we present our algorithm SEQ-V3 (see Algorithm 1).
Each concatenation takes O(1) time (using the set data structure discussed

in Tarjan(1983)) and there are at most MC concatenations. Hence, the time
complexity of all cluster consolidations is O(MC). One can find the minimum
element in O(1) time for each loop. Hence, Steps 5-8 takes O(MC + N) =
O(N) time. Steps 1 − 3 take O(N) time. Step 4 requires O(N log MC) time.
Thus, the time complexity of SEQ-V3 is O(N log MC).

8

Since our algorithm performs cluster concatenation, we define the concate-
nated clusters as meta-clusters. We use the symbol M(m, n) to represent a
meta-cluster concatenated from successive clusters

(cim, im, i′m), (cim+1, im+1, i
′
m+1), . . . , (cin, in, i′n),

According to SEQ-V2 and its proof, SEQ-V3 is correct if this proposition
holds:

Proposition 1 For any meta-cluster M(m, n), for any k, m ≤ k < n,
∑k

l=m Δ+(c, il, i′l) ≥∑n
l=m Δ+(c, il, i′l).

We prove the proposition by contradiction. Assume there exists some K,
such that

K∑

l=m

Δ+(c, il, i′l) <

n∑

l=m

Δ+(c, il, i′l).

Then we must have

n∑

l=K+1

Δ+(c, il, i′l) =
n∑

l=m

Δ+(c, il, i′l) −
K∑

l=m

Δ+(c, il, i′l) > 0.

Hence, the concatenation of cluster K will never happen, according to the
rules of cluster consolidation, which contradicts our assumption. Hence, the
assumption is not possible and Proposition 1 holds.

3. SWO for Sequencing Problems
Sequencing for MGET problems are strongly NP-hard. In this section, we

use a new meta-heuristics (Squeaky Wheel Optimization, or SWO for short)
to solve MGET problems.

SWO (Joslin & Clements (1999)) is a relatively new meta-heuristics for
solving NP-hard optimization problems. SWO algorithms operate in two spaces:
ordered list space and semi-schedule space. In Joslin & Clements (1999), the
ordered list space is called sequence space. Since we have used the term se-
quence in the discussion of timetabling algorithms, we prefer to use the term
ordered list instead. The term originally for semi-schedule space is solution
space. Again, we feel the term semi-schedule is more precise since we are
applying SWO to solve only the sequencing subproblem. The reader may ob-
serve that the use of alternative search spaces in scheduling is not a new idea
(see for example, Storer & Wu & Vaccari (1992) and Herrmann & Lee (1995)).
However, the iterative use of 2 search spaces where one provides a feedback
mechanism for the other is a relatively novel idea. Particularly, SWO has been
shown to be effective in scheduling problems with regular performance mea-
sures, and in this paper, we apply it to solve MGET.

Efficient Algorithms for Machine Scheduling Problems with Earliness and Tardiness Penalties9

Generally speaking, an SWO algorithm is made up of three components:
constructor, analyser, and prioritizer:

A constructor that generates an initial solution. In our context, it takes
in an ordered list L, and generates a semi-schedule SS based on some
greedy algorithm.

Given an ordered-list L and the corresponding semi-schedule SS, the
analyser analyzes the ”squeaky wheels” that contribute to the poor so-
lution quality. In our context, it computes a value for each job in the
schedule. The values are called blames.

The prioritizer adjusts the ordered-list L according to the blames of the
jobs. The new ordered-list L ′ will be used as the input to the constructor
for next iteration.

This process repeats until a certain quality of semi-schedule is generated.

In SWO, a new semi-schedule is not directly generated from semi-schedules.
SWO uses ordered lists as an intermediate control mechanism between the
generation of two successive semi-schedules. SWO focuses on identifying
the jobs that mostly affect the quality of semi-schedules and arrange them at
proper positions in the ordered lists. Since we construct semi-schedules by
picking jobs from the ordered list, much thought goes into how the order list
evolves from one iteration to the next:

The ordered lists can be considered as a prediction of the importance of
the jobs. The position of the job reflects its importance.

