
Algorithm Selection via Ranking

Richard J. Oentaryo and Stephanus Daniel Handoko and Hoong Chuin Lau
Living Analytics Research Centre, School of Information Systems

Singapore Management University, Singapore 178902
{roentaryo, dhandoko, hclau}@smu.edu.sg

Abstract

The abundance of algorithms developed to solve differ-
ent problems has given rise to an important research
question: How do we choose the best algorithm for a
given problem? Known as algorithm selection, this is-
sue has been prevailing in many domains, as no single
algorithm can perform best on all problem instances.
Traditional algorithm selection and portfolio construc-
tion methods typically treat the problem as a classifica-
tion or regression task. In this paper, we present a new
approach that provides a more natural treatment of algo-
rithm selection and portfolio construction as a ranking
task. Accordingly, we develop a Ranking-Based Algo-
rithm Selection (RAS) method, which employs a sim-
ple polynomial model to capture the ranking of differ-
ent solvers for different problem instances. We devise
an efficient iterative algorithm that can gracefully opti-
mize the polynomial coefficients by minimizing a rank-
ing loss function, which is derived from a sound prob-
abilistic formulation of the ranking problem. Experi-
ments on the SAT 2012 competition dataset show that
our approach yields competitive performance to that of
more sophisticated algorithm selection methods.

Introduction
Over the years, a myriad of algorithms and heuristics have
been developed to solve various problems and tasks. This
brings about an important research question: How do we de-
termine which algorithm is the best suited for a given prob-
lem? This issue has been pivotal in many problem domains,
such as machine learning, constraint satisfaction, and combi-
natorial optimization. One of the most widely studied prob-
lems related to this issue is the propositional satisfiability
problem (SAT) (Cook 1971), and a plethora of algorithms
(i.e., solvers) have been devised to solve the SAT problem
instances. Such solvers offer a wider range of practical use,
as many problems in artifical intellgence and computer sci-
ence can be naturally mapped into SAT tasks.

It is often the case, however, that one solver performs bet-
ter at tackling some problem instances from a given class,
but is substantially worse on other instances. Practitioners
are thus faced with a challenging algorithm selection prob-

Copyright c� 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

lem (Rice 1976): Which solver(s) should be executed to min-
imize some performance objective (e.g., expected runtime)?
A popular answer is to evaluate the performance of each can-
didate solver on a representative set of problem instances,
and then use only the solver that yields the best performance.
We refer this as the single-best (SB) strategy. Unfortunately,
this is not necessarily the best way, as different solvers are
often complementary. That is, the SB strategy would ignore
solvers that are not competitive on average but nonetheless
give good performance on specific instances.

On the other hand, an ideal solution to the algorithm selec-
tion problems is to have an oracle that knows which solvers
will perform the best on each problem instance. The oracle
surely would give better results than the SB strategy, serving
as the theoretical upper bound of the solvers’ performance.
Unfortunately, such perfect oracle is not available for SAT
(or any other hard) problems, as it is hardly possible to know
a solver’s performance on a new instance exactly without ac-
tually executing it. This motivates the development of algo-
rithm selection methods that serve as heuristic approxima-
tions of the oracle. A prime example is the empirical hard-
ness model (Leyton-Brown, Nudelman, and Shoham 2002;
Nudelman et al. 2004) adopted by SATZilla, an algorithm
selection method that has won several annual SAT competi-
tions (Xu et al. 2008; 2012).

Recently, it has been shown that we can exploit the com-
plementarity of the solvers by combining them into an algo-
rithm portfolio (Huberman, Lukose, and Hogg 1997; Gomes
and Selman 2001). Such portfolio may include methods that
pick a single solver for each problem instance (Guerri and
Milano 2004; Xu et al. 2008), methods that makes online de-
cisions to switch between solvers (Carchrae and Beck 2005;
Samulowitz and Memisevic 2007), and methods that execute
multiple solvers independently per instance, either in par-
allel, sequentially, or partly sequential/parallel (Gomes and
Selman 2001; Gagliolo and Schmidhuber 2006; Streeter and
Smith 2008; Kadioglu et al. 2011). A common trait among
these methods is that they employ regression or classifica-
tion methods to build an efficient predictor of a solver’s per-
formance for each problem instance, given the instance’s
features and solver’s performance history (O’Mahony et al.
2008; Xu et al. 2012; Malitsky et al. 2013).

