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Abstract This paper presents the problem of scheduling security teams to patrol a mass
rapid transit rail network of a large urban city. The main objective of patrol scheduling is to
deploy security teams to stations of the network at varying time periods subject to rostering as
well as security-related constraints. We present several mathematical programming models
for different variants of this problem. To generate randomized schedules on a regular basis,
we propose injecting randomness by varying the start time and break time for each team as
well as varying the visit frequency and visit time for each station according to their reported
vulnerability. Finally, we present results for the case of Singapore mass rapid transit rail
network and synthetic instances.

Keywords Patrol scheduling problem · Preferences · Mass rapid transit rail network ·
Mathematical programming

1 Introduction

Personnel scheduling and rostering is concerned with the process of constructing optimized
work timetables for staff in order to satisfy the demand for the organization. Ernst et al. (2004)
provide a review of staff scheduling and rostering in specific applications areas. Some are
concerned with rostering within a physical premise such as hospitals, and examples of such
problems include nurse rostering (e.g. Petrovic and Berghe 2008) and physician scheduling
(e.g. Gunawan and Lau 2013). A more challenging problem involves rostering of personnel
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that are required to move from one geographical location to another as they are discharged
from their duties, such as airline crew scheduling (e.g. Maenhout and Vanhoucke 2010) and
train crew scheduling (e.g. Chu and Chan 1998).

In this paper, we are concerned with the planning problem of assigning security teams
to patrol a public transportation network (such as subways) of a large urban city. This is
termed the patrol scheduling problem. This problem is motivated by increasing need for
protecting major public facilities (such as urban transport systems) in response to global
threats. Clearly, the problem of protecting critical infrastructures against terrorist threats is
a very complex problem involving many dimensions (e.g. cybersecurity, video surveillance
and many others)—many of such systems are in place in the real-world today. The paper
is concerned with only one dimension, the aspect of deploying limited security manpower
resources for preventing or reacting to attacks. In order to enforce such security, security per-
sonnel or teams are typically deployed to patrol the various stations in the network throughout
the day. Unlike standard employee rostering which follows prescribed patterns, patrol activ-
ities should ideally exhibit randomness so as to hedge against adversarial observations. It
goes without saying that in view of limited manpower resources, it is necessary to maximize
the impact of patrolling duties through solving the problem optimally.

The main objective of this paper is to develop exact models that deploy security teams to
stations of the network at varying time periods while ensuring rostering and other security-
related constraints. We also consider aspects of randomness to hedge against adversarial
observations. To our knowledge, this study is one of very few attempts to solve the patrol
scheduling problem on a mass rapid transit rail network.

The remaining part of the paper is organized as follows. We first provide a brief literature
review. We then give a detailed description of our patrol scheduling problem in Sect. 3. We
provide several mathematical programming models that solve different variants of the prob-
lem, followed by a randomized strategy which allows the planner to generate solutions based
on randomized start time and break time for each team as well as the number of visits required
for each station. The next section is dedicated to the experimental analysis of the model on the
Singapore MRT Rail System, as well as on randomly generated problem instances. Finally,
we provide some concluding perspectives and directions for future research.

2 Literature review

Crew rostering in public transport systems is an active area of research. An example of a
rail transport scheduling problem is Chu and Chan (1998), who studied the problem of crew
scheduling for the Hong Kong Light Rail Transit. The complex schedule construction is
decomposed into separate solution stages by network and heuristic algorithms. They reported
that the entire crew schedule can be constructed iteratively in less than an hour, which is
better than the manual allocation. Although optimality cannot be claimed, the feasibility of
the solution was ensured, which can still be further improved manually.

A more recent work of Elizondo et al. (2010) considers the problem of conductors duty
generation in the Santiago Metro System. With regard to operational and labor conditions,
the goal is to use the lowest possible number of conductors and minimize total idle time
between trips. They solved the problem using a constructive hybrid approach which takes
advantage of the benefits offered by evolutionary methods. Their hybrid method produced
solutions with the minimum number of duties in six of the ten problems solved.

On patrol scheduling, the major purpose is to ensure the safety of the commuters and to
discourage those who might commit crimes (Rosenshine 1970). The patrol scheduling method
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developed in this seminal paper is based on the assumption of randomness, so that the arrival
patterns of the security patrol to a particular station could not be predicted. On the other hand,
the irregularity of patrol schedules would increase the awareness of the commuters that patrol
is taking place. The routes were determined by solving a linear programming problem while
the random arrival patterns on each arc were generated by choosing exponential inter-dispatch
times along the generated routes.

Sinuany-Stern and Teomi (1986) studied the problem of scheduling security guards in
a large organization in Israel. The problem was formulated as a multi-objective problem
and solved by a simpler heuristic intuitive algorithm. Taylor and Huxley (1989) consid-
ered the problem of assigning police officer shifts so that under cover is minimized. The
optimization-based decision support system was developed and implemented in the Police
Patrol Scheduling System at the San Francisco Police Department. Sharma et al. (2007) pro-
posed an optimal deployment of police patrol cars for the department of traffic police on the
metropolitan city, Delhi (Central). A goal programming model was designed to determine
the number of patrol cars to have on duty per shift and road segment.

The application of game theory to patrol scheduling took center stage in recent AI
research. Jain et al. (2010), Ordóñez et al. (2013) highlighted the importance of police and
security agencies to protect transportation networks, such as buses, trains and traces the recent
development of game-theoretic models to assist security forces in randomizing their patrols
and their deployment by assuming intelligent adversary responses to security measures. More
precisely, this group of researchers sought to mitigate the ability of adversaries to exploit
patterns by using randomized strategies derived from solving Bayesian Stackelberg games.
Stackelberg games are a bilevel model that account for the ability of an adversary to gather
information about the defense strategy before planning an attack (Basar and Olsder 1995).

As an illustration, Tsai et al. (2009) modeled the strategic security allocation problem as a
Stackelberg game and developed the Intelligent Randomization In Scheduling (IRIS) system
for deploying the Federal Air Marshals (FAMs) onboard U.S. commercial flights. The generic
mathematical formulation is described as the set covering model where the set of schedules
of security forces are pre-determined. Jiang et al. (2012) presented an approach to generate
fare-inspection strategies in urban transit systems using a Stackelberg game. The problem is
to deploy security personnel randomly to inspect passenger tickets. The real problem from
the Los Angeles Metro Rail System was formulated and solved as an LP relaxation with
a maximum-revenue patrol strategy. The solutions obtained seem to effectively deter fare
evasion and ensure high levels of revenue.

Beyond scheduling/allocation of security teams, other researchers have focused on dif-
ferent aspects of security management. For example, the effectiveness and efficiency of the
airport access control has become a major concern, involving screening people, baggage, in
order to detect and prevent entry of unauthorized personnel and items. Babu et al. (2006)
developed a model in order to classify passengers into different groups, the fractions of
passengers and the assignment of check stations for each group under the assumption of
constant passenger threat probability. The model minimizes the false alarm probability for
the given parameters of the access control systems. The data used is from general knowledge
of different types of check stations that exist at many of the larger US airports. The authors
highlighted a possible direction for future work by considering models that captures the effect
of joint response of more than one station.