The constructor instantiates the prediction by greedily constructing a
semi-schedule. The blames are measurements of the importance of the
jobs in semi-schedules. We shall consider the blames as feedbacks to the
prediction.

By comparing the predicted importance and real importance of the jobs,
we know whether the prediction is successful. And the next prediction
will be adjusted according to the feedbacks.

The methodology is shown pictorally in Figure 2.

3.1 Comparison with Other Meta-Heuristics
Tabu search, genetic algorithms, simulated annealing (SA) and evolution-

ary algorithms are widely used meta-heuristics. One problem with these ap-
proaches is that they do not have a feedback path from the semi-schedule/solution

10

Ordered List Space S emi-Schedu le
Space

List 1

S S1

Co n stru cto r

List 2
A n aly zer/Pr ior itizer

Co nstructor
SS 2

A na ly zer /Pr io r itizer

List 3

Figure 2. SWO Algorithm Structure

Ordered List Space Semi-Sc hedule Space

SS 1

SS 2

SS 3

S S 4

Figure 3. Structure of Direct Generation of New Schedules

space to the ordered list/sequence space. However, depending on the heuris-
tics, the ordering of the lists may not be used in some algorithms.

In those heuristics, there are two ways to generate new semi-schedules: di-
rect generation or indirect generation. Direct generation means that a new
semi-schedule is generated by modifying/recombining other semi-schedules.
A simple but widely used example is adjacent pair interchange. The whole pro-
cess of direction generation operates in semi-schedule space, which is shown in
Figure 3. Genetic algorithms can be another kind of direct generation scheme,
depending on implementations. For genetic algorithms, sometimes the chro-
mosome is represented in the form of semi-schedules. But this may not be
necessary for all genetic algorithms.

Indirect generation means that a new semi-schedule is not directly generated
from semi-schedules. James & Buchanan (1997) is a good example. The list is
composed of whether a job is to be scheduled as an early job or a tardy job. The
quality of the list is measured by the total costs of the corresponding schedule.
The whole process of generation operates in ordered list space, which is shown

Efficient Algorithms for Machine Scheduling Problems with Earliness and Tardiness Penalties11

O rdered List S pace
Sem i-Sc hedule

Space

List 1

List 4
List 3

List 2

SS 1

SS 4

S S 3

SS 2

Figure 4. Structure of Indirect Generation of New Schedules

Ordered List Space
Semi-Schedule

S pac e

List 1

List 4

List 3

List 2
SS 1

SS 4

SS 3

SS 2

SS 1'

SS 3'

SS 4'

SS 2'

Figure 5. Structure of Combined Generation of New Schedules

in Figure 4. This example is for single machine problems. There is no similar
literature for multiple machine problems.

The two generation schemes can be integrated to generate new semi-schedules.
For example, the work of James & Buchanan (1997) can be further improved
by a neighbourhood search as shown in Figure 5.

In all these three situations, there is no feedback path from the semi-schedule
space to the ordered list space. A possible reason may be that such feedback
could not be well-defined. The distinctive feature of SWO is that it tries to uti-
lize the feedback path from the semi-schedule space to the ordered list space,
such that a new list can be generated more effectively. Although the feedbacks
are rough, after several iterations, we expect the quality of semi-schedules to
be improved.

12

Algorithm 2 GreedyInsertion(job, schedule)
1 For each machine and each possible insert position, do the following 2

steps

2 Generate the new semi-schedule.

3 Call SEQ-V3 to find the executable schedule and its total cost

4 Pick the schedule with minimum cost as the result, break ties arbitrarily.

Algorithm 3 MGET-SWO Algorithm
1 Generate a random job permutation L

2 Construct a schedule SS from L by calling GreedyInsertion

3 If termination condition is satisfied, STOP

4 Analyser sets the blames for each job according to SS

5 Prioritizer reorders the jobs according to the blames of the jobs, and
generates a new permutation L’

6 Go to step 3.

4. MGET-SWO
We now discuss some design issues of MGET-SWO.
Before presenting the SWO algorithm, we first discuss a greedy algorithm

(Algorithm 2) that inserts a job to an existing semi-schedule.
Algorithm 3 shows our overall SWO algorithm.
In Step 2, the Contructor greedily inserts jobs into the semi-schedule. In

inserting each job, we attempt all possible machines and positions without
changing the relative order of jobs already in the semi-schedule. The insertion
point is the one that minimizes total cost.