While showing successes to some extent, the contem-
porary regression- or classification-based algorithm selec-

tion methods are not designed to directly capture the notion
of preferability among different solvers for a given prob-
lem instance. It is more natural to pose algorithm selec-
tion as a ranking problem. For instance, when constructing
a sequential algorithm portfolio, we are usually interested
in finding the correct ordering of the solvers so as to de-
cide which solvers should be run first and which one later.
Contemporary regression-based methods, such as (Xu et al.
2008)), typically use pointwise loss function (e.g., square
loss), which is often biased toward problem instances with
more data, that is solved cases in this context. Meanwhile,
the classification-based methods, such as (Xu et al. 2012),
does not warrant a unique ordering of the solvers, that is
classification (voting) easily leads to ties between solvers,
and it is not clear which one should be prioritized first.

Instead of further pursuing regression or classification ap-
proach, we take on a new interpretation of algorithm selec-
tion and portfolio construction as a ranking task. To realize
this, we propose in this paper a Ranking-based Algorithm
Selection (RAS) methodology, which learns the appropri-
ate (unique) ordering of solvers so as to identify the top K
best solvers for a given problem instance. To our best knowl-
edge, RAS is the first approach that is designed to directly
optimize a ranking objective function suitable for algorithm
selection (and in turn portfolio construction) task.

We summarize our main contributions as follows:
• We develop a ranking polynomial model that can capture

the rich, nonlinear interactions between problem instance
and solver features. We then extend its use to model the
ordering of solvers for a specific problem instance.

• We devise an efficient iterative learning procedure for op-
timizing a ranking loss function, which is derived from
a sound probabilistic formulation of preferability among
different solvers for a specific problem instance.

• We evaluate the efficacy of our RAS approach through
extensive experiments on the SAT 2012 competition data.
The results show that RAS outperforms the single-best
strategy and gives competitive performance to that of
SATZilla and random forest-based selection method.

Related Work
Algorithm selection has been studied in different contexts
(Gomes and Selman 1997) and focused on methods that gen-
erate or manage a portfolio of solvers. SATZilla is a suc-
cessful algoritm selection strategy that utilizes an empirical
hardness model (Xu et al. 2008), and more recently a cost-
sensitive random forest classifier (Xu et al. 2012). The algo-
rithm selection in SATZilla aims at building a computation-
ally inexpensive predictor of a solver’s runtime or class label
on a given problem instance based on features of the instance
and the solver’s past performance. This ability serves as a
basis for building an algorithm portfolio that optimizes some
objective function (e.g., percentage of instances solved).

Gagliolo and Schmidhuber (2006) proposed another run-
time prediction strategy called GambleTA. The idea was to
allocate time to each algorithm online in the form of a bandit
problem. While approaches like SATZilla need offline train-
ing, this method does training online and perform an online

selection of algorithms. CPHydra (O’Mahony et al. 2008)
accommodates case-based reasoning to perform algorithm
selection for runtime prediction. More recently, Malitsky et
al. (2013) proposed a new algorithm selection method based
on cost-sensitive hierarchical clustering model.

On a different track, several works have been developed
that treat algorithm selection as a recommendation prob-
lem. These methods typically use collaborative filtering (CF)
methods that adopt a low-rank assumption. That is, the al-
gorithm performance matrix can be well-approximated by a
combination of low-rank matrices. In (Stern et al. 2010), a
Bayesian CF model was developed for algorithm selection.
As a base model, it employs Matchbox (Stern, Herbrich, and
Graepel 2009), a probabilistic recommender system based
on bilinear rating CF model. In a similar vein, Misir and
Sebag (2013) proposed a CF model based on matrix factor-
ization. However, a major shortcoming of these approaches
is their reliance on the low-rank assumption, which may not
hold for algorithm performance data. Moreover, for matrix
factorization-based approach, an extra effort is needed to
build a separate surrogate model for handling new problem
instances (i.e., cold-start issue) (Misir and Sebag 2013).

In this work, we develop the RAS methodology that de-
viates from existing approaches by treating algorithm selec-
tion (and portfolio construction) as a ranking task. At the
core of RAS is a probabilistic ranking model that is sim-
pler than sophisticated algorithm selection methods in, e.g.,
SATZilla, and does not rely on low-rank assumption or a
separate mechanism for handling novel problem instances.