Zhang and Brown (2013) studied the importance of police patrols in public service by
responding to incidents, deterring and preventing crimes. The study concerns on how to
design police patrol districts. This problem is reduced to the graph-partition problem with the
constraints of contiguity and compactness. The algorithm proposed generates some police
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Fig. 1 Fig. 1 Examples of urban rail networks in metropolises such as London (Source: https://www.tfl.gov.
uk/modes/tube), Singapore (Source: http://www.smrt.com.sg), Beijing (Source: http://www.bjsubway.com),
and Paris (Source: http://www.parismetro.com)

patrol districting plans. A certain number of promising plans are then evaluated. The last
step is to perform evaluation using an agent-based simulation that provides high fidelity
measures of performance. This study includes a case study from the Charlottesville, VA,
USA police department. Simulation results show improvement on both average response time
and variation of the workload. Curtin et al. (2010) presents a new method for determining
optimal police patrol areas using maximal covering and backup covering location models.
This study addresses the lack of objective quantitative methods for police area design in the
literature. The Police Patrol Area Covering (PPAC) model integrates geographic information
systems (GIS) with linear programming optimization to generate and display alternative
optimal solutions. The proposed approach was tested on the Police geography of Dallas, TX.
The improvement in terms of the increased number of incidents within an acceptable service
distance was reported.

3 Problem definition

This paper is concerned with scheduling security resources to patrol a mass rapid transit rail
network in a large urban city. Figure 1 shows the subway systems of London, Singapore,
Beijing, and Paris. A common feature of the networks is that each network consists of many
lines of different topologies linked by hub (interchange) stations.

We define the patrol scheduling problem as follows. We are given a number of security
teams responsible for the patrolling task. We assume the time horizon to be a single working
day divided into time periods. In this paper, we assume each time period to be 1 h, and a shift
is defined as a consecutive eight time periods (hours). Each team within its shift is rostered to
patrol / visit a subset of stations in the network. We assume each station patrol or visit takes
one period, and each shift is made up of six visits plus two breaks, totaling eight periods long.
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Fig. 2 Example of the mass rapid transit rail network

Table 1 Example of patrol
scheduling problem

Time period 1 2 3 4 5 6 7 8

Team 1 S1 S3 Break S5 S6 Break S7 S13

Team 2 S10 S12 Break S14 S16 Break S4 S2

As shown in Fig. 2 as illustration, this mass rapid transit rail network consists of two
different lines. There are 16 stations in total, where Station 4 (S4) and Station 7 (S7) are
interchange stations. Assuming there are two teams starting at the time, Table 1 represents
one possible patrol schedule for both teams. Team 1 has to visit S1, S3, S5, S6, S7 and S13
consecutively while Team 2 has to visit S10, S12, S14, S16, S4 and S2 consecutively.

One of the optimization objectives in the patrol scheduling problem is to minimize the total
cost (which usually translates to total distance traveled). The travel distance is minimized
such that as much time as possible in each patrol team’s shift is spent on patrolling rather
than movement from one station to another. An alternative travel distance objective includes
minimizing the maximum total distance traveled by any team, as considered in Varakantham
et al. (2013), which can be easily modeled with minor modification to our proposed model.
The distance traveled between any two stations is assumed known. It usually refers to the
time needed to travel by train. Note that a travel between two stations on different lines, for
example, from station S3 to S16 in Fig. 2, requires transit at station S4, and the transit time
should also be considered.

In this paper, we propose three different mathematical models for three variants of the
patrol scheduling problem. In the first model termed Base introduced in Sect. 4.1, the opti-
mization objective is to minimize the total travel distance, which satisfies the following
constraints:

– Each team visits one and only one station in a working (i.e. non-break) period.
– At most one team can visit a particular station at a particular time period.
– Each team may only visit a particular station at most once during its shift duty.
– Consecutiveness constraints: describes whether a pair of stations can be visited consec-

utively (i.e. one after another). Although in most of the cases, any two stations can be
connected, the reason for this constraint is to avoid assigning a team to two consecutive
visiting stations that are far away, so that most of the time in each working period is spent
on patrolling rather than traveling.

– Each station has a minimum and maximum number of visits per day.

In this model, the starting time of each team’s shift, and the two break time periods during
its shift, are treated as input (i.e. assume they are determined by the planner). Besides, the
number of required minimum and maximum visits of each station are also assumed given as
input by the planner.
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In the second model termed Bi-Obj in Sect. 4.2, we introduce a second objective (in
addition to the travel distance minimization) of maximizing the coverage of expected loss
of human lives. This roughly amounts to covering the most populous stations at the busiest
time, so that as many people as possible may be saved if an attack is launched. The expected
number of passengers present at a certain station during a certain time period is assumed
known, from which the second objective may be derived. This can be simply extracted from
the electronic card reader at the entrance or exit of each station. In this paper, we make
use of the data obtained from the Land Transport Authority of Singapore, which maintains
such a database from the Singapore mass rapid transit network. We further assume that
the probability of a certain station being attacked at a certain time period is known. This
adversary probability model can be constructed based on, for example, geographical density,
criminology analysis, or intelligence source, etc. Then the expected loss (of human lives)
at a station at a certain period can be estimated as a product of the population at this time
and its probability of being attacked. In other words, the more passengers present and the
higher the chance of being attacked, the higher the utility value for patrolling. In the study
of the Bi-Obj model, we also free the planner from determining the minimum or maximum
visits per station, i.e. by not enforcing the last constraint listed above, but instead allow the
optimization algorithm to decide the optimum visit frequency for each station. In fact, even
more than the frequency, the Bi-Obj model can determine the optimal time to visit a certain
station, making the schedule time-dependent, which is not the case in the Base model. A
time-dependent schedule is useful for covering the most crowded hours of each station, since
usually the number of passengers at a station depends heavily on time. For example, some
business districts, such as Raffles Place or Tanjong Pagar in Singapore, may expect a really
rush hour during the morning and late afternoon periods due to the regular office starting and
finishing time there; while some shopping and recreation centers, such as Orchard and City
Hall, may not have a lot of crowd during the early morning, but may become crowded from
noon till late evening.

In the third model termed Var introduced in Sect. 4.3, we further free the human planner
from the decision of specifying the actual starting time and break time of each team’s shift,
and leave it to be decided by the optimization algorithm. This model makes use of the bi-
objective model described above, and the constraints for handling the starting time and break
time include:

– The total number of working periods for each team must be satisfied.
– Break constraints: each team is given a number of breaks per shift; no breaks can occur

at the starting time or the ending time of a shift; and no two breaks can occur at two
consecutive periods.

All the mathematical models mentioned above are deterministic, with the objective of
generating one optimal patrol schedule based on some security or operational criteria. These
models are built based on the assumption that the probability distribution of which stations
are under attack at a certain time period is known or can be estimated. This is usually the
case for unplanned spontaneous attacks. In this article, we also consider a different problem
setting, where the patrol schedule is required to be generated recurrently, for example, on a
day-to-day basis. Furthermore, we assume the adversaries are intelligent enough to be able to
observe the daily patrol schedules. In such case, the objective of generating a patrol schedule
is not only to maximize coverage and minimize distance, the generated schedules should
also be as random as possible to make it difficult for adversaries to predict. In this article,
we investigate the idea of using one of the deterministic models above, and randomize the
input data. Different randomization strategies, including randomizing the starting time, break
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times of each team, the visit frequency and visit time of each station are discussed in more
details in Sect. 6.

4 Mathematical programming models

In this section, we present mathematical programming models to solve three variants of the
patrol scheduling problem.

4.1 Base model for minimizing travel distance

The goal is to assign a set of patrol teams I to a set of stations J at a set of time periods K per
day. In our first model, the minimum number of visits required for a station j ∈ J is given
as V min

j , as well as the maximum number of visits allowed for each station is given as V max
j .