Note that jobs are inserted in the order according to the permutation L. In-
tuitively, jobs inserted early are at a ”disadvantage” in the sense that latter jobs
may supercede its position through subsequent insertions. Hence, ideally, we
wish to insert jobs early if they are relatively insensitive to their positions in the
semi-schedule - in the sense that their positions in the schedule will not affect
the total cost by a large amount. In other words, if a job is insensitive, it should
be put to an earlier position in the list, and vice versa.

With the above intuition, we design the Analyser as follows. The Analyser
performs job reinsertion to determine the sensitiveness of jobs to positions.

Efficient Algorithms for Machine Scheduling Problems with Earliness and Tardiness Penalties13

Algorithm 4 Implementation of Analyzer
1 i=1; S is the schedule to be analyzed.

2 While i ≤ N do the following:

3 Remove the job i in L from S

4 S=GreedyInsertion(job i, S)

5 Set the blame of job i as the cost reduced by the above reinsertion

6 i = i + 1

Job reinsertion means that a job is removed from the current semi-schedule,
and reinserted into the semi-schedule by selecting a position giving lowest total
costs with the relative positions of other jobs unchanged. The reduction of total
costs brought by job reinsertion is measured as its sensitiveness, or blames.
Notice that the blames cannot be negative. If the blame is small, we consider
the job insensitive to its order in the list, and vice versa.

Hence, the Analyzer works as follows (see Algorithm 4): the blame of each
job is computed as the total cost reduced as a result of the job reinsertion.
Notice that when a successful reinsertion is found, we will use the improved
schedule as the base for future reinsertions, until an even better schedule is
found. Essentially, we perform a local search in the analyser algorithm.

Finally, the Prioritizer sorts all jobs in non-decreasing blame order. In doing
so, the sensitive jobs are put to later positions of the next list generated.

5. Experimental Results
In this section, we present three sets of experiments to compare the perfor-

mances of SEQ-V1, SEQ-V2 and SEQ-V3. The test data is generated accord-
ing to the scheme in Szwarc & Mukhopadhyay (1995). pj is generated from
uniform distribution in a range [1, 100]. d j is generated from uniform distribu-
tion in a range [a×∑

pj, b×
∑

pj]. a−b can be one of the six pairs of values:
0.1− 0.9, 0.2− 0.8, 0.3− 0.6, 0.1− 1.3, 0.1− 1.7, 0.1− 2.1. There are four
choices for N : 100, 200, 400 and 500. We use three sets of sequences: in-
creasing, decreasing and random sequences. For increasing sequences, the
jobs are sorted in increasing dj order. For decreasing sequences, the jobs are
sorted in decreasing dj order. For random sequences, the jobs are arranged
randomly. The time measured is averaged for 5000 runs.

In Table 1, the results are summarized. The numbers are generated by this
scheme. For the same problem, we measure the three times: t1 as the average
runtime of SEQ-V1, t2 as the average runtime of SEQ-V2, t3 as the average

14

N a-b Increasing Decreasing Random
0.1-0.9 13.68 % -3.84 % 13.37 %
0.2-0.8 58.29 % 8.18 % 46.93 %

100 0.3-0.6 2.84 % 16.11 % 15.13 %
0.1-1.3 26.68 % 19.59 % 48.00 %
0.1-1.7 0.00 % 26.99 % 39.96 %
0.1-2.1 -4.86 % 22.16 % 41.39 %
0.1-0.9 18.28 % 21.84 % 18.43 %
0.2-0.8 16.67 % 17.90 % 19.07 %