Proposed Approach
Polynomial Model
Our RAS approach utilizes as its base a polynomial model
that captures the rich interaction between problem instance
features and solver features. For an instance p and a solver s,
we denote their feature vectors as ~p = [p

1

, . . . , p
i

, . . . , p
I

]

and ~s = [s
1

, . . . , s
j

, . . . , s
J

], where I and J are the total
numbers of instance and solver features, respectively. Using
this notation, we define our polynomial model as follows:

f
p,s

(⇥) =

IX

i=1

JX

j=1

p
i

s
j

0

@↵
i,j

+

X

i

0 6=i

p
i

0�
i,i

0
,j

1

A (1)

where ⇥ is the set of all model parameters (i.e., polyno-
mial coefficients) ↵

i,j

and �
i,i

0
j

that we want to learn. The
term f

p,s

(⇥) thus refers to the preference score of a given
instance-solver pair (p, s). We also note that p

i

s
j

and p
i

p
i

0s
j

can be regarded as the order-2 and order-3 interaction terms
between the features of instance p and solver s respectively,
and the polynomial coefficients ↵

i,j

and �
i,i

0
,j

are the cor-
responding interaction weights.

Without loss of generality, we consider a setting whereby
we are given a set of numeric features to represent a prob-
lem instance, but there is no explicit feature provided about a
given solver. For this, we construct real-valued feature vec-
tor ~p 2 RI to describe an instance, and binary feature vector
~s 2 {0, 1}J for a solver. We use one-hot encoding scheme to
construct the binary vector, i.e., ~s = [0, . . . , 1, . . . , 0], where
the position of the “1” uniquely identifies a solver.

Ranking Desiderata
In this work, we propose a new take on algorithm selection
as a ranking task. Let P and S be the sets of all problem in-
stances and all solvers respectively. The algorithm selection
task is to provide an instance p 2 P with a total ranking >

p

of all solvers s 2 S. We note that a sound total ranking >
p

needs to fulfill several criteria (Rendle et al. 2009):

8s, s0 2 S : s 6= s0) s >
p

s0 _ s0 >
p

s (2)
8s, s0 2 S : s >

p

s0 ^ s0 >
p

s) s = s0 (3)
8s, s0, s00 2 S : s >

p

s0 ^ s0 >
p

s00) s >
p

s00 (4)

The formulae (2)–(4) refer to the totality (i.e., s and s0

should be comparable), anti-symmetry (i.e., unless s = s0,
s and s0 should have different ranks), and transitivity prop-
erties (i.e., if s ranks higher than s0 and s0 ranks higher than
s00, then s should rank higher than s00) properties, respec-
tively (Davey and Priestley 2002; Rendle et al. 2009).

Under this notation, the RAS model essentially learns to
rank solvers based on the following training set D:

D = {(p, s, s0)|s, s0 2 S ^ s >
p

s0 ^ s 6= s0} (5)

where each triplet (p, s, s0) 2 D means that problem in-
stance p prefers solver s over solver s0. Notably, our goal
is to find the ordering of only the top K solvers, i.e., the K
solvers with the lowest runtime on a given instance. Thus,
our training data only include the triplets (p, s, s0) such that
s performs better than s0 and s is among the top K solvers.
This seemingly biased approach turns out to be beneficial in
practice, as in the end we hardly care about the other solvers
that are not in the top K list. Empirically, we also find that
this approach gives faster training and better results com-
pared to including all solvers s that are better than s0.

Probabilistic Foundation
We now present our probabilistic formulation of algorithm
selection as ranking task. For a problem instance p, we de-
fine the likelihood P (s >

p

s0|⇥) for ranking >
p

of solvers,
and prior for the polynomial coefficients P (⇥). Under the
Bayesian framework, finding the correct ranking of solvers
s is equivalent to maximizing the posterior probability:

P (⇥| >
p

) =

P (>
p

|⇥)P (⇥)

P (>
p

)

/ P (>
p

|⇥)P (⇥) (6)

where the denominator P (>
p

) is independent from ⇥.
In this work, we shall assume that: 1) all problem in-

stances p are independent from one another; and 2) the or-
dering of each solver pair (s, s0) for an instance p is indepen-
dent from that of every other pair. Using these assumptions,
we can express the likelihood P (>

p

|⇥) as:

P (>
p

|⇥) =

Y

(p,s,s

0
)2P⇥S⇥S

P (s >
p

s0|⇥)

I[(p,s,s

0
)2D]

⇥ (1� P (s >
p

s0|⇥))

I[(p,s,s

0
)/2D] (7)

where I[x] is the indicator function (i.e., 1 if condition x is
true, and 0 otherwise). In turn, due to the totality (2) and anti-
symmetry (3) properties of a sound ranking, we can simplify

the likelihood P (>
p

|⇥) into:

P (>
p

|⇥) =

Y

(p,s,s

0
)2D

P (s >
p

s0|⇥) (8)

Next, we define the probability that an instance p prefers
solver s over solver s0 as:

P (s >
p

s0|⇥) = �(f
p,s,s

0
(⇥)) (9)

where �(x) = 1

1+exp(�x)

is the logistic (sigmoid) function,
and f

p,s,s

0
(⇥) refers to the preferability of solver s over s0

for instance p. In order to satisfy all the three properties (2)–
(4), we choose to decompose f

p,s,s

0
(⇥) into:

f
p,s,s

0
(⇥) = f

p,s

(⇥)� f
p,s

0
(⇥) (10)

where f
p,s

(⇥) is the preference score given by (1). That is,
we define the preferability f

p,s,s

0
(⇥) as the difference be-

tween the preference scores of two solvers s and s0.
Lastly, we complete the Bayesian formulation by comput-

ing the prior P (⇥). In this work, we choose a Gaussian prior
with zero mean and diagonal covariance matrix:

P (⇥) / exp

��

2

k⇥k2
�

(11)

where k⇥k2 =

P
i

P
j

↵2

i,j

+

P
i

P
i

0
P

j

�2

i,i

0
,j

and � is
the inverse variance of the Gaussian prior distribution.

Combining the likelihood (8) and prior (11), we can then
compute the posterior distribution P (⇥| >

p

) as:

P (⇥| >
p

) /
Y

(p,s,s

0
)

�(f
p,s,s

0
(⇥)) exp

��

2

k⇥k2
�

(12)

By taking the negative logarithm of the posterior, we can
finally derive the optimization criterion L for our RAS
method, hereafter called the ranking loss:

L = �
X

(p,s,s

0
)

ln(�(f
p,s,s

0
(⇥))) +

�

2

k⇥k2 (13)

The optimal ranking >
p

can in turn be attained by finding
the polynomial coefficients ⇥ that minimize L. It is worth
noting that L is a convex function and a global optima exists
for such function. Also, the regularization term k⇥k2 serves
to penalize large (magnitude) values of the coefficients ↵

i,j

and �
i,i

0
,j

, thereby reducing the risk of data overfitting.

Learning Procedure
To minimize L, we adopt an efficient stochastic gradient de-
scent (SGD) procedure, which provides stochastic approx-
imation of the batch (full) gradient descent method. The
batch method leads to a “correct” optimization direction, but
its convergence is often slow. That is, we have O(|S|⇥ |S|)
triplets in the training data D, and so calculating the full gra-
dient for each polynomial coefficient will be expensive.

In the SGD approach, instead of computing the full gradi-
ent of the overall loss L for all triplets, we update the poly-
nomial coefficients based only on sample-wise loss L

p,s,s

0 :

L
p,s,s

0
= � ln(�(f

p,s,s

0
(⇥))) +

�

2

k⇥k2 (14)

Algorithm 1 SGD Procedure for Ranking Optimization
Input: Training data D, regularization parameter �, learn-

ing rate ⌘, maximum iterations T
max

Output: Polynomial coefficients ⇥ = {↵
i,j

} [{�
i,i

0
,j

}
1: Initialize all ↵

i,j

and �
i,i

0
,j

to small random values
2: repeat
3: Shuffle the order of all triplets in D
4: for each triplet (p, s, s0) from the shuffled D do
5: Compute �

p,s,s

0
(⇥) � (f

p,s

0
(⇥)� f

p,s

(⇥))