The shift of a team i ∈ I starts at a fixed time period T start
i ∈ K and ends at T end

i ∈ K ,
with a set of breaks at time periods Bi ⊂ [T start

i , T end
i ] ⊆ K . We also define the set of

working periods Wi ∈ K to be Wi = [T start
i , T end

i ]\Bi for each patrol team i ∈ I , and W h
i

(1 ≤ h ≤ |Wi |) denotes the h-th working period of the team i . Given the distance matrix
D j,l for each pair of stations j, l ∈ J , one of the objectives is to minimize the total travel
distance of all teams, so that most working time is devoted to patrolling rather than traveling
from one station to another. To this end, a consecutive matrix C j,l , indicating whether station
l ∈ J can be visited immediately after visiting j ∈ J , is also used to restrict long-distance
travels. We use binary decision variables xi, j,k to indicate whether a team i ∈ I patrols a
station j ∈ J at a time period k ∈ K . Another binary decision variable yi, j,l is used with
yi, j,l = 1 if a team i travels from station j to station l. The value of variable yi, j,l cannot be
greater than 1, since any team cannot visit the same station twice per day. An integer linear
programming model Base can be set up as follows:

Base (I, J, K , W, V min, V max , T start , T end , D, C):

min d (1)∑

j∈J

xi, j,k = 1, ∀i ∈ I ; k ∈ Wi (2)

j∈J∑

k∈K\W

xi, j,k = 0, ∀i (3)

∑

i∈I,k∈K

xi, j,k ≥ V min
j , ∀ j (4)

∑

i∈I,k∈K

xi, j,k ≤ V max
j , ∀ j (5)

∑

i∈I

xi, j,k ≤ 1, ∀ j, k (6)

∑

k∈K

xi, j,k ≤ 1, ∀i, j (7)

yi, j,l ≥ xi, j,W h
i

+ xi,l,W h+1
i

− 1, ∀i ∈ I ; j, l ∈ J ; h ∈ Wi (8)

yi, j,l ≤ C j,l , ∀i ∈ I ; j, l ∈ J (9)
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d =
∑

i∈I ; j,l∈J :l �= j

D j,l · yi, j,l

xi, j,k, yi, j,l ∈ {0, 1}, ∀i ∈ I ; j, l ∈ J ; k ∈ K (10)

Equation (2) constrains that a team visits exactly one station at a working period, and visits
no stations outside the working periods according to (3); (4) ensures the minimum number
of visits per station is satisfied, while (5) constrains the maximum number of visits allowed
for each station; (6) enforces that each station at a time period should not be patrolled by
more than one team; in addition, each team can only visit a station at most once during its
shift according (7); the flow consistency constraint (8) defines the connectivity variable y
by setting yi, j,l to 1 if a team i patrols station j and l consecutively; then the connectivity
variable y is used to ensure the consecutive constraint in (9) and to compute the total distance
traveled by all teams in (10). An alternative distance objective is to minimize the maximum
total distance traveled by any team. This can be easily modeled by changing the Eq. (10) to
the following:

d ≥
∑

j,l∈J :l �= j

D j,l · yi, j,l , ∀i. (10’)

The optimal solution of the Base model defined above yields an optimal patrol schedule.
However, this model poses great computational challenge to the CPLEX solver: it fails to
converge within reasonable computation time even with the smallest instance. One of the
reasons is that the lower bound computed by the linear programming relaxation of flow
consistency constraint (8) is not tight enough. The formulation can be substantially tightened
by adding the following problem-specific valid inequalities:

∑

l∈J\{ j}
yi, j,l =

∑

k∈W\{T end
i }

xi, j,k, ∀i, j (11)

∑

l∈J\{ j}
yi,l, j =

∑

k∈W\{T start
i }

xi, j,k, ∀i, j (12)

where constraint (11) states that if a team i patrols a station j when their shift does not
end, then team i will have a trip starting from j ; similarly, constraint (12) states that team i
will have a trip ending at j if they patrol station j at a non-starting period. These two valid
inequalities have been found experimentally to speed up the solution process of CPLEX by
two orders of magnitude.

4.2 Bi-objective model for maximizing coverage

Next, we consider a bi-objective model, where a two-fold objective is considered: the mini-
mization of the total distance traveled by all patrol teams as defined by Eqs. (1) and (10) in
the Base model; and also the maximization of the coverage of expected loss. The expected
loss can be obtained as follows. We consider an adversary model which launches an attack
according to a probability distribution (Pj,k denotes the probability that a station j ∈ J is
attacked at certain time period k ∈ K ). We also assume we know the expected number of
passengers present at a certain station j during a certain time period k, denoted N j,k . Then
the expected loss (of human lives) L j,k of station j at time period k if not covered (i.e. if not
patrolled by any team) can be computed as L j,k = Pj,k · N j,k .

Hence, a bi-objective model can be set up as follows: on one hand, we should maximize
the coverage of expected loss denoted by u; on the other end, as in model Base, we minimize
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the total travel distance d of all patrol teams. We extend the model Base by modifying its
objective in Eq. (1) to the following:

Bi-Obj (I, J, K , W, V min, V max , T start , T end , D, C, L , λ):

min −λ · u + d (13)

subject to constraints (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12) and

u =
∑

i∈I, j∈J,k∈K

L j,k · xi, j,k (14)

where the parameter λ scales between both objectives u and d . In our experiments, we will
also try to remove the minimum visit constraint (4) and maximum visit constraint (5), and let
the optimization process automatically determine the visit frequency and visit time for each
station that maximizes the coverage of expected loss, instead of given manually.

4.3 Variable starting time and break time

In the previous two models, the starting time and the break time for each patrol team is
pre-determined. Here, we explore the option of leaving the starting time and break time as a
variable to be determined by the optimization algorithm. Our objective is to investigate the
aspects of schedule quality and computational scalability.

To this end, the working periods Wi for each team i is not given a priori, instead, given as
input is the number of working period Nwork

i which satisfies
∑

j∈J,k∈K

xi, j,k = Nwork
i , ∀i. (15)

and the constraint (2) is modified as:
∑

j∈J

xi, j,k ≤ 1, ∀i ∈ I ; k ∈ K . (2’)

also given is the number of breaks N break
i for each team i ∈ I . N shi f t

i = Nwork
i + N break

i
denotes its total shift length. We introduce binary decision variables t start

i,k and tend
i,k , with

t start
i,k = 1 if team i starts patrolling at time period k, and tend

i,k = 1 if team i ends patrolling
at time period k. They take value 0 otherwise. Then

∑

k∈K

tstart
i,k =

∑

k∈K

tend
i,k = 1, ∀i (16)

t start
i,k = tend

i,k+N shi f t
i −1

, ∀i, k (17)

Equation (16) restricts only one starting time and one ending time for each team, and each
shift ends N shi f t − 1 periods of time after it starts according to (17). We further introduce
binary decision variables bi,k with bi,k = 1 if team i takes a break at period k, and bi,k = 0
otherwise. Then the following constraints can be imposed:

∑

k∈K

bi,k = N break
i , ∀i (18)

bi,k + bi,k+1 ≤ 1, ∀i, k (19)

bi,k ≤ 1 − t start
i,k , ∀i, k (20)

bi,k ≤ 1 − tend
i,k , ∀i, k (21)
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where (18) ensures the number of breaks, (19) guarantees no two breaks occur consecutively,
(20) and (21) forbids a break to occur at the starting period or the end period, respectively.
Then the time period consistency constraint can be stated as follows:

∑

j∈J

xi, j,k + t start
i,k+1 + bi,k − bi,k+1 − tend

i,k =
∑

j∈J

xi, j,k+1, ∀i, k. (22)

which guarantees that the working period and the break period of each team only occurs
between their starting time and ending time. We can further tighten the linear programming
formulation above by introducing the following problem-specific valid inequalities, which
ensures each team not to work or take a break before its starting period:

∑

j∈J

xi, j,k′ ≤ 1 − t start
i,k , ∀i ∈ I ; k, k′ ∈ K : k′ < k

bi,k′ ≤ 1 − t start
i,k , ∀i ∈ I ; k, k′ ∈ K : k′ < k,

and these two equations above can be even further tightened by merging the working period
and break period as follows:

∑

j∈J

xi, j,k′ + bi,k′ ≤ 1 − t start
i,k , ∀i ∈ I ; k, k′ ∈ K : k′ < k. (23)

Similarly, the valid inequality for no-work and no-break after the ending period can also be
added:

∑

j∈J

xi, j,k′ + bi,k′ ≤ 1 − tend
i,k , ∀i ∈ I ; k, k′ ∈ K : k′ > k (24)

The flow consistency constraint (8) cannot be directly applied here, since the break time is
unknown. To this end, an auxiliary binary variable z is introduced as zi, j,k = 1 if a team i
is at station j at time k, be it patrolling or taking a break. Variable z can be defined by x as
follows:

zi, j,k ≥ xi, j,k, ∀i, j, k (25)

zi, j,k ≥ xi, j,k + bi,k+1 − 1, ∀i, j, k, (26)

where (25) and (26) defines the location of working period and break period, respectively.
Although constraining variable z by a lower bound in (25) and (26) already suffice for its
definition, since the minimization objective function will try to minimize its value. However,
we can still provide an upper bound for it as a problem-specific valid inequality, by restricting
that team i is at station j at period k only if either team i works at this station at this period,
or they are taking a break at k:

zi, j,k ≤ xi, j,k + bi,k, ∀i, j, k

which can be made even tighter as follows:
∑

j∈J

(zi, j,k − xi, j,k) ≤ bi,k, ∀i, k. (27)

With the auxiliary variable z, the flow consistency constraint can be reformulated by replacing
x in (8) by z:

yi, j,l ≥ zi, j,k + zi,l,k+1 − 1, ∀i ∈ I ; j, l ∈ J : j �= l; k ∈ K . (8′)
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and the valid inequality (11) and (12) for constraining the out-flow and in-flow of y can be
formulated respectively as follows:

∑

l∈J\{ j}
yi, j,l ≥

∑

k∈K

(zi, j,k − tend
i,k − bi,k+1), ∀i, j (11′)

∑

l∈J\{ j}
yi,l, j ≥

∑

k∈K

(zi, j,k+1 − t start
i,k+1 − bi,k+1), ∀i, j. (12′)

Note that the out-flow equality in (11) becomes an inequality in (11′) due to the variable
starting time and break time. We can further tighten the formulation by providing an upper
bound for variable y by adding

∑

l∈J\{ j}
yi, j,l ≤

∑

k∈K

zi, j,k, ∀i, j (28)

∑

l∈J\{ j}
yi,l, j ≤

∑

k∈K

zi, j,k+1, ∀i, j, (29)

for the out-flow and in-flow of y, respectively, stating that a trip is traveled from, or to, station
j by team i only if team i was located at station j . Then the integer linear programming
model Var for handling variable starting time and break time can be stated as follows:

Var (I, J, K , D, C, L , Nwork, N break):
minimize (13)
subject to (6), (7), (10), (14), (15), (2′), (16), (17), (18), (19), (20), (21), (22), (23), (24),

(25), (26), (27), (8′), (11′), (12′), (28), (29).

xi, j,k, yi, j,l , zi, j,k, ti,k, bi,k ∈ {0, 1}, ∀i ∈ I ; j, l ∈ J ; k ∈ K

5 Experimental results

In this section, we present the experimental results together with our evaluation based on the
proposed mathematical programming models presented in the previous section. All exper-
iments that we report in this section were run on a 3.07 GHz Intel (R) Xeon (R) CPU with
128 GB of RAM under the Microsoft Windows XP Operating System. The mathematical
programming models were solved by the CPLEX 12.4 solver engine. We first describe the
experimental setup, followed by experimental results.

5.1 Experimental setup

In this paper, the Singapore rail network was chosen as a real-world case study (Fig. 3).
In addition, two different random instances, Random1 illustrated in Fig. 4 and Random2
illustrated in Fig. 5, were also generated with multiple lines and different topology.

The entire Singapore network is a large-scale problem with 79 stations, nine of which
are interchange stations where multiple lines meet. For a more fine-grained study of com-
putational scalability of our proposed mathematical models, a number of smaller problem
instances are extracted from the whole network.

We first decompose the whole network into four instances, each of which represents a
single line. There are four different lines in our case study, namely the East–West Line (EW),
North–South Line (NS), North–East Line (NE) and Circle Line (CC). Each single-line instance
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Fig. 3 Singapore MRT map (source: http://www.smrt.com.sg/Trains/NetworkMap.aspx)

Fig. 4 Random1 station map

Fig. 5 Random2 station map
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is composed of a number of stations ranging from 16 to 31. The details of each line and the
station names can be found in http://www.smrt.com.sg. Furthermore, we created two more
instances with a combination of multiple lines: EN with 53 stations (including 3 interchange
stations) by combining the two most populous lines EW and NS, and ENN with 67 stations
(including 5 interchange stations) by combining three lines EW, NS, and NE.

For simplicity reason, the distance traveled between two stations is computed as the
smallest number of stations passed (since there may be more than one path from one station to
another). Taking the Random2 illustrated in Fig. 5 for example, the distance between S1 and
S4 is 3 stations, and the distance between S14 to S22 is 7 stations. Furthermore, we also impose
an additional penalty for traveling between two stations on different lines. For example, the
distance measure from S2 to S12 becomes 3 stations plus Δ, where Δ is the penalty value for
changing lines. In our study, we set Δ to a large number, e.g. 10 stations, for the purpose of
minimizing unnecessary changes between different lines during each travel. This is necessary
especially when the transit at certain large interchange stations may take a long time.

In the Base model and the Bi-Obj model, the number of minimum required visits V min
j

and maximum allowed visits V max
j for each station j ∈ J needs to be pre-determined. In

our experiments, V min
j is set to one for all stations, and V max

j is set to two, i.e. each station
is visited at least once and at most twice per day. This setting is chosen for its simplicity,
although different values of V min

j and V max
j can be set for different stations in our model,

for example, the most populous or most vulnerable stations may need patrolling more often
than the others.

In order to ensure the feasibility of the Base model, the number of teams is set as:

|I | = 
max

⎧
⎨

⎩|J |,
∑

j∈J

V min
j

⎫
⎬

⎭ /6� (30)

since it is assumed that each team patrols six stations per day in an eight hours’ shift with two
non-consecutive hours’ break. In the Base model and the Bi-Obj model that require a fixed
shift starting time and break time as input, the shift starting time T start

i for each team i ∈ I
is assigned as evenly as possible to cover all the time periods K of the day, and we assume
that the break periods for all teams occur at the third and the sixth period of an eight-period
shift. However, other input values for the number of working periods and break periods can
also be set in our models.

Table 2 summarizes the details of all the instances, including the number of stations on
each line (|J |), the number of interchange stations, the number of allotted patrol teams |I |
defined by Eq. 30, the number of time periods per day (|K |), and the number of working
periods |W | and break periods |B| per team per day.