200 0.3-0.6 15.28 % 16.62 % 16.59 %
0.1-1.3 29.16 % 20.77 % 41.82 %
0.1-1.7 10.30 % 25.05 % 38.17 %
0.1-2.1 6.44 % 28.10 % 29.72 %
0.1-0.9 64.22 % 25.88 % 8.32 %
0.2-0.8 61.65 % 27.74 % 21.05 %

400 0.3-0.6 24.27 % 25.02 % 21.27 %
0.1-1.3 27.58 % 32.44 % 44.73 %
0.1-1.7 22.04 % 34.09 % 37.61 %
0.1-2.1 10.48 % 36.05 % 38.00 %
0.1-0.9 20.86 % 32.00 % 52.39 %
0.2-0.8 72.63 % 34.85 % 15.82 %

500 0.3-0.6 23.23 % 23.90 % 21.33 %
0.1-1.3 30.82 % 31.20 % 44.95 %
0.1-1.7 14.80 % 33.54 % 39.57 %
0.1-2.1 -0.18 % 35.85 % 36.35 %

Table 1. Improvement in runtime of SEQ-V3

Efficient Algorithms for Machine Scheduling Problems with Earliness and Tardiness Penalties15

runtime of SEQ-V3. The improvement is calculated as follows:

100%(1− t3
min{t1, t2})

which is the percentage of time savings compared to the best results from SEQ-
V1 and SEQ-V2.

The results indicate that for most of the cases, SEQ-V3 is the fastest. And
for many of the cases, the runtime is reduced by a big amount (up to 72.63%).
There are a few cases that SEQ-V3 is slower than the best performer of SEQ-
V1 and SEQ-V2. But in the worst case, SEQ-V3 takes only 4.86% extra time
than the best performer, which is not a big difference. Compared to SEQ-V1
and SEQ-V2, SEQ-V3 requires quite a mount of data preprocessing. Thus, in
certain cases, SEQ-V3 may not be the fastest. In general SEQ-V3 is a better
choice for SEQ problems.

MGET-SA is the simulated annealing algorithm proposed by Radhakrish-
nan & Ventura (2000). Their algorithm does not perform well. We have made
these modifications to their original algorithm, to get a new algorithm MGET-
SA2:

Their adjacent pair interchange algorithms have cycling problems, i.e.,
the algorithm may repeat a few swaps continuously. We solved this prob-
lem by allowing the swap of any two jobs once only, i.e., when applying
the adjacent pair interchange algorithm, each swap is recorded such that
all future swaps of the same pair of jobs will be disallowed.

The algorithm’s performance can be improved by adding a random pair
interchange algorithm as local search.

The algorithm MGET-SWO is the SWO algorithm we have presented.
The set of test problems are generated from the original data generation

scheme used by Radhakrishnan & Ventura (2000): pj and sij are generated
from uniform distribution on [1, 20]. dj is generated from uniform distribution
on [0.225× ∑

pj, 0.275× ∑
pj].

The results can be summarized in Table 2. Note that the values in the ta-
ble are the average results of 30 runs. We can see that MGET-SA2 improved
MGET-SA, and MGET-SWO performs better than simulated annealing algo-
rithms.

6. Conclusion and Future Works
In this paper, we made two contributions on the parallel machine scheduling

problem with earliness and tardiness penalties as follows:

We distinguished SEQ-V1 and SEQ-V2 as different schemes to man-
age clusters. We analysed the strengths and weaknesses of SEQ-V1 and

16

MGET-SA MGET-SA2 SWO
M N Costs Time Costs Time Costs Time
2 10 189.933 0.76 183.767 0.988 189.433 0.0287
5 15 114.267 0.264 109.2 0.248 104.967 0.0761

10 50 455.267 46.56 398.1 43.88 397.733 1.276
15 80 680.533 104.2 525.367 95.2061 484.367 3.839
13 297 No Improvement. Initial Cost=195 96.133 406.433

Table 2. The Performance Comparison of algorithms for MGET

SEQ-V2, and proposed a more efficient SEQ algorithm that combined
the strength of SEQ-V1 and SEQ-V2 that performs fastest both analyti-
cally and experimentally.