6: Compute residue � �
p,s,s

0 � 1

7: for each feature pair (s
j

, s0
j

) of solvers s, s0 do
8: Compute �s

j

 s
j

� s0
j

9: for each feature p
i

of instance p do
10: ↵

i,j

 ↵
i,j

� ⌘ [�p
i

�s
j

+ �↵
i,j

]

11: for each feature p
i

0 (i0 6= i) of instance p do
12: �

i,i

0
,j

 �
i,i

0
,j

� ⌘ [�p
i

p
i

0
�s

j

+ ��
i,i

0
,j

]

13: end for
14: end for
15: end for
16: end for
17: until maximum iterations T

max

To minimize L
p,s,s

0 , we can compute the gradient of the loss
function with respect to each coefficient ↵

i,j

and �
i,i

0
,j

:

@L
p,s,s

0

@↵
i,j

=

@

@↵
i,j

(� ln(�(f
p,s,s

0
(⇥)))) + �↵

i,j

= (�(f
p,s,s

0
(⇥))� 1) p

i

�s
j

+ �↵
i,j

(15)
@L

p,s,s

0

@�
i,i

0
,j

=

@

@�
i,i

0
,j

(� ln(�(f
p,s,s

0
(⇥)))) + ��

i,i

0
,j

= (�(f
p,s,s

0
(⇥))� 1) p

i

p
i

0
�s

j

+ ��
i,i

0
,j

(16)

where �s
j

= s
j

� s0
j

refers to the jth feature difference
between two solvers s and s0.

This leads to the following update formulae for the poly-
nomial coefficients ↵

i,j

and �
i,i

0
,j

:

↵
i,j

 ↵
i,j

� ⌘ [�p
i

�s
j

+ �↵
i,j

] (17)
�
i,i

0
,j

 �
i,i

0
,j

� ⌘ [�p
i

p
i

0
�s

j

+ ��
i,i

0
,j

] (18)

where ⌘ 2 [0, 1] is a (user-specified) learning rate, and � =

�(f
p,s,s

0
(⇥))� 1 is the (common) residue term.

Algorithm 1 summarizes our SGD learning procedure for
minimizing the ranking loss L in the RAS framework. The
parameter updates take place in lines 7–15, and can be done
efficiently by “caching” the residue term � before entering
the update loop (see line 6). Further speed-up can be ob-
tained by exploiting the sparsity of the (binary) solver fea-
ture vector ~s, owing to the one-hot encoding scheme. Ac-
cordingly, the (worst) time complexity of the coefficient up-
dates in each iteration is O(|D|⇥ I2), where |D| is the total
number of data samples/triplets (p, s, s0) and I is the num-
ber of problem instance features. The memory requirement
of our approach is also quite modest; we only need to store
the model parameters ⇥ with a complexity of O(I2 ⇥ J),
where J is the number of solver features. We repeat the SGD
procedure for a maximum of T

max

iterations.

Prediction Phase
Upon completion of the SGD learning process, we would
have obtained the polynomial coefficients ⇥ that minimize
the ranking loss L. Using the learned polynomial model, we
can then predict the ranking of different solvers s for a new
problem instance p. This can be done by computing the pref-
erence score f

p,s

(⇥) for a given (p, s) pair. Accordingly, for
different solvers s applied to problem instance p, we can
rank them in a descending order of f

p,s

(⇥), and pick the top
K solvers as our recommendation.

Experiments
Dataset
For our experiments, we use the SAT 2012 datasets supplied
by the UBC group1, after SATZilla won the SAT 2012 Chal-
lenge. Table 1 summarizes the datasets. In total, there are
six datasets, which are divided into three instance categories
and two phase groups. The instance categories include hand-
crafted (HAND), industrial application (INDU), and random
(RAND). The two phase groups differ mainly in the solver
sets and the execution time limits. Solvers from the Phase 1
datasets were tested with a time limit of 1200 seconds (12S),
while those from Phase 2 were run up to 5000 seconds (50S).
Note that the solvers in Phase 2 are a subset of the solvers
in Phase 1, i.e., solvers in Phase 2 are those that performed
well and passed Phase 1 of the competition.