5.2 Results of Base model

5.2.1 Results of Random1 and Random2 instances

For the random instances Random1 and Random2, the minimum and maximum number of
visits V min

j and V max
j are set similarly as in the real-world case studies described in Sect. 5.1,

except that three stations in Random1, S1, S5 and S10, are required to be visited twice a day,
while S1, S3, S7 and S10 in Random2 are required to be visited twice as well. In addition,
the entire time horizon of 16 periods are covered by two different types of shift starting from
1 or 9 respectively. Both Random1 and Random2 can be optimally solved by the CPLEX
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Table 2 Characteristics of
problem instances

|I | denotes the number of security
teams; |J | shows the number of
stations, from which the number
of interchange stations is also
listed; |K | presents the total
number of time periods per day
considered, during which each
team works |W | time periods and
takes |B| breaks per shift

Instance name |I | |J | #interchanges |K | |W | |B|
Random instances
Random1 4 20 1 16 6 2

Random2 5 24 2 16 6 2

Real-world case studies in Singapore MRT network

NE 3 16 0 20 6 2

CC 3 16 0 20 6 2

NS 5 25 0 20 6 2

EW 6 31 0 20 6 2

EN 9 53 3 20 6 2

ENN 12 67 5 20 6 2

All 14 79 9 20 6 2

Table 3 Optimal patrol schedule of Random1, total travel distance 28

I Time periods

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 S1 S2 B S3 S7 B S8 S10

2 S17 S18 B S19 S20 B S5 S16

3 S5 S15 B S14 S13 B S12 S11

4 S10 S9 B S6 S4 B S3 S1

Table 4 Optimal patrol schedule of Random2, total travel distance 27

I Time periods

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 S6 S5 B S4 S3 B S2 S1

2 S10 S8 B S7 S17 B S16 S15

3 S14 S13 B S12 S11 B S3 S1

4 S19 S20 B S21 S22 B S23 S24

5 S10 S9 B S8 S7 B S18 S19

12.4 solver engine in 172 and 39.9 s, respectively. The following Tables 3 and 4 summarize
the optimal schedules of Random1 and Random2, respectively. The break period is marked
as “B”. It is observed that all constraints, including the minimum and maximum number of
visits are complied, and no teams require to change to another line for both instances.1 This
optimal solution provides us the minimum total distance traveled for all teams, which is 28
for Random1 and 27 for Random2.

1 Note that the team 2 in Table 4 serves two lines: the horizontal line (S10 S8 S7) and the circle line (S7 S17
S16 S15). However, this situation is not counted as changing lines, since both the trip from S8 to S7 and the
trip from S7 to S17 are traveled on only one line.
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Table 5 Computational result of
Base model on Singapore MRT
network

Instance NE CC NS EW EN ENN All

Runtime (s) 0.84 0.37 2.14 6.66 2,079 22,025 37,752

d∗ 15 15 25 30 45 60 71

5.2.2 Results of Singapore network

Next, the Base model is deployed to solved the seven problem instances extracted from the
Singapore MRT network. The details of the seven instances are presented in Table 2. The
computational results are listed in Table 5, including the computation time taken by CPLEX
and the optimal total distance d∗. In general the independent lines are solved very quickly to
optimality, ranging from 0.37 s for CC line with 16 stations and 3 teams, to 6.66 s for EW line
with 31 stations and 6 teams. The instances of multiple lines brings in great computational
challenge to the CPLEX solver, and the computation time quickly increases from a few
seconds in the single-line instances to more than half an hour for the EN instance to more
than 10 h for the whole network. The first feasible solution of the All instance only appears
after around 2 h with a duality gap of 76.3 %. Since the minimum number of visits for all
stations is set to one, the optimal solution of the Base model (i.e. the optimal total travel
distance d∗ in Table 5) usually appears to be quite regular: its objective value is always five
times the number of teams. Since each team makes only five travels during each shift with six
working periods, it seems that the optimal schedule in these instances is for each patrol team
to always travel to a neighboring station at each working period. Obviously, this regularity
will no longer hold if the visit frequencies are different for different stations. In fact, this
regularity is already violated when the entire network is solved, where the minimum total
distance is 71 in a total of 70 travels.

5.3 Results of Bi-Obj model

In this section, we present the computational results of the Bi-Obj model. One additional input
to this model is the population data for each station at each time period N j,k . This dataset was
acquired from the Singapore Land Transport Authority, which releases public transportation
data to participating research units upon request. In essence, this dataset contains the time-
stamps of the taps of the electronic fare cards at the entrance and exit gantries of all the stations.
Using this dataset, we could approximate the total number of people who are present at each
station at each time period. Another important input to the model for this case study is the
probability distribution of being attacked (Pj,k). Without prior knowledge, in this paper, we
set the probability of being attacked Pj,k to be uniformly equal for each station at each time.
Other probability models may also be considered, for example, set the probability to be
proportional to the population of the region surrounding the station, or based on some game
theoretical approaches (Varakantham et al. 2013). In this paper, we focus on our primary
goal—which is to test the computational scalability of our proposed models.

We present three different scenarios for using Bi-Obj model:

Bi-Obj-1: the original model as presented in Sect. 4.2, and the input parameters V min
j and

V max
j are set to 1 and 2 respectively for all stations, i.e. each station is required

to be visited at least once, and at most twice, as is also used in the Base model;
Bi-Obj-2: the Bi-Obj model without the minimum-visit constraint (4), which can be derived

by simply setting V min
j to 0 for all stations;
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Bi-Obj-3: the Bi-Obj model without both the minimum-visit constraint (4) and maximum-
visit constraint (5), which can be derived by setting V max

j to a large value for all
stations.

The three scenarios are experimented on seven real-world instances extracted from the Sin-
gapore MRT network.2

Table 6 shows the computational results of the seven instances computed by each of the
three scenarios of the Bi-Obj model. For each instance, we consider two extreme cases:

coverage-first case (cover∗), which regards the coverage objective to be dominantly
higher than the distance objective by assigning a very large value to λ in the objective
function (13);
distance-first case (dist∗), on the contrary, sets λ to a tiny value.

These two cases above correspond to the primary consideration during heightened security
and normal patrol operations, respectively.

We examine both the computational scalability and the solution quality of the Bi-Obj
model in both cases with different scenarios on the seven real-world instances. The computa-
tion time for each instance is listed in the column marked by sec. It is shown that the whole
network can be solved to optimality or near-optimality by CPLEX within a reasonable run-
time. In general, the coverage-first case appears to be computationally less difficult than the
distance-first case, even the whole network can be solved to optimality within 40 min in the
coverage-first case. In the distance-first case, removing visit frequency constraints seems to
reduce the model difficulty noticeably: Bi-Obj-1 solves the whole network to a 0.0000240 %
gap after running CPLEX for 24 h; Bi-Obj-2 which removes the minimum-visit constraint
solves it to 0.0001 % within 2 h; while Bi-Obj-3 removing further the maximum-visit con-
straint solves it optimally within 10 min. Each independent line can be solved to optimality
in less than 15 s, and it appears that the instances with combination of multiple lines, such as
EN and ENN, increases computational difficulty dramatically by a factor of ten to hundred.

The optimal solutions, including coverage uc and total distance dc of the coverage-first
case, and ud and dd for the distance-first case, are listed in columns 3, 4, 7, and 8 of Table 6,
respectively. In general, the coverage-first case usually covers around 10–25 % more expected

loss than the distance-first case, as shown in the first of the Δu columns (
uc

i −ud
i

ud
i

, i = 1, 2, 3).

The comparison of the optimal coverage of expected loss in two cases by three scenarios
is also summarized in Fig. 6. On the other hand, the average travel distance per trip in the
coverage-first case dc is usually two to four times as in the distance-first case dd . Note that in
the distance-first case, the average trip distance dd is usually one station, which means each
team only moves to the neighboring station at each working period. Similar travel patterns can
be also found in Sect. 5.2.2. One exception that dd is not exactly one is when solving the whole
network by Bi-Obj-1 model, where the optimal total distance of 70 trips is found to be 71 due
to the visit frequency constraints. In the coverage-first case, dc seems to increase noticeably
on instances with multiple lines, such as EN, ENN, and All. Note also although each trip is
not allowed to traveled over four stations according to the consecutiveness constraint, some
of the average trip distance dc is above four in some instances of multiple lines, since there
exists many trips that change between different lines, each of which is penalized by 10.