We demonstrated the effectiveness of SWO on this problem. While
SWO is a promising meta-heuristics for NP-hard optimization problems,
we like to point out that applying SWO on other problems may present
these challenges (limitations):

– SWO structure does not imply efficiency, but the possibility of
an efficient algorithm. The main difficulty lies in the design of
a greedy algorithm and a proper importance recognition scheme,
which is not a trivial pursuit.

– The variance of the solutions can be fairly large. For our algo-
rithms, the standard deviation of total costs is 4% of the average
costs.

Contrary to problems with regular performance measures that have extensive
literature, results for ET problems are limited. Most of the works are meta-
heuristics based, which lack mathematical rigors. It remains to see if the re-
sults for regular performance measures can be extended to ET performance
measures.

The current dominating factor of runtime of SEQ algorithms is the sort-
ing of all W (il, jl). The current scheme presorts all values in the set W =⋃

W (il, jl). We should notice that the presorting of all numbers is not always
necessary. On average, the schedule will become optimal before W becomes
empty, which means that part of the presorting is not necessary. Since we do
not know the exact number of values that will be used, we conjecture that a
smarter scheme can perform sorting only when necessary thereby reducing the
time complexity further.

References

Balakrishnan, N., Kanet, J. J., and Sridharan, S. V. 1998. Early/tardy scheduling with sequence
dependentsetups on uniform parallel machines. Computersand Operations Research26:127–
141.

Cheng, R., Gen, M., and Tosawa, T. 1995. Minmax earliness/tardiness scheduling in identical
parallel machine system using genetic algorithm. Computers and Industrial Engineering
29(1-4):513–517.

cnet.com 2001. http://news.cnet.com/news/0-1004-200-5867112.html
Davis, J. S., and Kanet, J. J. 1993. Single-machine scheduling with early and tardy completion

costs. Naval Research Logistics 40:85–101.
Garey, M. R., Tarjan, R. E., and Wilfong, G. T. 1988. One-processor scheduling with symmetric

earliness and tardiness penalties. Mathematics of Operations Research 13:330–348.
Herrmann, J.W., and C.-Y. Lee. 1995. Solving a class scheduling problem with a genetic algo-

rithm, ORSA Journal of Computing, 7(4):443-452.
James, R., and Buchanan, J. 1997. A neighbourhood scheme with a compressed solution space

for the early/tardy scheduling problem. European Jnl of Oper. Res. 102(3):513–527.
Joslin, D., and Clements, D. 1999. Squeaky wheel optimization. Journal of Artificial Intelli-

gence Research 10:353–373.
Kanet, J. J., and Sridharan, V. 2000. Scheduling with inserted idle time: Problem taxonomy and

literature review. Operations Research 48(1):99–110.
Kim D. W., Kim, K.-H., Jang, W., and Chen, F. F. 2002. Unrelated parallel machine scheduling

with setup times using simulated annealing. Robotics and Computer Integrated Manufactur-
ing 18:223–231.

Lawler, E. L. 1977. A ”pseudopolynomial” algorithm for sequencing jobs to minimize total
tardiness. Ann of Discrete Math 1:331–342.

Radhakrishnan, S., and Ventura, J. A. 2000. Simulated annealing for parallel machine schedul-
ing with earliness-tardiness penalties and sequence-dependent set-up times. International
Journal of Production Research 38(10):2233–2252.

Storer, R.H., S. Wu, and R. Vaccari. 1992. New search spaces for sequencing problems with
application to job shop scheduling, Operations Research 39(10):1495-1509.

Szwarc, W., and Mukhopadhyay, S. K. 1995. Optimal timing schedules in earliness-tardiness
single machine sequencing. Naval Research Logistics 42(7):1109–1114.

Tarjan R. E. Data Structuresand Network Algorithms. Society for Industrial and Applied MAth-
ematics, Philadelphia, PA, 1983.

Zhu, Z., and Heady, R. B. 2000. Minimizing the sum of earliness/tardiness in multi-machine
scheduling: a mixed integer programming approach. Computers and Industrial Engineering
38:297–305.

17