Each dataset is represented as an instance-solver matrix.
An element in the matrix contains the runtime of a solver
on a given problem instance, if the solver is able to solve
the instance within the time limit. Otherwise, the element
is treated as unsolved, and encoded as “1201” for Phase 1
and “5001” for Phase 2. Following Malitsky’s setup2, we re-
moved all unsolvable problem instances, i.e., instances that
could not be solved by any solver within the time limit. Last
but not least, problem instances are characterized by the 125
features the UBC team proposed (option -base), while for
solvers we used a binary feature representation obtained via
one-hot encoding (as described in “Proposed Approach”).

Evaluation
As our evaluation metrics, we use Hit @ Top K (denoted as
Hit@K) and Mean Average Precision @ Top K (denoted as
MAP@K), the well-known ranking metrics in information
retrieval community (Baeza-Yates and Ribeiro-Neto 1999).
Both metrics measure the prediction quality for each ranked
list of solvers (sorted in descending order) that is returned
for a problem instance p. The Hit@K metric refers to the
number of problem instances successfully solved, assuming
that at least one solver that can solve a given problem in-
stance exists at the top K of the ranked list.

To obtain MAP@K, we first need to compute the Aver-
age Precision @ top K, i.e., AP(p,K) =

PK
i=1 P (i,p)⇥rel(i)PK

i=1 rel(i,p)

,

where rel(i, p) is a binary term indicating whether the ith

retrieved solver has solved problem instance p or not, and

1http://www.cs.ubc.ca/labs/beta/Projects/ SATzilla
2http://4c.ucc.ie/ ymalitsky/APBS.html

P (i, p) is the precision (i.e., percentage of correctly pre-
dicted solved cases) at position i for instance p. We can then
compute MAP@K by averaging all AP(p,K) over all prob-
lem instances, i.e., MAP@K =

1

|P |
P|P |

p=1

AP(p,K), where
|P | is the total number fo problem instances. Chiefly, the
MAP@K metric penalizes the incorrect (or tied) ordering of
the solvers for each problem instance.

It is worth mentioning that, when K = 1, the Hit@K and
MAP@K metrics are equal to the count and percentage of
solved instances used in SATZilla’s evaluation, respectively
(Xu et al. 2012). In this work, we consider several baselines:
1) the oracle, i.e., the best solver for each problem instance,
2) the single-best solver, i.e., the algorithm that solves the
largest number of problem instances in a given dataset, 3)
the SATZilla, based on the results published in (Malitsky et
al. 2013), and 4) the random forest (RF), which is an approx-
imation of SATZilla’s algorithm selection method. The RF
approximation is meant to provide a reference for more gen-
eral evaluation settings, particularly for K > 1. Notably, we
can only extract MAP@1 from the published results in (Mal-
itsky et al. 2013), and the result for K > 1 is not available.
Thus, for K > 1, we shall use RF as our main baseline.

As our evaluation procedure, we adopt 10-fold cross vali-
dation. Specifically, we partition the problem instances (i.e.,
rows of the matrix) into 10 equal parts, and generate 10 pairs
of training and testing data. For each fold, we enforce that
10% of the instances contained in the testing data do not ap-
pear in the training data. We then report the (micro-)average
of MAP@K and the total sum of Hit@K over 10 folds. We
set the parameters of our RAS method as follows: the learn-
ing rate ⌘ = 10

�2, regularization parameter � = 10

�4, and
maximum iterations T

max

= 25. For the RF method, we
set the number of trees to 99 as per (Xu et al. 2012), and
configured it to be as close as possible to SATZilla.

Results
We first evaluate our approach based on the MAP@K met-
ric. For this study, we varied K from 1 to 3. Table 2 com-
pares the MAP@K scores of our RAS method with those
of the RF and SATZilla (SZ) methods. It must be noted,
though, that currently our goal is not to surpass SATZilla,
but demonstrate that our alternative, simpler ranking-based
method could attain sufficiently satisfactory results. Further
improvements are certainly possible by extending the RAS
method, which is beyond the scope of this paper.

From Table 2, we can make several observations:
• The MAP@K results obtained by RAS are generally com-

parable to—if not better than—those of the RF method,
except for the RAND50S dataset. We can attribute this to
the more irregular, nonlinear structure of the RAND50S
dataset, which involves problem instances that were ran-
domly generated. Similarly, RAS produces comparable or
better results than SATZilla, except for the INDU50S and
RAND50S datasets. Nevertheless, the overall results still
show that our simpler RAS method can compete well with
the more sophisticated RF and SATZilla methods.