Comparing the optimal schedules computed by the three Bi-Obj scenarios, we observe
that removing the visit frequency constraints significantly increases the coverage capability

2 The two random instances Random1 and Random2 are not considered for the studies hereafter due to the
unavailability of population data.
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Table 6 Computational result of Bi-Obj model on the Singapore MRT network

Ins. cover∗ dist∗ Δu

Sec. uc
1 dc dc Sec. ud

1 dd dd uc
1−ud

1
ud

1
(%)

Bi-Obj-1
NE 0.23 422 42 2.80 0.16 354 15 1 19.2

CC 0.78 301 36 2.40 0.75 241 15 1 24.8

NS 3.48 1,199 57 2.28 7.91 1,025 25 1 17.0

EW 8.21 1,311 94 3.13 14.6 1,101 30 1 19.0

EN 164 1,784 203 4.51 2,611 1,471 45 1 21.2

ENN 330 2,389 301 5.02 12,899 2,008 60 1 19.2

All 1,019 2,532 383 5.47 86,400a 2,083 71 1.01 21.6

Sec. uc
2 dc dc Sec. ud

2 dd dd uc
2−ud

2
ud

2
(%)

uc
2−uc

1
uc

1
(%)

ud
2 −ud

1
ud

1
(%)

Bi-Obj-2

NE 0.44 465 46 3.07 0.58 404 15 1 15.1 10.2 14.1

CC 0.42 328 38 2.53 0.17 261 15 1 25.6 8.97 8.30

NS 3.12 1,283 65 2.60 4.84 1,095 25 1 17.2 7.01 6.83

EW 5.62 1,411 69 2.30 12.7 1,217 30 1 15.9 7.63 10.5

EN 185 2,185 154 3.42 1196 1,880 45 1 16.3 22.5 27.8

ENN 1,253 2,760 297 4.95 2,063 2,411 60 1 14.4 15.5 20.1

All 2,267 3,016 305 4.36 7,200b 2,616 70 1 15.3 19.1 25.6

Sec. uc
3 dc dc Sec. ud

3 dd dd uc
3−ud

3
ud

3
(%)

uc
3−uc

1
uc

1
(%)

ud
3 −ud

1
ud

1
(%)

Bi-Obj-3

NE 0.36 487 33 2.20 0.25 417 15 1 16.8 15.4 17.8

CC 0.67 376 44 2.93 0.75 267 15 1 40.8 24.9 10.8

NS 2.51 1,435 59 2.36 3.46 1,201 25 1 19.5 19.7 17.2

EW 5.26 1,723 58 1.93 5.77 1,589 30 1 8.44 31.4 44.3

EN 44.7 2,660 161 3.58 32.3 2,369 45 1 12.2 49.1 61.0

ENN 325 3,471 217 3.62 450 3,032 60 1 14.4 45.3 51.0

All 1,797 3,935 225 3.21 578 3,462 70 1 13.6 55.4 66.2

a Cut after 86,400 s with a gap of 0.00002 %
b Cut after 7,200 switch a gap of 0.0001 %

of the schedule, not only in the coverage-first case but also in the distance-first case. The
increased coverage in both cases are shown in the second and the third of the Δu columns of

Table 6, being
uc

i −uc
1

uc
1

and
ud

i −ud
1

ud
1

with i = 2, 3, respectively. As is shown, the Bi-Obj-2 model

by removing the minimum-visit constraint in Bi-Obj-1 covers around 10 % more expected
loss on the four independent linesNE,CC,NS, andEW; When multiple linesEN,ENN andAll
are considered, the average increased coverage rises up to around 20 % in the coverage-first
case, and around 25 % in the distance-first case. The Bi-Obj-3 model by removing both the
minimum-visit and the maximum-visit constraint in Bi-Obj-1 covers averagely 20 % more
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Fig. 6 The optimal coverage of expected loss on the seven real-world instances extracted from the Singapore
MRT network. Six rectangles for each instance represents from left to right: uc

1, uc
2, uc

3, optimum coverage

of the coverage-first case of model Bi-Obj-1, Bi-Obj-2, Bi-Obj-3, respectively; and ud
1 , ud

2 , ud
3 , the optimum

coverage of the distance-first case of the three Bi-Obj models, respectively

on the small instances of independent lines; and when it comes to the larger instances with
multiple lines, the coverage increases by averagely 50 % in the coverage-first case, and around
60 % in the distance-first case. Interestingly, in the coverage-first case, not only the primary
objective, the coverage, is increased, the total travel distance in the largest instance is also
significantly reduced by 20–40 %.

Although removing the visit-frequency constraints results in significant better patrol
schedule in terms of coverage and travel distance, a side-effect is that it may concentrate
only on a few most populous stations. For example, the optimal schedule of Bi-Obj-2 patrols
47 stations instead of 79 stations in the Bi-Obj-1 model; and the optimal schedule of Bi-Obj-3
visits only 18 stations out of 79 stations in their totally 84 visits. Besides, within these 18
visited stations, half of them are visited only once; while some of the most-visited stations,
for example, Orchard is visited 13 times, City Hall is visited 12 times, and 11 visits are at
Raffles Place. This means, these three stations are almost visited by each of the 14 teams,
in most of the 20 time periods. Therefore, in practice, the maximum-visit constraint (5) and
minimum-visit constraint (4) can be used, if a more dispersed schedule is desired. More
details about how to generate visit frequency data on a regular (e.g. daily) basis are discussed
in Sect. 6.1.3.

5.4 Results of Var model

The reason for using variable starting time and break time for each patrol team is well
explained by the computational results presented in Table 7 where the Var model is deployed.
The optimal or best-known coverage of expected loss uc

v improves over the coverage-first case
of the Bi-Obj-3 model in Sect. 5.3 using fixed starting and break time by over 10 % to over
30 %, as indicated in the Δu column of Table 7. Note that this increased coverage is obtained
without further concentrating the station visits, e.g. the number of station visited in the
whole network is 18, same as obtained in the Bi-Obj-3 scenario. However, the computational
overhead is also quite considerable. As shown in the second column of Table 7 even the
independent lines NS and EW cannot be solved to optimality within 2 h, leaving a 1.15 and
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Table 7 Computational result of
Var model on Singapore MRT
Network

Instance Var

Sec. Gap (%) uc
v Δu = uc

v−uc
3

uc
3

(%) dc

NE 30.5 0 641 31.6 38

CC 60.7 0 478 27.1 48

NS 7,200 1.15 1,677 16.9 61

EW 7,200 4.58 1,979 14.9 69

EN 86,400 4.92 3,040 14.3 137

ENN 86,400 5.28 3,918 12.9 278

All 86,400 7.01 4,395 11.7 276

4.58 % gap, respectively. Solving the complete network with 79 stations obtains a feasible
solution with 14.0 % gap in 2 h, we let the computation continue for 24 h, and the gap is
reduced to 7.01 %.

6 Generating random schedules

In the previous sections, we present and discuss several deterministic mathematical model for
generating a schedule for patrolling MRT rail stations. The objective is to generate one optimal
patrol schedule to cover as much expected loss as possible while the total travel distance is
minimized. In this section, we discuss a different problem, for which the patrol schedule is
required to be generated recurrently, for example, on a day-to-day basis. In such case, the
generated schedules should be as random as possible so that it is difficult for adversaries to
predict. In the following, we will first discuss the randomization strategies used in our work,
and then present the resulting schedules generated during a simulation of 30 days.