• As K increases from 1 to 3, the MAP@K of our RAS
method improves more steadily than that of the RF

Table 1: Statistics of the SAT 2012 competition data
Phase Dataset #Instances #Solvers #Solved #Unsolved

1 HAND12S 535 31 7,923 8,662
INDU12S 952 31 17,860 11,652
RAND12S 1,040 31 11,202 21,038

2 HAND50S 219 15 1,760 1,525
INDU50S 241 18 3,564 774
RAND50S 492 9 2,856 1,572

Table 2: MAP@K results for SAT 2012 competition data
MAP@1 MAP@2 MAP@3

Dataset RAS SZ RF RAS RF RAS RF
HAND12S 0.811 0.810 0.813 0.856 0.844 0.860 0.832
INDU12S 0.926 0.872 0.894 0.945 0.892 0.943 0.874
RAND12S 0.973 0.929 0.969 0.976 0.976 0.975 0.976
HAND50S 0.890 0.895 0.868 0.911 0.890 0.917 0.903
INDU50S 0.905 0.921 0.904 0.934 0.929 0.930 0.928
RAND50S 0.923 0.982 0.976 0.940 0.980 0.938 0.978
RAS: Ranking-based algorithm selection; SZ: SATZilla; RF: Random forest

method (e.g., HAND12S and INDU12S). This suggests
that RAS is able to produce a more consistent and unique
ordering of the solvers. In contrast, non-ranking methods
such as RF are more susceptible to producing tied rank-
ings. As such, our RAS approach is more appropriate for
algorithm portfolios that require a (proper) scheduling of
the solvers, e.g., a sequential algorithm portfolio.
For our next set of experiments, we applied the predic-

tions of both the RF and RAS methods to select the best K
solvers for various SAT instances. For the RF method, we
select solvers with the K lowest predicted runtimes, where
ties are resolved arbitrarily. We show the number of solved
instances using the top 1 solver (i.e., Hit@1) in Figure 1.
Based on the results, we can conclude the following:
• Consistent with the MAP results, our RAS approach at-

tains comparable, if not better, Hit@1 scores than those of
the RF method, except again for the RAND category. The
Hit@1 scores of the RAS method are also competitive to
those of SATZilla’s algorithm selection method.

• Our RAS approach is shown to be substantially better and
closer to the oracle solution than the single-best baseline
(and hence any other individual solvers), especially for
the HAND12S, HAND50S, and RAND50S categories.
Finally, we analyzed the runtime “cummulative distribu-

tion function” (CDF) of the solvers selected by different al-
gorithm selection methods (Xu et al. 2012). This is obtained
by measuring the CPU time taken to solve each problem in-
stance. Figure 2 presents the runtime CDFs of the solvers by
plotting the number of solvable instances against the CPU
time. As shown, our RAS approach compares favorably to
the RF and single-best (SB) selection strategies in general3.
That is, the results signify that RAS is able to select more
efficient solvers—and thus solve more instances—within
smaller CPU time as compared to the RF and SB methods.

3We are not able to include the runtime CDF of SATZilla, as we
do not know which solvers are selected by it for each CPU time.

Figure 1: Hit@1 of various solvers on SAT 2012 data. (*) indicates the single-best solver, and the vertical line is the oracle.

Figure 2: Runtime CDF of different algorithm selection methods on SAT 2012 data.

Conclusion
In this paper, we put forward a new perspective on algo-
rithm selection and portfolio construction as a ranking task.
Our prposed solution consists of a ranking-based algorithm
selection (RAS) method that employs a polynomial model
to capture the interactions between problem instance and
solver features. To find the polynomial coefficents that re-
flect the proper ordering of different solvers for each prob-
lem instance, we devise an efficient iterative procedure that
stems from a solid probabilistic formulation of the ranking

task. The efficacy of our approach has been demonstrated
via experiments on the SAT 2012 dataset. Moving forward,
we wish to further improve the current RAS method, and
extend its applications to other problem domains.

Acknowledgments
This work is supported by the Singapore National Research
Foundation under its International Research Centre @ Sin-
gapore Funding Initiative and administered by the IDM Pro-
gramme Office, Media Development Authority (MDA).