6.1 Random strategies

The element of randomness is important to patrol scheduling to hedge against adversarial
observations. For example, the series of random schedules should not allow the adversaries to
spot a never-guarded station, or spot a never-guarded time period. Besides, the randomization
approach should be computable within a reasonable time for daily use. Therefore, one idea
is to use one of the deterministic models studied in this article, and randomize the input
data. In the following subsections, we discuss the choice of deterministic model and different
randomization strategies, including randomizing starting time and break time for each patrol
team, the visit frequency and visit time of each station.

6.1.1 Choice of mathematical model

Although enabling variable starting times and break times by the Var model allows sub-
stantially more coverage of expected loss, totally automating the decision of working period
still faces two drawbacks: the computability and convergent patrol timetable. From the com-
putability aspect, as shown in Sect. 5.4, it takes 2 h to find a first feasible solution, and leaves a
7 % gap after 24 h computation. On the other hand, as observed from some of the sub-optimal
solutions computed by the Var model, most teams gather between the busiest hours from
13 to 21 o’clock, while leaving some security vacuum hours totally unguarded.
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To this end, we propose to use the Bi-Obj model with fixed starting time and break time
for generating random daily patrol schedules. On one hand, this model solves the whole
Singaporean MRT network with 79 stations and 14 teams within reasonable computation
time. On the other hand, it allows a more dispersed patrol time pattern, and it also has a nice
property for randomizing the starting time input, as will be discussed in more details in the
following section.

6.1.2 Randomizing patrolling time

The Bi-Obj model uses a fixed starting time and break times for each patrol team, which is
given as input parameters. The starting time and the break times can be generated randomly
either based on a uniform distribution, which allows a maximum dispersion of patrol periods,
or based on a distribution that is biased by the total amount of expected loss for each time
period, which allows more coverage at the more crowded hours. Additional constraints can
be easily added to this randomized generation of starting time process, e.g. to ensure each
time period to be patrolled by at least one team.

6.1.3 Randomizing patrolling stations

As the deterministic model Bi-Obj may concentrate the patrol resources on a few busiest
stations shown in Sect. 5.3, one should enforce visits to the less populous stations from time
to time by using the minimum-visit constraint (4). However, requiring each station to be
visited every day by setting V min

j to one for all stations may not be a good idea, since it may
greatly reduce the coverage of expected loss from our studies in Sect. 5.3. Here, we propose
to randomly generate the minimum-visit vector V min

j for each station j based on a daily
coverage probability vector Pj . Suppose a station j is expected to be visited every 4 days,
this can be simply realized by setting Pj = 0.25, i.e. the probability of setting V min

j = 1

is 25 %. We propose to set V min
j to no greater than 1 for all stations, since on one side

this guarantees feasibility of the model given the current available number of patrol teams
according to Eq. (30), on the other side it leaves more space for the optimization algorithm
to decide the number of visits for each station so that better quality of the patrol schedule can
be expected.

In order to further disperse the patrolling time of these stations, from the set of stations
that require a visit, dubbed J v := { j ∈ J : V min

j ≥ 1}, we can further randomly select n
stations, dubbed J v,t ⊆ J v : n = |J v,t |, and randomly specify their time to be visited. This
can be done as follows:

1. let j1, j2, . . . , jn ∈ J v,t denote the stations whose visit time needs to be specified;
2. assign each of the stations jr ∈ J v,t to a distinct team ir ∈ I , whose working periods

Wir is determined by the procedure described in Sect. 6.1.2;
3. randomly select a time kr from working periods Wir of team i , either based on a uniform

distribution, or based on a distribution that is biased by the data of expected loss;
4. specify that station jr is visited by team ir at time kr by setting xir , jr ,kr = 1.

We propose to set the number n of stations whose time need to be prefixed to be less than
the number of teams, i.e. n ≤ |I |, so that each team is assigned with at most one prefixed
station. This setting on one hand guarantees the model feasibility (otherwise, assigning two
stations to one team may lead to infeasibility due to the consecutiveness constraint); on the
other hand, it also leaves more space for the optimization algorithm in the hope of finding
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a better schedule. Besides, fixing some variables to certain values usually does not increase
the computational difficulty of the model, making this approach applicable for everyday
use.

6.2 Results of randomized schedules

In this section, we set up experiments to simulate the generation of random daily patrol
schedules in a time span of 30 days. To this end, we followed the randomization strategies
discussed in Sect. 6.1, adopt the deterministic model Bi-Obj with the coverage-first case,
assign the starting time as dispersed as possible, and randomize the visit frequency and visit
time as described in Sect. 6.1.3. The probability Pj of setting the minimum number of visiting
a station j—V min

j to one is set to 0.25, i.e. each station is expected to be visited once every
4 days. We randomly generate 30 sets of minimum visit frequency for all the 79 stations in
the Singaporean MRT rail network, where each set represents an input for generating one
day’s patrol schedule. From each daily set of stations that require a visit, we randomly select
14 stations, and assign each of them randomly to one of the patrol teams at one of its working
hours. Besides, as discussed at the end of Sect. 5.3, in order to obtain reasonably dispersed
schedule, the maximum number V max

j of visiting a station j is empirically set to 4. Then the
original Bi-Obj-1 model with both the minimum-visit and maximum-visit constraint is used.

The experimental results show that our randomization approach is promising in terms of
both computational and schedule quality. From the computational aspect, as shown in Table 8,
the median computation time for generating daily schedule is around 108 s, and the maximum
computation time required among 30 instances is 550 s, i.e. less than 10 min. Considering the
schedule quality, as summarized in Table 8, the coverage of expected loss is averaged 3,019
with a standard deviation of around 94, and the median coverage is 3,032, which indicates
a slightly better schedule than the deterministically optimal schedule computed by Bi-Obj-2
(see Table 6) in terms of coverage; however, the average distance traveled is 357 with median
value 350 is higher than the optimal distance 305 computed by Bi-Obj-2, which is due to
the random enforcement of visits at some rural stations. The number of different stations
visited is around 40 (out of 79 stations) per day, which indicates a reasonably dispersed daily
patrol pattern. The number of visits at each station on each day in our 30-day simulation
is further listed in Table 9. As can be observed, on one hand, every station, no matter how
rural or unpopulated, is in general visited at least once every 4 days, and the visit pattern
is random and reasonably dispersed; on the other hand, the more populated the station, the
more often it is visited, e.g. the most populated stations such as Raffles Place, City Hall, Ang
Mo Kio, and Orchard (indexed 16, 17, 44, 50) are visited exactly 4 times each day, which
is maximum number of daily visits. We further examine the patrolling time of these four
most populous stations. As illustrated in Fig. 7, none of the stations are visited at the same
time every day. The visit frequency depends in general on the number of passengers in the
station at that hour. For example, business district such as Raffles Place, may concentrate

Table 8 The statistical results of generated random schedules

Mean± sd. Min. 25%-quant. Median 75%-quant. Max.

Runtime 127 ± 115 0.5 67.3 108 152 550

Coverage 3,019 ± 94.1 2,803 2,947 3,032 3,080 3,184

Distance 357 ± 42.2 282 324 350 392 443

#stations 40.5 ± 2.42 37 39 40 42 47
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Table 9 Number of visits at each station on in 30 days

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0

2 0 2 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1

3 2 3 2 4 1 2 3 2 0 1 3 2 3 4 3 3 2 1 1 2 3 0 2 4 2 3 4 4 1 2

4 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 2 0 1 0 0 1 0 1 1 1

5 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

6 2 4 2 4 0 2 2 4 0 1 3 3 2 3 2 3 2 1 1 2 4 0 1 4 1 3 2 1 1 2

7 1 2 2 4 1 1 3 3 0 1 2 3 3 4 3 3 1 1 2 2 4 0 2 3 1 3 4 3 1 2

8 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0

9 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0

10 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

11 0 0 0 3 0 0 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 0 0 1

12 1 0 1 1 0 1 1 0 0 2 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0

13 1 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1

14 0 0 2 0 3 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 2 2 0 0 0 0 0 1 0 0

15 4 4 4 4 4 4 4 4 3 4 4 4 4 3 4 4 4 4 4 4 2 4 4 3 4 4 4 2 4 3

16 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

17 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

18 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

19 2 0 0 1 1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 2 0 1 0 1 1 0 2 0 2 0

20 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0

21 1 1 0 1 1 1 1 2 2 0 1 0 2 0 0 1 2 3 0 0 0 1 2 0 0 1 2 2 2 0

22 2 1 1 1 0 1 2 2 3 2 2 2 1 0 1 1 2 1 3 2 1 0 3 3 1 0 2 3 3 4

23 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1 0 2 1 1 0 2 1 0 0 0

24 0 0 1 1 0 1 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0

25 2 2 0 0 1 1 3 3 3 1 1 1 2 1 1 2 2 2 2 2 1 2 3 1 0 2 2 4 3 2

26 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1

27 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1

28 1 1 1 1 1 1 4 2 2 2 1 0 2 1 1 1 1 1 2 2 0 1 1 3 0 1 3 4 2 1

29 0 1 0 1 1 1 3 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 2 0 1 1 2 1 1

30 0 0 0 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

31 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1

32 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0 0 1

33 0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0

34 1 3 0 4 1 2 1 2 1 1 2 3 1 4 3 3 0 1 1 1 4 0 2 4 2 3 4 2 3 2

35 1 0 1 0 0 1 1 0 0 0 1 0 0 2 0 1 0 0 0 0 2 0 1 0 0 1 0 0 0 0

36 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0

37 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0

38 3 2 1 2 1 2 2 2 1 2 2 2 4 4 3 4 1 2 2 4 3 4 3 3 3 4 4 2 2 4
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Table 9 continued

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

39 0 0 0 0 0 1 1 0 0 0 0 1 1 2 1 2 0 3 1 2 1 1 0 1 1 0 0 1 0 0

40 1 0 1 0 0 1 0 0 1 1 0 0 0 2 0 1 1 1 0 2 0 1 1 0 1 0 1 0 0 1

41 4 4 4 4 4 4 2 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

42 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1

43 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

45 4 3 3 2 4 2 2 3 4 3 3 3 4 2 2 3 4 4 4 3 4 4 2 2 4 3 0 2 4 2

46 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1

47 4 3 4 4 4 3 1 3 4 4 4 2 3 3 4 4 4 4 4 4 3 4 4 2 4 2 3 4 4 3

48 4 4 3 1 4 3 2 2 4 4 4 3 4 2 3 4 4 4 4 3 4 3 4 2 4 3 2 1 3 2

49 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0

50 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

51 0 0 0 0 3 0 0 1 0 1 0 2 0 1 1 0 1 0 1 1 2 0 0 1 1 0 0 2 1 0

52 4 3 4 2 4 4 1 3 4 4 4 4 4 1 4 4 4 4 4 4 2 4 2 1 4 2 2 2 3 4

53 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0

54 3 4 4 1 4 4 0 2 4 4 4 2 1 2 3 2 4 4 4 3 2 3 1 1 2 3 2 0 1 4

55 1 1 1 0 2 0 0 0 1 1 0 2 0 0 2 0 1 2 3 1 0 1 1 1 2 0 1 0 1 1

56 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 2 0 0 1 0 0 0 1 0 0 0 0

57 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 0 0

58 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1

59 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0

60 0 0 1 0 0 1 1 0 0 1 0 0 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

61 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0

62 4 3 4 2 4 3 3 3 4 4 4 2 2 2 2 1 4 4 3 1 1 2 3 1 4 3 1 2 4 4

63 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0

64 1 2 1 0 0 1 1 2 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 0 2 0 0 0 1 0

65 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0

66 1 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1

67 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1

68 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

69 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

70 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 0

71 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 2 0 1 0 0 0 0 0 1

72 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0

73 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1

74 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0

75 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0
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Table 9 continued

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

76 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

77 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 1 0 0 0 0

78 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0

79 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0

The first row indicates one of 30 days, and the first column indicates the station indices

Fig. 7 The number of visits of the four most visited stations, namely, Raffles Place, City Hall, Ang Mo Kio,
and Orchard, by the time periods in a 30 days’ simulation

its visiting periods around office hours such as 8–9 in the morning or 6–7 in the afternoon,
since the number of passengers there dominates other stations during these hours. And we
have observed that our randomization strategy still manages to deviate its visitation to around
25 times in 30 days. Shopping and leisure centers such as Orchard and City Hall, as well as
residential area Ang Mo Kio, have in general a more dispersed visitation time pattern. For
example, Orchard as shown in Fig. 7, is patrolled less than 20 times in each hour, as its most
visited hours are from 12 at noon to 5 in the afternoon; residential area Ang Mo Kio has the
most dispersed distribution of patrolling time, as it is patrolled in all the 17 h from 6 a.m.
to 10 p.m. This simulation experiment shows that our randomization strategy is capable of
generating random and dispersed patrol schedules in terms of visit frequency and visit time,
while keeping computational scalability and high schedule quality in terms of coverage of
expected loss.

7 Conclusion

In this paper, we defined the problem of scheduling security forces to patrol a mass rapid tran-
sit rail network and provided an elaborate case study for patrol scheduling of the Singapore
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Mass Rapid Transit network. Methodologically, we proposed three integer linear program-
ming models to formulate different variants of the patrol scheduling problem. We further
experimentally examined the computational scalability of these models and investigated the
impact different models under different scenarios may have on the optimal schedules. Since
security is a major concern of patrol scheduling, deterministic schedules are undesirable due
to predictable vulnerabilities. Strategic randomization is one aspect that has to be considered
in this problem. In this paper, we proposed simple randomization strategies by randomizing
the starting time and break time for each team, and the visit frequency and visit time for each
station. We reported the efficiency and effectiveness of our proposed approach under different
circumstances. Interestingly, by randomizing the visit frequency and some visit times, we
see that the resulting schedules over a 1-month horizon are sufficiently randomized in that
there is no discernible patterns. This achieves the purpose of generating patrol schedules that
hedge against adversarial observations.

We believe that our model does not require major customizations for use in other mass
rapid transit systems with similar constraints and requirements.

There are many possible extensions to our work. For the purpose of reducing the computing
time needed to solve the proposed model, we can consider approaches such as strengthen-
ing its LP relaxation by adding valid inequalities or reducing the number of variables by
using pricing procedures. Developing an effective heuristic algorithm for quickly providing
a feasible solution as an upper bound in the branch-and-bound procedure should also speed
up the optimization process. The random starting time for each team can also be obtained
by sampling from marginal probability of a certain distribution (Rosenshine 1970). This
paper merely considers a simple randomization strategy for the operator, but does not take
the strategic behaviour of adversaries into account. Extending our proposed model to cover
adversarial aspects is a very interesting area. One approach is to consider Stackelberg game
models which have been applied in a variety of security domains (Ordóñez et al. 2013; Tsai
et al. 2009).
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