References
Baeza-Yates, R. A., and Ribeiro-Neto, B. 1999. Modern
information retrieval. Boston, MA: Addison-Wesley.
Carchrae, T., and Beck, J. C. 2005. Applying machine learn-
ing to low-knowledge control of optimization algorithms.
Computational Intelligence 21(4):372–387.
Cook, S. A. 1971. The complexity of theorem-proving pro-
cedures. In Proceedings of the Annual ACM Symposium on
Theory of Computing, 151–158.
Davey, B. A., and Priestley, H. A. 2002. Introduction to
lattices and order. Cambridge University Press.
Gagliolo, M., and Schmidhuber, J. 2006. Learning dynamic
algorithm portfolios. Annals of Mathematics and Artificial
Intelligence 47(3-4):295–328.
Gomes, C., and Selman, B. 1997. Algorithm portfolio de-
sign: Theory vs. practice. In Proceedings of the Conference
on Uncertainty in Artificial Intelligence, 190–197.
Gomes, C. P., and Selman, B. 2001. Algorithm portfolios.
Artificial Intelligence 126(1–2):43–62.
Guerri, A., and Milano, M. 2004. Learning techniques
for automatic algorithm portfolio selection. In Proceedings
of the European Conference on Artificial Intelligence, 475–
479.
Huberman, B. A.; Lukose, R. M.; and Hogg, T. 1997. An
economics approach to hard computational problems. Sci-
ence 275(5296):51–54.
Kadioglu, S.; Malitsky, Y.; Sabharwal, A.; Samulowitz, H.;
and Sellmann, M. 2011. Algorithm selection and schedul-
ing. In Proceedings of the International Conference on Prin-
ciples and Practice of Constraint Programming, 454–469.
Leyton-Brown, K.; Nudelman, E.; and Shoham, Y. 2002.
Learning the empirical hardness of optimization problems:
The case of combinatorial auctions. In Proceedings of
the International Conference on Principles and Practice of
Constraint Programming, 556–572.
Malitsky, Y.; Sabharwal, A.; Samulowitz, H.; and Sellmann,
M. 2013. Algorithm portfolios based on cost-sensitive hier-
archical clustering. In Proceedings of the International Joint
Conference on Artificial Intelligence, 608–614.
Misir, M., and Sebag, M. 2013. Algorithm selection as a
collaborative filtering problem. Technical report, INRIA.
Nudelman, E.; Devkar, A.; Shoham, Y.; and Leyton-Brown,
K. 2004. Understanding random sat: Beyond the clauses-
to-variables ratio. In Proceedings of the International Con-
ference on Principles and Practice of Constraint Program-
ming, 438–452.
O’Mahony, E.; Hebrard, E.; Holland, A.; Nugent, C.; and
O’Sullivan, B. 2008. Using case-based reasoning in an al-
gorithm portfolio for constraint solving. In Proceedings of
the Irish Conference on Artificial Intelligence and Cognitive
Science.
Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-
Thieme, L. 2009. BPR: Bayesian personalized ranking from
implicit feedback. In Proceedings of the Conference on Un-
certainty in Artificial Intelligence, 452–461.

Rice, J. 1976. The algorithm selection problem. Advances
in Computers 15:65–118.
Samulowitz, H., and Memisevic, R. 2007. Learning to solve
QBF. In Proceedings of the AAAI National Conference on
Artificial Intelligence, 255–260.
Stern, D.; Herbrich, R.; Graepel, T.; Samulowitz, H.; Pulina,
L.; and Tacchella, A. 2010. Collaborative expert portfolio
management. In Proceedings of the AAAI National Confer-
ence on Artificial Intelligence, 179–184.
Stern, D. H.; Herbrich, R.; and Graepel, T. 2009. Matchbox:
large scale online bayesian recommendations. In Proceed-
ings of the International Conference on World Wide Web,
111–120.
Streeter, M., and Smith, S. F. 2008. New techniques for al-
gorithm portfolio design. In Proceedings of the Conference
on Uncertainty in Artificial Intelligence, 519–527.
Xu, L.; Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2008.
SATzilla: portfolio-based algorithm selection for SAT. Jour-
nal of Artificial Intelligence Research 32(1):565–606.
Xu, L.; Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2012.
Evaluating component solver contributions to portfolio-
based algorithm selectors. In Proceedings of the Interna-
tional Conference on Theory and Applications of Satisfia-
bility Testing, 228–241.

